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1 IntrodutionThe adiabati kernel of the nonhydrostati (NH) HIRLAM with the semi-impliit semi-Lagrangian (SISL) integration sheme is presented in this pa-per. Our investigation ontinues the work, initiated in the Parts I − III(Rõõm 2001, Männik and Rõõm 2001, Rõõm and Männik 2002), where thefundamentals of NH atmospheri dynamis in pressure�related oordinateswere presented, and, on that basis, the NH expliit-Eulerian and semi-impliit(SI) Eulerian versions of HIRLAM were developed.SISL has beome the popular integration sheme in all advaned weather fore-ast systems in last two deades. The main advantage of SISL (in ompari-son with ompeting shemes like the SI Eulerian sheme or time-split-expliitsheme) is the signi�antly enhaned overall omputational e�ieny, whihis ahieved through substantial gain in numerial stability at the inreasedtime step.The SISL-ideology to integrate the HS primitive equations numerially was�rst proposed by Robert (1981, 1982), who proeeded from an earlier pos-itive experiene with the SI Eulerian sheme 1. A barolini, multi-level,HS primitive-equation, three-time-level SISL model was �rst presented byRobert, Yee and Rihie (1985). An alternative approah with two-time-levelsheme was developed by Temperton and Staniforth (1987). In operationalforeast, SISL has implemented in the middle of the last entury nineties. AtECMWF the two-time-level SISL was operationally launhed in 1995 (Rithieet al 1995). For HIRLAM, the two-time-level SISL sheme was introdued byMDonald and Haugen (1992), and further developed by MDonald (1995).Finally, MDonald (1998, 1999) arried out a further extensive investigationto improve the departure point evaluation. Developed by him non-iterativedeparture point alulation algorithm is urrently in use at the operationalHIRLAM.The �rst NH, fully ompressible (i.e. making use of omplete, non-simpli�edset of dynami equations) SISL was proposed already in 1990 (Tanguay,Robert and Laprise, 1990), but an aute atuality for operational foreastingit has gained in last years in onnetion with model transition into NH-resolution domain.1Three time level SI Eulerian sheme was proposed by Robert (1969); the �rst baro-lini multi-level SI Eulerian sheme for HS primitive equations was desribed in (Robert,Henderson, Thurnbull 1972). 2



Adiabati dynamis, applied in urrent NH SISL sheme, is the White model(White 1989), whih represents a simpli�ed version of omplete NH pressure-oordinate equations. Roughly speaking, White model is the simplest gener-alization of the hydrostati, primitive-equation, pressure-oordinate dynam-is whih inorporates the vertial momentum equation and takes vertialaeleration into onsideration. This loseness to HS model makes imple-mentation of NH dynamis into existing HS environment of HIRLAM ratherstraightforward. The White model derivation from general elasti pressure-oordinate equations with desription of main qualities is presented in de-tail in (Rõõm 2001). As omparison with the exat analytial solutions(Rõõm and Männik 1989), and with the 'full' elasti model (Frenh NH Al-adin) on the non-linear test �ows have demonstrated (Männik 2003), thereis no sensible di�erene between 'exat dynamis' and White model results.The White model has been already applied with suess in heretofore de-veloped three-time-level, expliit-Eulerian (Männik and Rõõm 2001), and SIEulerian (Rõõm, Männik 2002, Männik, Rõõm, Luhamaa 2003) shemes. Inthose models, an additional approximation of the surfae pressure adjustmentwas introdued, whih gave reason to all that approah 'anelasti pressureoordinate model', as the aousti travelling waves were ompletely elimi-nated from dynamis2. In the urrent NH SISL model, we will restore thenon-adjusted pressure treatment of the original White model, whih, how-ever, ould be still alled 'semi-anelasti' beause it laks internal aoustimode due to non-divergene of three-dimensional (3D) veloity in pressure-oordinates.The most plain reason for disarding with surfae pressure adjustment wasthat the impliit treatment of linear development in SISL does not requiresuh an approximation anymore. Adjustment is atually essential in theexpliit-Eulerian sheme where it yields signi�ant growth of omputationale�ieny, expressed in the inrease of ahievable time step, while in the im-pliit shemes, the time-step rise is ahieved by other, independent means(just by impliit treatment of linear fores). More onsiderable reason, how-ever, was the experimentally established fat that dynamis with the adjust-2By the way, using of terminology 'anelasti' served us a disservie, as it was oftenonfused with anelastiity interpretations in shallow onvetion (onstant referene density
ρ = const) or deep onvetion (�xed referene density ρ = ρ0(z)) models. Atually, withthe term 'anelasti' we tried just to underline that model laks aousti waves � exatlylike the HS primitive-equation model does, likewise being anelasti with respet to theinternal (vertially propagating) sound waves.3



ment approximation may lead to a disontinuity of nonhydrostati geopoten-tial �eld at surfae, when the time step beomes over one ritial3. Finally,the non-adjusted, non-simpli�ed model is simpler to deal with in the formalplane. Thus, the non-adjusted surfae pressure evolution is restored in thispaper.Another mayor novelty onsist in preeding modi�ations of geopotentialand surfae pressure treatment. The neutral referene states are subtratedfrom geopotential and surfae pressure in the very beginning, in ontinuousequations already, on�ning the treatment to evolution of geopotential andpressure �utuations. Ideologially this approah is similar to 'Eulerian ad-vetion of orography' method by Rihie and Tanguay (1996). However, inthe urrent treatment, the modi�ation is applied before any disretization,whih refers to generality of suh an approah. The aim of the modi�ation iselimination of large, dynamially passive �elds, otherwise just being a soureof additional noise in the numerial sheme.The last model-spei� modi�ation, yet no the least one, is the appliationof height-dependent referene temperature T 0(p) together with the aompa-nying height-dependent referene-state Brunt-Väisälä frequeny N(p), bothgiving some rise to stability, as the non-linear residuals are minimized in thevertial development equations.The NH model altogether aims to be an organi and straightforward ex-tension of the HS SISL ore to NH resolutions. Thus, exept the nees-sary modi�ations of dynami equations, almost all the numerial sheme ismaintained from the HS parent. This inludes the use of the two-time-leveltime-stepping with the omplete maintenane of the departure point alu-lation proedures (MDonald 1998, 1999) and interpolation routines. And,of ourse, the diabati ounterpart, onsisting the so-alled 'physis', whihis not onern of adiabati ore development, is maintained untouhed, andis overtaken from HS model without any hange and modi�ation.3Critial time step in the sense of the Courant-Fiedrihs-Lewy stability riterion.
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2 Basi equationsConerning the basi equations, as well as notations, this paper is a diretsuessor of the papers (Rõõm. 2001, Männik and Rõõm, 2001, and Rõõm,Männik 2002), and keeps to the general HIRLAM standards (Manual 1996,Manual 2004). However, for reader's ease the basi de�nitions of onstants,variables, �elds and operators are summarised in Appendix 1.2.1 Primary modi�ationsIn the ontinuous pressure-oordinate ase, the basi equations of the WhiteModel are presented and omprehensively disussed in our former paper(Rõõm, 2001, equations (3.2)). Two substantial di�erenes with those equa-tions in urrent ase are, �rst, the use of full, evolutional surfae pressureequation, and, seond, modi�ed handling of geopotential and surfae pres-sure.2.1.1 Surfae pressure equationThe departure point equation for surfae pressure is the ontinuity equationin η�oordinates
∂m

∂t
+ ∇ · (mv) +

∂mη̇

∂η
= 0,whih, in the vertially disrete ase (m = ∆kp/∆η), an be presented (afteromitting of onstant ∆η everywhere)

dh
k∆kp

dt
+ ∆kpDk + ∆k(mη̇) = 0, (2.1)where

Dk = ∇· vk,
dh

k

dt
=

∂

∂t
+ vk∇.Note that horizontal divergene in this de�nition is evaluated on �xed η-surfae and for spherial geometry with �xed urvature, equal to the meanradius of Earth. As pk+1/2 = Ak+1/2 + Bk+1/2ps, one has dh

k(∆kp)/dt =
∆kBdh

kps/dt and, after dividing by ps, equation (2.1) presents
∆kB

dh
k ln ps

dt
+

∆kp

ps

Dk +
∆k(mη̇)

ps

= 0.5



From this equation we will subtrat the identity
∆kB

(

dh
k ln p̂s

dt
− vk · ∇(ln p̂s)

)

= 0, (∗)where referene surfae pressure p̂s is de�ned as
p̂s = p0

s exp

(

−g
∫ h

o

dz

R0T 0(z)

)

(2.2)for the given orography (surfae elevation) h, mean sea level pressure p0
s, andappropriate4 referene temperature T 0(z). As the result of the subtrationwe obtain a prognosti equation

∆kB
dh

kχ

dt
+

∆kp

ps
Dk +

∆k(mη̇)

ps
+ ∆kBvk · ∇(ln p̂s) = 0 (2.3)for logarithmi surfae pressure deviation

χ = ln(ps/p̂s) (2.4)on level k. Equation (2.3) is a partial equation with the weight ∆kB, desrib-ing the ontribution of the layer k to the overall (total) hange of surfae pres-sure. To get the total evolution, partial equations (2.3) should be summedup over all layers. However, it is reasonable to postpone this summationuntil arriving at the �nal Lagrangian time-stepping formulae. The desribedsubtration of equation (*) means fatually introdution of the 'Eulerian ad-vetion of orography', �rst applied in Lagrangian sheme by Rihie and Tan-guay (1996). The Eulerian advetion of the (mean) orography is presentedin Eq. (2.3) by term vk · ∇(ln p̂s).Despite of unusual (non-traditional) appearane, (partial) surfae pressureequation (2.3) is rather onvenient and useful for appliation, as the loga-rithmi pressure �utuation (2.4) is the prime quantity, desribing the surfaepressure ontribution to the �utuations of hydrostati pressure (see below).2.1.2 Diagnosti relations for omega- and eta-veloitiesThe SISL sheme requires diagnosti evaluation of ω and η̇ on the past timelevels. For mη̇ the ontinuity equation (2.1) an be applied (employed) to4Horizontal mean over the domain of integration, as an example.6



get a reurrene
(mη̇)k+1/2 = (mη̇)k−1/2 −∇ · (v∆p)k − ∆kB

∂ps

∂t
, (2.6)where ∂ps/∂t is (a onsequene of (2.1) after use of Eulerian representationand summation over all levels)

∂ps

∂t
= −∇ ·

klev
∑

k=1

vk∆kp, (2.5)Diagnosti equation for ω follows, if one applies Lagrangian time derivation
d/dt to pressure expression in eta�oordinates p = A(η)+B(η)ps and appliesthe result on the disrete eta-level k + 1/2:

ωk+1/2 = (mη̇)k+1/2 +Bk+1/2

(

v
η
k+1/2

· ∇ps +
∂ps

∂t

)

. (2.7)This is an diagnosti formula for ω, if onsidered together with (2.5) and(2.6).2.1.3 GeopotentialGeopotential for general NH model in pressure oordinates is disussed in(Rõõm, 2001). In this paper, we will use division of the full geopotential tothe hydrostati omponent ϕs and to the non-hydrostati supplementation
φ (see ibid, formula (2.5.2a))

Φ = ϕs + φ.Note that suh separation is natural for a model with the non-adjusted(full) surfae pressure treatment, di�erently from the adjusted model withgeopotential separation to the bari and thermal omponents (ibid, formula(2.5.3a)).In ontinuous pressure-oordinate presentation the hydrostati omponent isonventional:
ϕs = gh+

∫ ps

p

RTd(ln p′).7



It is useful (as a numerial noise redution remedy) to subtrat from thisgeopotential a neutral bakground geopotential
ϕ̂ = gh+

∫ p̂s

p

R0T 0(p′)d(ln p′),where p̂s is the referene surfae pressure, R0 is the gas onstant for dry air,and T 0(p) is the referene temperature distribution. If p̂s is hosen to satisfythe ondition (equivalent to the barometri formula (2.2))
∫ p0

s

p̂s

R0T 0(p′)d(ln p′) = gh(x, y),then
(∇ϕ̂)p = 0,i.e., the horizontal pressure-fore from geopotential is zero and this geopoten-tial may be safely subtrated from φ∗ without dread of atual foring looseor virtual foring reation.Using alternative presentation

ϕ̂ = gh+

∫ ps

p

R0T 0(p′)d(ln p′) −
∫ ps

p̂s

R0T 0(p′)d(ln p′)

= gh+

∫ ps

p

R0T 0(p′)d(ln p′) − R0T 0(p̂s)χ.we arrive at expression for �utuative HS geopotential
ϕ = ϕ∗ − ϕ̂ = R0T 0(p̂s)χ+

∫ ps

p

(RT )′d(ln p′), (2.8)where
(RT )′ = RT −R0T 0(p).The derived formula (2.8) presents HS geopotential �utuation, whih isessential for dynamis, while ausing the real fores in the system. This�utuative part is small, when measured in units R0T 0: the amplitude of χis about 1/100, whereas the amplitude of the integral term in units R0T 0 isabout 1/10. 8



In hybrid oordinates the formula for ϕ reads
ϕ = R0T 0(p̂s)χ+

∫ 1

η

(RT )′
∂ ln p

∂η′
dη′,and in the disrete approximation we obtain

ϕk = R0T 0(p̂s)χ + Γk(RT )′, (2.9)where
Γkξ =

klev
∑

j=k+1

αjξj +
1

2
αkξk.

αk = 2
pk+1/2 − pk−1/2

pk+1/2 + pk−1/2

=
∆kp

pη
k

.Respetively, in momentum equations, the omplete geopotential Φ will bereplaed with the �utuative geopotential, onsisting of HS and NH parts
Φ′ = ϕ+ φ.The non-hydrostati omponent φ is aused by system departure from HSequilibrium. In detail its main features are disussed in (Rõõm, 2001). Es-sential for urrent treatment is the lower boundary ondition
φ|ps

= 0, (2.10)whih represents the Dirihlet' homogeneous BC (while treated in onjun-tion with the Laplae equation for φ as demonstrated further).
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2.2 Initial equationsThe equations of motion and thermodynamis, in vertially disrete hybridoordinate, Lagrangian presentation, yet in ontinuous time, and with mod-i�ations for geopotential and surfae pressure equation introdued in theprevious setion, are as follow:Vertial momentum equation
dk+1/2ω

dt
= −(W∆φ)k+1/2 + (a0

ω)k+1/2, (2.11a)Horizontal momentum (wind) equation
dkv

dt
= −Ĝk(φ+ ϕ) − f × vk + A

vk ; (2.11b)Temperature equation (for �utuative part of temperature)
dkT

′

dt
= Skω

η
k + (AT )k; (2.11c)Surfae pressure k-level partial equation

∆kB
dh

kχ

dt
= −∆kp

ps
Dk −

∆k(mη̇)

ps
− ∆kBvk · ∇(ln p̂s). (2.11d)Continuity equation (ondition of non-divergene of 3D veloity)

Ĝ
+

k · v +
∆kω

∆kp
= 0 . (2.11e)The oe�ients in these equations are

Wk+1/2 =

(

(gp)2

(RT )2∆p
η

)

k+1/2

, Sk =

(

κT

pη

)

k

− ∆kT
0

∆kp
(2.12a)(where T 0 depends via pk(x, y) on horizontal oordinates x, y),

(a0
ω)k+1/2 = ωk+1/2

(

cvω

cpp
− AT

T
− d lnR

dt

)

k+1/2

+ Aω, (2.12b)Terms A
v
, AT and Aω are general notation for diabati foring and spetralsmoothing. 10



3 Semi-impliit semi-Lagrangian disrete approx-imation of dynamis3.1 Separation of linear main terms and nonlinear per-turbations in equationsDivision of foring in equations to the main and perturbation parts is basedon the treatment of the linear part of equations as a main foring and supple-mentation of these linear terms to the full foring by nonlinear residuals asthe perturbation. The linear terms are thereafter treated impliitly, whereasthe nonlinear perturbations are onsidered in the expliit manner.The linear part orresponds to a �xed, horizontally homogeneous referenestate, haraterized by the temperature T 0(p) and uniform ground surfaewith onstant surfae pressure p0
s.Departure of temperature from the referene state, and of the surfae pressurefrom the uniform, onstant value, are responsible for the perturbation terms.The partition in equation (2.11a) takes advantage of presentation

Wk+1/2 = W 0
k+1/2 +W ′

k+1/2, W 0
k+1/2 =

[

(gp0)2

(R0T 0(p0))2∆p0
η

]

k+1/2withW de�ned in (2.12a). Thus,W 0 is the main part andW ′ is the nonlinearperturbation of W , whih is evaluated at every instant as
W ′

k+1/2 = Wk+1/2 −W 0
k+1/2.For T 0(p), the mean atual temperature over the area at the �xed pressure(the p-mean temperature) is assumed. The referene pressure p0

k+1/2
orre-sponds to the even ground with onstant pressure p0

s:
p0

k+1/2 = Ak+1/2 +Bk+1/2p
0
s = ηk+1/2p

0
s.In appliation, the mean (averaged over area of integration at every instant)surfae pressure is used for p0

s.Division for oe�ient S in equation (2.11) is
Sk = S0

k + S ′

k, where S0
k =

κ
0T 0(p0

k)

p0
k

− ∆kT
0(p0)

∆kp0
.11



Horizontal p-gradient Ĝ(φ+ ϕ) in (2.11b) divides
Ĝk(φ+ ϕ) = ∇(φ+ ϕ0) + [Ĝk(φ+ ϕ)]′where the 'plain' gradient ∇ is the main part of Ĝ, while the main part ofhydrostati geopotential is

ϕ0
k = C2χ+R0Γ0

k(T )′, (3.1)where
C2 = R0T 0(p0

s),

Γ0
kξ =

klev
∑

j=k+1

α0
jξj +

1

2
α0

kξk.

α0
k = 2

p0
k+1/2

− p0
k−1/2

p0
k+1/2

+ p0
k−1/2

=
∆p0

k

p0
η

k

.(The nonhydrostati geopotential like other prime dynami �elds does notneed any separation, yet HS geopotential, whih is a funtion of T ′ and
χ with oe�ients, depending on pressure, is subjet to separation). Theperturbation part of horizontal pressure foring is presented without anysimpli�ation as the di�erene between full and linear pressure fores

[Ĝk(φ+ ϕ)]′ = Ĝk(φ+ ϕ) −∇(φ+ ϕ0).As a result, equations (2) present
i, j, k+1/2 :

dω

dt
= −W 0∆φ+ aω, (3.2a)

i+1/2, j, k :
du

dt
= −∇x(φ+ ϕ0) + au , (3.2b)

i, j+1/2, k :
dv

dt
= −∇y(φ+ ϕ0) + av , (3.2c)

i, j, k :
dT ′

dt
= S0ωη + aT , (3.2d)

i, j, k : ∆B
dhχ

dt
= −∆p0

p0
s

D0 − aχ, (3.2e)12



i, j, k : D0
k +

∆ω

∆p0
+ aD = 0 , (3.2f)where D0 is the 2D divergene in plane geometry

D0
k = ∇xu+ ∇yv.The nonlinear terms in these presentations are

aω = a0
ω −W ′∆φ, aT = S ′ωη + AT ,

au = −
[

Ĝx(φ+ ϕ) −∇x(φ+ ϕ0)
]

+ fv + Au ,

av = −
[

Ĝy(φ+ ϕ) −∇y(φ+ ϕ0)
]

− fu+ Av ,

aχ =
∆p

ps
D − ∆p0

p0
s

D0 +
∆(mη̇)

ps
+ ∆Bv · ∇(ln p̂s),

aD =

(

Ĝ
+
x u+ Ĝ

+
y v +

∆ω

∆p

)

−
(

D0 +
∆ω

∆p0

)

.3.2 SISL approximationEquations (3.2) are still in ontinuous time. Their further modi�ation isbased on the appliation to them of the two-time-level, semi-impliit, semi-Lagrangian sheme (MDonald and Haugen 1992, 1993, MDonald 1995,1998, 1999).The SISL ideology is onisely as follows. Let us present equations (3.a) -(3.2f) in general notation as
dψ

dt
= F + a,with the linear main part F and perturbation part a. The SISL approxima-tion of this equation is

ψt+∆t − ψt
∗

∆t
=

1 − ε

2
F t
∗

+
1 + ε

2
F t+∆t +

1 − ε

2
at+∆t/2
∗

+
1 + ε

2
at+∆t/2. (3.3)Aording to this expression, an air partile arrives in the given loation(with is usually a grid-point) with oordinate x = x(t+ ∆t) at the moment13



t+ ∆t from the departure point x∗ = x∗(t), where it was at time t. Thevalues of the �elds ψ, F in the departure point and in the �nal point are
ψt
∗
, F t

∗
, ψt+∆t, F t+∆t, respetively. Expression on the left side of (3.3) isthe �nite-di�erene Lagrangian approximation for material derivative of ψ.Fores on the right side are weighted averages of those of the ontinuousmodel. The main linear term F is the weighted average of its departurevalue in the initial moment and �nal value at the arrival point. This use ofthe �nal value F t+∆t makes the sheme impliit with respet to the linearfore. The nonlinear term a is also a weighted average between its departure-and arrival-point values, but in this ase the averaging is arried out forintermediate time t+ ∆t/2 and thus, this term is approximated expliitly.The small parameter ε is introdued to inrease the weight of the arrivalpoint in foring formation. Typially the value of this parameter is in theinterval 0 < ε ≤ 0.1.Central issues of the appliation of desribed approah are the departurepoint x∗ evaluation, intermediate �eld at+∆t/2 alulation, and interpolationof �elds F t and at+∆t/2 from grid-points to the departure point loations.For alulation of a at intermediate time level the Adams-Bashford extrapo-lation sheme is used:

at+∆t/2 = 1.5at − 0.5at−∆t.The departure point evaluation is based on the non-linear equation
x − x∗ = ∆tvt+∆t/2[(x + x∗)/2].Initially, this equation was solved iteratively (MDonald and Haugen 1993,MDonald 1995). Later, MDonald introdued an e�ient non-iterative al-gorithm (MDonald 1998, 1999, Manual 2002) (representing a generalizationof the approah by Tempertone and Staniforth, 1987)

x − x∗ = ∆tV̂,

V̂ = avt
x

+ cvt
x−v

t
x
∆t + evt

x−2vt
x
∆t + bvt−∆t

x
+ dvt−∆t

x−v
t
x
∆t + fvt−∆t

x−2vt
x
∆twith onstants

a = −0.25, b = 0, c = 1.50, d = 0.5, e = 0.25, f = −1.0.The great advantage of the desribed approah is that the departure pointalulation and interpolation issues do not depend on physial details of14



the modelled system. Thus, all the desribed trajetory alulus, initiallydeveloped for HS dynamis, is appliable without hanges also in the NHmodel.Solution of equation (3.3) with respet to �elds at time level t+ ∆t yields
ψt+∆t − ∆t+F

t+∆t = ψ̂, (3.4)where
ψ̂ =

(

ψt + ∆t−F
t + ∆t−a

t+∆t/2
)

∗
+ ∆t+a

t+∆t/2and
∆t± =

1 ± ε

2
∆t,The general formula (3.4) for evaluation of �nal �elds at the arrival point isthe basis for further transformation of equations (3.2).3.3 One-step integrals of SISL-model equationsAppliation of formula (3.4) to equations (3.2a) - (3.2e) yields one-time-step-integrals

i, j, k+1/2 : ωt+∆t + ∆t+W
0∆φt+∆t = ω̂ , (3.5a)

i+1/2, j, k : ut+∆t + ∆t+∇x

(

φ+ ϕ0
)t+∆t

= ũ, (3.5b)

i, j+1/2, k : vt+∆t + ∆t+∇y

(

φ+ ϕ0
)t+∆t

= ṽ , (3.5c)

i, j, k : T ′t+∆t − ∆t+S
0(ωη)t+∆t = T̂ , (3.5d)

i, j : χt+∆t + ∆t+

klev
∑

k=1

∆p0
k

p0
s

(D0
k)

t+∆t = χ̃, (3.5e)while the ontinuity equation (3.2f) gives
i, j, k :

(

D0 +
∆ω

∆p0

)t+∆t

= −D̂, (3.5f)The partial surfae pressure equations (3.2e) are eventually summed up toget the relationship (3.5e). 15



The quest �elds/quantities are onentrated on the left side, while the knownquantities at time levels t and t+ ∆t/2 on the right side are:
ω̂ =

[

ωt − ∆t−W
0∆φt + ∆t−a

t+∆t/2
ω

]

∗
+ ∆t+a

t+∆t/2
ω , (3.6a)

ũ =
[

ut − ∆t−∇x

(

ϕ0 + φ
)t

+ ∆t−au
t+∆t/2

]

∗

+ ∆t+au
t+∆t/2, (3.6b)

ṽ =
[

vt − ∆t−∇y

(

ϕ0 + φ
)t

+ ∆t−av
t+∆t/2

]

∗

+ ∆t+av
t+∆t/2, (3.6c)

T̂ =
[

T ′t + ∆t−

(

S0(ωη)t + a
t+∆t/2

T

)]

∗

+ ∆t+a
t+∆t/2

T , (3.6d)

χ̃ =
klev
∑

k=1

{[

∆kBχ
t − ∆t−

(

∆kp
0

p0
s

(D0
k)

t + a
t+∆t/2

χk

)]

∗2D

− ∆t+a
t+∆t/2

χk

}

,

(3.6e)

D̂ =
1 − ε

1 + ε

(

D0 +
∆ω

∆p0

)t

∗

+
1 − ε

1 + ε
(aD)t+∆t/2

∗
+ (aD)t+∆t/2. (3.6f)As an intermediate notation we use here ũ, ṽ.χ̃, the �nal quantities û, v̂, χ̂arrive after some further modi�ation a while later.The subsript '∗' at the brakets means that the quantity in brakets is evalu-ated in the departure point x

t
∗ijk, orresponding to the �nal grid-point underonsideration x

t+∆t
ijk , whereas subsript '∗2D' means that that the orrespond-ing expression in the brakets is evaluated in the loation of departure pointprojetion onto kth η-level.The veloities ω and mη̇, required at time levels t ja t+ ∆t/2 in several a-terms in (3.6), are diagnosed in orrespondene with formulae (2.5) � (2.7).4 DislosureTo get prognosti quantities expliitly, the system (3.6) has to be solvedwith respet to ωt+∆t, v

t+∆t, (T ′)t+∆t, and φt+∆t. For that we �rst expressquantities ωt+∆t, v
t+∆t, (T ′)t+∆t, (ϕ0)t+∆t and φt+∆t via a new auxiliarypotential ξ using equations (3.6a) � (3.6e), and then apply equation (3.6f) toget an ellipti equation for diagnosis of ξ.
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4.1 Redution of prognosti quantities to the auxiliarypotential ξThe aim is to express all prognosti quantities via a new auxiliary potential
ξ. The task onsists of four steps.(1) Expression of (ϕ0 + φ)t+∆t via auxiliary potential ξ and χt+∆t.Considering (3.1) on time level t+ ∆t, and using formulae (5) and (7) yieldsequation for φ+ ϕ0

i, j, k : (φ+ ϕ0)t+∆t = Q+ C2χt+∆t + ξ (4.1)(note that χ = χij is independent of height index k), where
i, j, k : Q = R0Γ̂0

(

T̂ + ∆t+S
0ω̂

η
)

, (4.2)

C = √R0T 0(p0
s) is the isohori sound speed in referene state, and ξ is anauxiliary potential

i, j, k : ξ = φt+∆t − (∆t+)2R0Γ̂0(S0W 0∆φt+∆t
η
). (4.3)From this de�nition, a reurrene follows for every �xed pair of indexes i,j:

∆k+1/2ξ = ∆k+1/2φ
t+∆t + (∆t+)2R0α0S0W 0∆φt+∆t

ηη

k+1/2, (4.4)whih is onvenient to use for transition from φ to ξ and vie versa. Theboundary ondition for ξ proeeds from (4.3) as
ξ

η

klev+1/2 = φ
η

klev+1/2 = 0. (4.5)The presentation holds
R0α0S0W 0∆φt+∆t

ηη

k+1/2 = N2
k+1/2∆k+1/2φ

t+∆t + O2(∆φ
t+∆t)where

N2
k+1/2 = R0W 0

k+1/2α
0S0

η

k+1/2 (4.6)is the squared Brent-Väisälä frequeny of the referene state on levek k+1/2and
O2(∆φ

t+∆t) =
R0

4
∆
[

α0S0∆
(

W 0∆φt+∆t
)]

.17



This term an be estimated as O2(∆φ
t+∆t) ∼ ∆2(N2∆φ) ∼ (∆η)2|N2∆φ|and thus, it tends to zero with the level number inrease like 1/klev2 (be-ause ∆η ∼ 1/klev). In a 30�level model its relative value with repsetto the �rst term is ∼ 10−3, and ∼ 10−4 in a 100�level model. Thus, term

O2(∆φ
t+∆t) an be omitted, after whih (4.4) beomes

i, j, k+1/2 : ∆ξ = (1 + ∆t2+N
2)∆φt+∆t (4.7)(where N2

k+1/2
does not depend on horizontal indexes i,j).(2) Expression of horizontal wind via χ and ξ.Using (4.1), horizontal wind equations (3.5b), (3.5) an be modi�ed to

i+1/2, j, k : ut+∆t = û− ∆t+∇x

(

C2χ+ ξ
)t+∆t

, (4.8a)

i, j+1/2, k : vt+∆t = v̂ − ∆t+∇y

(

C2χ+ ξ
)t+∆t

, (4.8b)

û = ũ−∇xQ, v̂ = ṽ −∇yQ, (4.8c)Applying of ∇· to (4.8) yields expression for 2D divergene (horizontal winddivergene)
i, j, k :

(D0)t+∆t = (∇xû+ ∇y v̂) − ∆t+∇
2 (

C2χ+ ξ
)t+∆t

. (4.9)(3) Expression of logarithmi pressure �utuation χ via auxiliarypotential ξ.Substitution (4.9) into (3.5e) yields after some algebra
i, j :

χt+∆t −Hξt+∆t = χ̂, (4.10a)

Hξt+∆t = ∆t2+
∇2

1 − ∆t2+C
2∇2

klev
∑

k=1

∆p0
k

p0
s

ξt+∆t
k , (4.10b)

χ̂ =
1

1 − ∆t2+C
2∇2

(

χ̃− ∆t+

klev
∑

k=1

∆p0
k

p0
s

(∇xû+ ∇yv̂)k

)

, (4.10c)
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(4) Equation for ξ.As now χt+∆t is expressed via ξ with the help of (4.10a), prognoses of vertialwind (3.5a), temperature (3.5d), and horizontal wind (4.8) inlude still justone unknown variable ξ. To �nd this auxiliary potential, we apply ontinuityondition (3.5f). Substitution of wind omponents (3.5a), (4.8) into (3.5f),and using (4.7) gives the following Laplae equation for ξ
i, j, k : (L + ∇2

)ξ = −C2∇2
χ+ D ,where

(Lξ) =
1

∆p0
∆

(

W 0

1 + ∆t2+N
2
∆ξ

)

,

D =
1

∆t+

(

D̂ + ∇xû+ ∇yv̂ +
∆ω̂

∆p0

)

.As the right side inludes χ, this equation must be treated simultaneouslywith (4.10a).Solution method is rather analogous with those, applied in the Eulerian ases(Männik and Rõõm 2001, Rõõm and Männik 2002). Major di�erene is thelower boundary ondition, whih is the homogeneous Dirihlet' ondition(4.5) in the present ase. To take the lower BC into onsideration, we add asingular boundary soure at the lower boundary, γδklev+1,k, to the right sideof the Laplae equation5. Thus, the ellipti system is �nally
i, j :

[

Lξ + ∇2
ξ
]

k
= Dk − C2∇2

χ+ γδklev+1,k , (4.11a)

i, j : (Bξ) ≡ ξ
η

klev+1/2 = 0, (4.11b)

i, j : χ− (Hξ) = χ̂, (4.11c)This set of equations has to be solved with respet to unknowns ξijk, χij, and
γij.5Atually, the singular boundary soure is not obligatory. The same speial solution anbe desribed by a solution of homogeneous equation. However, singular soure introdutionallows for appliation of the same inversion algorithm for all omponents of the ompletesolution. 19



4.2 Solution of the ellipti systemAs ∇2 is horizontally homogeneous, i.e. it has onstant grid-steps in bothdiretions, the 2D disrete Fourier transformation of system (4.11) will beadvantageous. Using for spetral transforms of ξ, χ, γ notation ξ̃ijk, χ̃ij , γ̃ij ,for eah pair of spetral numbers i, j we get an independent system
i, j : (Lk − Λ) ξ̃ = D̃k + C2Λχ̃+ γ̃δklev+1,k , (4.12a)

i, j : (Bξ̃) ≡ ξ̃
η

klev+1/2 = 0, (4.12b)

i, j : χ̃− (Hξ̃) = ˜̂χ, (4.12c)where D̃k ≡ D̃ijk and ˜̂χ ≡ ˜̂χij are the spetral transforms of soures
D and χ,

Λij =
4

〈∆x〉2 sin2

(

π

2

i− 1

klon− 1

)

+
4

〈∆y〉2 sin2

(

π

2

j − 1

klat− 1

)

,is the Fourier presentation of −∇2 with 〈∆x〉, 〈∆y〉 representing the averagegrid-steps in x- and y-diretions.The solution of (4.12a) is
ξ̃k = ξD

k + χ̃kξ
χ
k + γ̃ijξ

γ
k , (4.13a)where ξD

k , ξχ
k , ξγ

k are solutions of eq. (4.12a) for respetive right-hand soures
D̃k, C2Λ and δklev+1,k, i.e., they are solutions of the equations
(Lk − Λ) ξD = D̃k, (Lk − Λ) ξχ = C2Λ, (Lk − Λ) ξγ = δklev+1,k (4.13b)respetively. After these solutions are spei�ed, the substitution of (4.13a)into onditions (4.12b), (4.12) results in a two-dimensional linear system for
χ̃ij and γ̃ij

i, j : χ̃(Bξχ) + γ̃(Bξγ) = −BξD, (4.14a)

i, j : χ̃(1 −Hξχ) − γ̃(Hξγ) = χ̂+ HξD. (4.14b)20



Solution of this linear set aomplishes the solution of the ellipti system andaltogether it does aomplish the whole time-stepping proedure.For intermediate alulations, the nonhydrostati geopotential φ is required,for whih a reurrene, resulting from (4.7), an be used:
φk = φk+1 +

ξk − ξk+1

1 + ∆t2+N
2
k+1/2

,with initial value
φklev =

ξklev

1 + ∆t2+N
2
klev+1/2

,following from boundary ondition (4.5).For solution of equations (4.13a), the elementary Gaussian eliminationmethodis applied, instead of previous, more sophistiated eigenvetor (normal mode)approah, used in Eulerian ase (Männik and Rõõm 2001, Rõõm and Männik2002) 6.6However, the eigenvetor approah has its value and may be needed in future, whenthe domain of integration is hosen/beomes suh large (area size 5000 km or larger), thatthe urvature of the domain annot be onsidered as a small perturbation anymore, and,onsequently, the Fourier transform in y-diretion beomes invalid.
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5 Numerial testsThe nonhydrostati semi-impliit semi-Lagrangian sheme, desribed in theprevious setions, is realized numerially as the extension of the hydrostatiHIRLAM. The departure-point alulation algorithms of HS SISL are main-tained ompletely. The pre- and post-proessing failities are also ompletelythose of the hydrostati HIRLAM, and the lateral boundary treatment is thesame as well (the Davies' boundary relaxation sheme). The numerial odeinludes all the previous stu�: hydrostati Eulerian expliit sheme, Euleriansemi-impliit sheme, Lagrangian semi-impliit sheme, and Eulerian NHexpliit and semi-impliit sub-models, inluded as options whih may beswithed on/o� . The numerial ode has a parallel realization on the Linux-lusters (Tartu Observatory luster, EMHI faility, and the Tartu UniversityEnvironmental Institute's luster, all in Estonia). In priniple, the numerialode should work on all arhitetures whih are supported by HIRLAM. Inthe following, some provisional results are presented, the purpose of whih isto demonstrate the omputational e�ieny and preision harateristis ofthe NH SISL model. All results are obtained with NH SISL version whihhas been ported to o�ial HIRLAM release 6.4.0.5.1 Flow over arti�ial orographyAim of the model experiments is (1) debugging, and (2) model quality ontrol.In these experiments adiabati stationary �ow regimes over given orographyare studied and ompared to the known analytial solutions of the lineariseddynamis. The �rst test experiment ontains a high-resolution adiabati sim-ulation with arti�ial orography and an arti�ial initial state whih, however,is quite lose to the reality. For orography, as usual, a 'With of Agnesi'-typeisolated hill serves with the orography funtion
h(x, y) =

h0

[1 + (x/ax)2 + (y/ay)2]s
, (4.1)where h0 is the mountain height and ax, ay are the half-widths of the hillalong oordinate axes. We use s = 1.5 when examining �ow over an isolatedmountain and s = 1 when looking at one dimensional �ow with ay = ∞.The initial state is haraterized with the referene temperature T 0(p), andwind U(p), whih is initially taken independent of x, y oordinates and then22
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rather di�ult to model this wave pattern orretly and the simulation qual-ity is a good indiator of the quality of the numerial sheme. Shown arevertial veloity waves generated by the ridge. The upper panel representsthe output of 2D linear, fritionless stationary model and the lower panelis the output of NH SISL. The interval between isolines is 0.05 m/s. Asseen from Figure 2, NH SISL an qualitatively represent the wave struturegenerated by �ow over obstale rather well. However, a small phase error inupdraft-downdraft zone loation is visible. In addition, the amplitude of thewaves is slightly too strong near the obstale and damped downstream. Mostof suh behaviour is possibly linked to boundary zone interation with �ow�elds. It should be noted that the presented model situation is nonhydro-stati by its nature. HS model is not apable to simulate suh down-streamwave-traines at all.5.2 Real-ondition experimentsFollowing setion presents several experiments with real observational ini-tial and boundary data. The output of NH SISL is ompared to HS SISLresults as referene model. HS SISL has been widely used in operationalenvironments and an be onsidered as well-tested model. Similarity of theresults with HS model o�ers high degree of reliability and is here regardedas quality measure. The spei� additional nonhydrostati and high resolu-tion e�ets require deeper studying and muh more sophistiated veri�ationmethodologies and are left for further researh.The NH SISL adiabati ore was investigated in two ases: In mountainousregion with resolution 5.5 km and in lowland onditions with resolution 3.3km. Additionally, operational performane was evaluated in a two weekontinuous run experiment.5.2.1 Norwegian experiment (mountains)An arbitrarily hosen weather situation with foreast initial time at 00 GMT5th August 2003 is modelled. The resolution of the model domain is 5.5 km,grid size is 156x156 points, 31 levels. The physis is swithed on. Foreastperiod is 24 h, and the time step is 4 minutes. Analysis �les from FMIoperational foreast model are used as initial and boundary �elds.The results of the modelling experiments are presented on Figures 3 - 5. The25



Figure 3: Mean sea-level surfae pressure in 24 h Norwegian foreast at 5.5km resolution with 4 minute time-step. Left: Mean sea level pressure; right:Surfae pressure di�erene from the HS SISL resultsweather situation represents a high pressure system over Sandinavia. Theperformane of the NH SISL over mountainous area (Norwegian mountains)is evaluated. The left panel of the Figure 3 shows pressure redued to meansea level of the NH SISL foreast and the di�erene from HS SISL is on theright panel. As Figure 3 demonstrates, the surfae pressure of NH model isapproximately 1 mb higher over the mountains.The foreasted lowest level temperature (Figure 4) does not di�er from HSSISL results more than ± 1.0 K in average. However, sattered spots of smallareas, where the temperature di�erenes reah 3 K, do exist. Figure 5 depitsross-setion of Ux omponent of the wind taken in south-north diretion at6.0E longitude (HIRLAM rotated oordinates). In general, the di�erenesof NH and HS models are small with the exeption of a small region in theboundary layer near model equator where the di�erene reahes almost 10m/s. This large wind di�erene is aused by a small-sale yet relatively strongwind gust in this site, whih is present in HS model but laks in the NH ase.It is possible onlude from Figures 3 - 5 that generally NH and HS modelprodue similar foreasts though loal small-sale di�erenes an appear insome areas, aused mainly by slightly di�erent disposing of loal fronts (re-gions with steep hange) of meteorologial �elds by HS and NH models. Thismeans that NH SISL ould be used as a foreast model without problems,26



Figure 4: Lowest level temperature in 24 h Norwegian foreast at 5.5 kmresolution with 4 minute time-step. Left: Temperature; right: Temperaturedi�erene from the HS SISL results

Figure 5: Vertial ross-setion of the wind omponent Ux in 24 h Norwegianforeast at 5.5 km resolution with 4 minute time-step. Left: Vertial ross-setion of Ux; right: Departure of Ux from the orresponding HS SISL wind27



Figure 6: Surfae pressure in 36 h Estonian B-area foreast at 3.3 km res-olution with 2.5 minute time-step. Left: Sea level pressure. Right: Surfaepressure di�erene from the HS SISL results.but loal e�ets and di�erenes from HS model, most probably resulting fromdi�erent interation of HS and NH models with the 'physis', present interestand require additional sudying.5.2.2 Estonian B-area experiments (lowlands)Experiments, similar to the previous ase, were arried out over relatively�at area. Referene physis was inluded. The date was arbitrarily hosento be 7th September 2004 and a 36h foreast was produed starting from 00GMT. The area is the 3.3 km resolution modelling domain used at EMHI-s experimental high resolution NWP environment � so alled Estonian B-area (ETB). The grid in this ase is 186 × 170 points, 40 levels in vertial.It is worth mentioning that the former Eulerian SI model based domaingrid was 104 × 100 points. Thus, the inrease in the foreast area due toimplementation of more e�ient NH SISL sheme is about 3.3 times (1.7times in eah horizontal diretion). The time-step in this experiment was 2.5min (150 s).In Figure 6 and 7, the 36 h MSL surfae pressure and lowest level temperatureare presented. Left panels show NH SISL foreast and right panels representdi�erenes from HS SISL foreast. The di�erenes with the HS SISL modeldo not exeed in the urrent lowland ase ±0.7 mb in surfae pressure, and28



Figure 7: Lowest level temperature T40 in 36 h Estonian B-area foreast at3.3 km resolution with 2.5 minute time-step. Left: Temperature. Right:Temperature di�erene from the HS SISL results.

Figure 8: Vertial ross-setion of the wind omponent Ux in 36 h EstonianB-area foreast at 3.3 km resolution with 2.5 minute time-step. Left: Vertialross-setion of Ux; Right: Departure of Ux from the orresponding HS SISLwind. 29



±1.5 o C in the lowest level temperature �elds. Figure 8 shows the ross-setion of the u-omponent of the wind of 36 hour foreast and its di�erenefrom HS model run. The ross setion is taken along 11.5E meridian. Ingeneral the �ow �elds are very similar in struture. The di�erenes betweentwo models reah 2 m/s.On large sale, the NH SISL and HS SISL models give similar results likein the previous model experiment. The di�erenes between them are lo-al, although learly observable. The regions of di�erenes are small-sized,relatively sporadi and di�ult to verify against the real situation.In general, the overall quality of NH SISL looks satisfatory and its perfor-mane an be onsidered reliable.5.2.3 Comparison with observationsA two week long modelling experiment was arried out to obtain quantitativemeasures of NH SISL performane in omparison with the observations. Themodelling domain in the experiment was the hereinabove desribed ETBarea. Integration time the was 150 s. The seleted time period was fromJanuary 01 to January 14, 2005. High yloni ativity was observed in thearea during the period and it inluded also the devastating storm on 8thJanuary. The standard veri�ations sores against observations were used.To get a referene information, the same veri�ation statistis were olletedfrom HS SISL on the same area and from HS SISL with 11 km resolution.To be able to ompare the models with di�erent areas and resolutions, aspei� set of observational sites was hosen ontaining all WMO sites in theETB area. The quality of observational sites in the list was not ritiallyevaluated.The results are presented in Figures 9 and 10. In Figure 9, the veri�ationstatistis for sea-level pressure, 2 m temperature, 10 m wind and 2m relativehumidity of all three models are presented. Both high resolution models givesimilar performane with the exeption of mean sea level pressure statistis.The mean sea level pressure bias of NH SISL is slightly better during earlyforeast and worse at longer foreast times. High resolution models improvethe 10 m wind errors and 2m relative humidity biases, while the low resolu-tion HS model tend to have better 2m temperature sores and 2 m relativehumidity root mean square errors. Possible explanation is that the betterwind foreast from high resolution models results from better resolution of30



orography, while the better temperature foreast of the lower resolution HSmodel results from better tuning of various physial parameterizations. Fig-ure 10 shows veri�ation sores of 36h foreasts of all three models againstvertial sounding observations. The di�erenes between all three models ex-ist, but they are not big and it is relatively hard to speulate whih model isbetter.From the Figures 9 - 10 it is possible to onlude that in the �at lowland ase,NH model o�ers the same foreast quality as its hydrostati parent does. Onthe basis of the standard veri�ation sores, there is no remarkable bene�t norfrom the inreased resolution neither from the appliation of nonhydrostatisheme. This onlusion is valid for �at areas. The bene�ts of high resolutionand NH treatment beome evident, if the wave generation by orography andthe orographi drag beomes substantial. Another potential improvementarea are the expliitly resolved onvetive events with strong vertial iru-lation. However, the onvetion events need to be investigated on the aseby ase basis with appliation of speial model veri�ation shemes.5.3 Computational e�ienyA set of numerial experiments on two di�erent grids were used to analyzethe omputational resoure requirements of NH SISL in omparison with HSSISL. 1-hour foreasts were omputed with both shemes on 114 × 100 × 40and 186 × 170 × 40 grids. The time-step was 400 s for the smaller gridand 150 s for larger grid. The omputations were performed on four-nodeLinux luster omputer whih has 3 GHz proessors onneted with GigabitEthernet ards. The results are presented in Table 1. Table 1.Grid HS SISL omp.time (net proes-sor time/grosstime/ratio) NH SISL omp.time (net proes-sor time/grosstime/ratio) NH / HS ratio
114 × 100 × 40 15.2/18.6/0.82 23.8/28.4/0.83 1.53
186 × 170 × 40 84.3/99.6/0.85 119.6/144.1/0.83 1.45In the table net proessor time refers to the omputing time spent on proes-sors measured by HIRLAM routines. Gross time refers to the time, spent31
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Figure 9: RMS errors (rhomb) and biases (triangle) for sea-level pressure, 2m temperature, 10 m wind and 2 m relative humidity at di�erent foreastlengths. Red line marks HS SISL with 3.3 km resolution, green line NH SISLat 3.3 km resolution and blue line HS SISL with 11 km resolution.
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on omputing, measured by routinee MPI_Wtime. The di�erene is ausedby the limited ommuniation bandwidth. The table shows that the ratio ofomputation and ommuniation osts is roughly the same for both shemes.The NH SISL sheme requires 1.5 times more omputational resoures thanHS SISL when the time-step is equal.It ought to be possible some further inrease of e�ieny of the NH ode bymeans of ode optimization.6 ConlusionsWe onsider the NH SISL development as the ompleted task. The stabilityand the time step harateristis of the new model are reasonable. Com-parison with theoretial results (mountain �ows), as well as with HS SISLshows that NH SISL is reliable and ready for appliations. The inrease ofomputational e�ieny is substantial in omparison with Eulerian ase andlooks reasonable in omparison with HS SISL in similar onditions.Currently, the NH SISL is implemented as the adiabati ore in Estonian B-area model (3.3 km resolution, grid 186x170, 40 levels). Sine August 2005,the NH SISL ode is ported to the latest o�ial HIRLAM referene version6.4.0, and its preoperational testing is launhed at EMHI. As the preliminarystatistial testing reveals, the NH-spei� e�et is moderate at these resolu-tions for the given physial paramterization and lowlands ondition. MoreNH behaviour will be expeted at very high spatial resolutions (0.5 - 1km,100 levels), in whih ase NH SISL will be a suitable tool for developmentand testing of new physis, inluding the omplex terrain, boundary layer,and moist onvetion.
AknowledgmentsThis investigation has been supported by the Estonian Siene Founda-tion under grant 5711.A. Luhamaa is supported by the Väisälä Foundation under the auspie ofthe Finnish Aademy of Sienes.34



Appendix 17 Notations7.1 Physis onstants
r0 - radius of the Earth
g - gravitational aeleration
R0, c0v, c0p, κ = R0/c0p - dry air onstants
R, cv, cp - moist air onstants
f = 2Ω sinϕ - Coriolis parameter as the funtion of geographial latitude ϕ7.2 Model onstants
T 0(z), T 0(p) - referene temperature as a funtion of height or pressure
p0

s = 1013.26 hPa - limatologial mean sea-level pressure
C =

√
R0T 0 - isohori sound speed

N,Nk+1/2 - Brunt-Väisälä frequeny of referene state
S0

k - referene state stati stability7.3 Area, geometry and oordinates
t - time
∆t - time-step ∆t± = 1±ε

2
∆t

k - loal vertial unit vetor
k - index of full η-level
k + 1/2 - index of η half-level
klev - number of disrete η-levels
η - η�oordinate
ηk, ηk+1/2 - full and half η-levels
klon, klat - number of grid-points in x- and y-diretions
i, j - indexes of mass-points in x- and y-diretion35



i+ 1/2 - index of u-point in x-diretion
j + 1/2 - index of v-point in y-diretion
λi = i∆λ, θj = j∆θ - angular oordinates of a mass-point in rotatedspherial oordinates
hxij = cos θj , hyij = 1 - stereometrial oe�ients for spherial geometry(ECMWF originated HIRLAM notation)
xij = r0hxijλi , yij = r0hyijθj - physial oordinates of a mass-point
∆xij = r0hxij∆λ , ∆yij = r0hyij∆θ ;7.4 Operators
aη

k = (ak−1/2 + ak+1/2)/2, aη
k+1/2

= (ak + ak+1)/2 - vertial averaging
ax

i = (ai−1/2 + ai+1/2)/2, ax
i+1/2

= (ai + ai+1)/2 - horizontal averaging in
x-diretion
ay

j = (aj−1/2 + aj+1/2)/2, ay
j+1/2

= (aj + aj+1)/2 - horizontal averaging in
y-diretion
〈u〉k = 1

klonklat

∑

ij uijk - averaging over η-levels with given orographyVertial di�erene operator∆:
∆kϕ = ϕk+1/2 − ϕk−1/2, ∆k+1/2ξ = ξk+1 − ξk;Gradient ∇a = i

x∇xa+ i
y∇ya and divergene ∇ · b = ∇xbx + ∇yby:

• In horizontally ontinuous model:
∇xa =

∂a

∂x
=

∂a

hxr0∂λ
, ∇ya =

∂a

∂y
=

∂a

hyr0∂θ
,

∇ · b =
∂hybx

hxhyr0∂λ
+

∂hxby
hxhyr0∂θ

,

• In horizontally disrete model:
(∇xa)i+1/2j =

ai+1j − aij

hxi+1/2jr0∆λ
, (∇ya)ij+1/2 =

aij+1 − aij

hyij+1/2r0∆θ
.

(∇·a)ij =
(hy

x
ax)i+1/2,j − (hy

x
ax)i−1/2,j

(hxhy)ijr0∆λ
+

(hx
y
ay)ij+1/2 − (hx

y
ay)ij−1/2

(hxhy)ijr0∆θ
,36



Horizontally averaged disrete gradient, divergene and Laplaian:
(∇xa)i+1/2 =

ai+1 − ai

〈∆x〉 , (∇ya)j+1/2 =
aj+1 − aj

〈∆y〉 ,

(∇ · b)ij =
bxi+1/2,j − bxi−1/2,j

〈∆x〉 +
byi,j+1/2 − byi,j−1/2

〈∆y〉 ,

(∇2
a)ij =

ai+1,j + ai−1,j − aij

〈∆x〉2 +
ai,j+1 + ai,j−1 − aij

〈∆y〉2 .Isobari gradient and divergene in η-oordinate presentation:
• In ontinuous ase:

Ĝ = Ĝ
+ = ∇− ∇p

m

∂

∂η

• In horizontally ontinuous, vertially disrete model:
Ĝkϕ = ∇ϕk −

1

∆pk
∇p∆ϕη

k

Ĝ
+

k · v = ∇ · vk −
1

∆pk
∇p · ∆v

η

k

• In 3D disrete model
(Ĝxφ)i+1/2jk =

1

hx
x

[

δxφ− (δxp)∆ηφ
xη

∆ηp
x

]

i+1/2jk

,

(Ĝyφ)ij+1/2k =
1

hy
y

[

δyφ− (δyp)∆ηφ
yη

∆ηp
y

]

ij+1/2k

.

(Ĝ+ · v)ijk = (Ĝ+
x u+ Ĝ+

y v)ijk =

1

(hxhy)ij

[

δx(hy
x
u) − hy

x
(∆ηu)δxp

xη

∆ηp
+ δy(hx

y
v) − hx

y
(∆ηv)δyp

yη

∆ηp

]

ijk

,
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Lagrangian time derivatives:
• ontinuous 2D:

dh
kf

dt
=
∂f

∂t
+ vk · ∇f,

• Disrete 2D:
dh

kf

dt
=
f(xk, t+ ∆t) − f(x∗, t)

∆t
,where x∗ is the projetion of departure point, whih destination is xk,onto surfae ηk;

• ontinuous 3D:
df

dt
=
∂f

∂t
+ v · ∇f + η̇

∂f

∂η
,Disrete 3D:

dkf

dt
=
f(xk, t+ ∆t) − f(x∗, t)

∆t
,where x∗ is the departure point for xk.7.5 Meteorologial �elds

A(η), B(η) � oe�ients of vertial oordinate p ↔ η transformation
Ak = A(ηk), Bk = B(ηk)

p(η) = A(η) +B(η)ps - pressure in η-oordinate presentation
pk = Ak +Bkps

p0
s, ps(x, y, t) -surfae pressure
p̂s = exp(−fh/C2) - surfae pressure in referene state
χ = ln(ps/p̂s) - logarithmi pressure �utuation
m = ∂p/∂η - non-dimensional density of matter in η-oordinates
ω = dp/dt , ωk+1/2 ωijk+1/2- 'omega-veloity', speed of pressure hange inelementary air volume
η̇ = dη/dt - η-veloity
v, vk, - horizontal wind vetor
u, uk, ui+1/2,jk, v, vk, vij+1/2,k, - omponents of the horizontal wind vetor
Dk = ∇· vk - horizontal divergene 38



T , Tk - temperature
T ′ = T − T 0

Φ - omplete geopotential
φ - nonhydrostati geopotential
ϕ , ϕ∗, ϕ0 hydrostati geopotential
aω, av, aT , aχ, aD nonlinear parts of foring
ω̂, v̂, T̂ , χ̂ - expliit developments of ω, v, T ′ and χ at time-level t+ ∆t.
Aω,Av

, AT diabati and spetral smoothing terms
D, D̂ � soures in φ�equation
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