A novel non-hydrostatic, semiimplicit, semi-Lagrangian scheme for limited-area NWP models

Rein Rõõm Aarne Männik, Andres Luhamaa Tartu University

EGU 2005 Vienna, Austria 25 – 29 April , 2005

Introduction

- Potential of SISL approach
- SISL = Semi Lagrangian, semi-implicit model/approach/method for numerical integration of hydro- and gaso-dynamical Eq.-s
- Powerful: good accuracy, large stability and significant time steps
- In atmospheric dynamics, SISL is used in NWP models ~ 10 years (ECMWF, 1995, Richie et al)
- New challenges in NH (meso- β and $-\gamma$) domains

A novel nonhydrostatic, SISL, adiabatic core for HIRLAM has been created at Tartu University.

- new non-hydrostatic core
- novel is the SISL scheme

NONHYDROSTATIC LAGRANGIAN Eq.-s in PRESSURE COORDINATES

$$\frac{d\omega}{dt} = -\frac{p^2}{H^2} \frac{\partial \phi}{\partial p} \frac{d\mathbf{v}}{dt} = -\nabla(\phi + \phi) - \mathbf{f} \times \mathbf{v}$$

$$c_p \frac{dT}{dt} = RT \frac{\omega}{p} \qquad \frac{dp_s}{dt} = \omega|_{p_s}$$
Short notation:
$$\nabla \cdot \mathbf{v} + \frac{d\omega}{dp} = 0 \qquad \frac{d\varphi}{dp} = -\frac{RT}{p}$$

V –wind vector, $\boldsymbol{\omega}$ – omega-velocity, $\boldsymbol{H}=\boldsymbol{R}\boldsymbol{T}/\boldsymbol{g}$ – scale-height, $\boldsymbol{\Phi}$ – nonhydrostatic geopotential, $\boldsymbol{\varphi}$ - hydrostatic geopotential, \boldsymbol{R} , \boldsymbol{C}_p – gas constants, \boldsymbol{p} – pressure, \boldsymbol{p}_s - surface pressure

SISL: how it works General Lagrangian equation of motion:

Semi-Lagrangian scheme (2- and 3-time-level)

Separation of forcing to Linear and nolinear terms...

 $(1/2)[L(\bullet) + L(*)] + N(\times)$

An important problem is the optimum choice of the reference field(s) ψ^r

Criterion for optimization: maximizing of the linear

term \boldsymbol{L} with respect to the nonlinear term \boldsymbol{N}

$$N_{\psi^r}(\psi') \sim (\psi')^2$$

Maximizing of |L|/|N| means minimizing of

$$|\psi'| = |\psi - \psi^r|$$

Addional restriction: $\psi^r = \psi^r(p)$

 $L_{\psi'}\psi' \sim \psi',$

(ref. state is horizontally homogeneous).

For present NH model, the actual single prime reference field is temperature $T^r(p)$. Secondary reference fields are the mean surface pressure, defined via barometric

formula

$$p_{s}^{r}(x,y) = p_{0} \exp\left(-(g/R)\int_{0}^{h(x,y)} dz/(T^{r})\right)$$

and the reference hydrostatic geopotential

$$\varphi^r(x,y,p) = gh(x,y) + R \int_{p_s}^{p_s^r(x,y)} T^r(p')dp'/p'$$

In the numerical scheme, the reference temperature is computed as the area-mean over isobaric surface:

$$T^{r}(p,t) = \frac{1}{MN} \sum_{mn} T(x_{m}, y_{n}, p, t)$$

Thus, *T^r* is a (slow) function of time.

- 1 Area-mean temperature over Norway 2001.03.22
- 2 Model *T***(***p***)**, proposed by F. Bouttier for tests and model inter-comparison
- 3 Model with constant T

Numerically the model is performed as the NH extension (adiabatic core) for HIRLAM

- Hybrid (ECMWF) coordinates, C-grid staggering
- Semi-Lagrangian (SL) trajectory calculations
- For trajectory calculations and interpolating the existing (McDonald & Haugen) routines from HS HIRLAM are employed
- Two level time stepping

Flow over Agnesi ridge, $a_x = 3 \ km$, $h = 600 \ m$

Time step estimates

There is no strict upper limit of max Δt for NH SISL schemes. In the table, estimations of maximum reliable Δt are presented

Max U, [m/s]	Δx, [km]	$\Delta t_{Cr} = \Delta x / U$ [min]	∆t [min]	$\Delta t / \Delta t_{Cr}$	parcel path, [<i>km</i>]
40	5.5	2.3	4.6	2.0	11
55	5.5	1.67	4.0	2.4	13.2
40	2.2	0.92	2.8	3.0	6.6
42	0.55	0.22	1.0	4.6	2.5

Real-condition tests

Norwegian experiment (mountains)

- Resolution 5.5 km
- Grid 156x156, 31 levels
- HIRLAM 5.0.0

MSL pressure 24 h forecast. Resolution 5.5 km, time-step 4 min

NH model gives ~1 mb larger MSL pressure on plane, ~1 mb lesser at mountain tops

10 m temperature, 24 h forecast. *Resolution 5.5 km, time-step 4 min*

Temperature differences are mostly < 0.5 C, except on mountain tops, where $\Delta T \sim -3$ C

2

0

-2

-4

-6

-8

-10

-12

-14

-16

NH SISL

NH - HS SISL

Applications

- NWP: ETB (Estonian B-area)
- resolution 3.3 km,
- Grid 186×170×40
 (former 104×100×40,
 - area increase 3.3 x)
- **∆t=150s**
- Reference HIRLAM 6.1.0

T_40 36 h forecast within ETB. *Resolution 3.3 km, time-step 1.5 min*

NH SISL

NH – HS SISL

36 h forecast within ETB

U-wind vertical cross section

Resolution 3.3 km, time-step 1.5 min

NH SISL

NH – HS SISL

Conclusions

- A new NH SISL scheme with variable (height dependent) reference state is developed:
- The stability and the time step are increased
- Comparison with theoretical results (mountain flows), as well as with other models (NH Euler, HS SISL) shows that the new scheme is reliable and ready for further applications
- Currently, the NH SISL is implemented as the adiabatic core in ETB (3.3 km resolution, grid 186x170, 40 levels, physics of HIRLAM 6.1.0) and the testing is activated.
- The new NH SISL will be a suitable tool for model development (complex terrain, boundary layer, moist convection) at very high spatial resolutions (0.5 - 1km, 100 levels and more)