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Abstract

The equation of radiative transfer in a semi-infinite homogeneous atmosphere with different internal sources is solved by

the method of kernel approximation—the kernel in the equation for the Sobolev resolvent function is approximated by a

Gauss–Legendre sum. Then the obtained approximate equation can be solved exactly and the solution is a weighted sum of

exponentials. All the necessary coefficients of the solutions may be easily found. Since the resolvent function is closely

connected with the Green function of the integral radiative transfer equation, the radiation field for different internal

sources can be found by simple integration. For the considered cases the formulas for the radiation field are obtained and

the respective accuracy estimated. The package of codes in Fortran-77 is given at http://www.aai.ee/�viik/homogen.for.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We are interested in determining the radiation field in a semi-infinite homogeneous isotropically scattering
atmosphere with different internal sources. This same problem with exponential sources and the Milne
problem have been studied in hundreds of books and papers—here we note only some of them [1–10]. The
methods to solve the equation of radiative transfer in everyday use in astrophysics, planetary physics and
neutron transfer are much more complicated and suited for finding the radiation field not only in highly
simplified models but in real systems—stellar and planetary atmospheres and in nuclear reactors. However,
there is still a need for simple and reliable benchmark methods which is what this paper tries to present. Our
approach is based on the kernel approximation method first proposed by Krook [10] and later developed by
Gybicki [12]. Viik et al. [13] published a length paper together with Fortran codes but in not so well-known
Tartu Observatory proceedings and in Russian.

Here, we first describe the theoretical background which has been best elaborated by Sobolev and his
colleagues in then Leningrad, now St. Petersburg, University, e.g. [3,7].
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We give a systematic treatment of the cases with different internal sources, producing formulas for the
source functions and the intensities of radiation called forth by the same internal sources. In order to simplify
the respective formulas we introduce hðt;mÞ and gðt;mÞ functions where one of them, the h function is a
generalization of the well-known Ambarzumian–Chandrasekhar H function. We give both the integral and
differential equations which these two functions satisfy.

The respective Fortran codes can be found at http://www.aai.ee/�viik/homogen.for. This package contains
also the codes for the optically finite homogeneous atmospheres.

2. Theoretical background

Let us now consider the determination of radiation field in an isotropically scattering homogeneous
optically semi-infinite atmosphere. In this case the source function B is described by the integral equation

BðtÞ ¼
1

2
l
Z 1
0

E1ðt� tÞBðtÞdtþ B0ðtÞ, (1)

where

EnðxÞ ¼

Z 1

0

expð�jxjsÞsn�2 ds

and B0ðtÞ describes the distribution of the internal sources. We define the resolvent of Eq. (1) as follows:

Gðt; t0Þ ¼
1

2
l
Z 1
0

E1ðt� tÞGðt; t0Þdtþ
1

2
lE1ðt� t0Þ. (2)

The solution of Eq. (1) can be expressed as

BðtÞ ¼ B0ðtÞ þ
Z 1
0

Gðt; tÞB0ðtÞdt. (3)

It is easy to see that the resolvent is simply the regular part of the Green function for Eq. (1). Sobolev proved
that the resolvent Gðt; t0Þ can be expressed in terms of a function with lesser number of arguments FðtÞ [3],
namely

FðtÞ ¼ Gð0; tÞ ¼ Gðt; 0Þ,

while the symmetry of the resolvent follows from Eq. (2), and

qGðt; t0Þ
qt

þ
qGðt; t0Þ

qt0
¼ FðtÞFðt0Þ. (4)

Considering Eq. (4) we have

Gðt; t0Þ ¼ Fðjt� t0jÞ þ
Z t

0

Fðt� tÞFðt0 � tÞdt, (5)

where t̄ ¼ minðt; t0Þ.
The function FðtÞ can be found from the following equation:

FðtÞ ¼
1

2
l
Z 1
0

E1ðt� tÞFðtÞdtþ
1

2
lE1ðtÞ. (6)

Next we approximate the kernel of Eq. (6) by a sum of exponentials:

E1ðtÞ ¼
XN

n¼1

wn expð�tunÞu
�1
n ,
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where wn are the weights and un are the points of the Gauss quadrature rule of the order N in the interval (0,1).
After having substituted this approximation into Eq. (6) it can be solved exactly and the solution is

FðtÞ ¼
XN

i¼1

ai expð�sitÞ, (7)

where the coefficients si can be found from the characteristic equation

1� l
XN

n¼1

wn

1� s2u2
i

¼ 0. (8)

The coefficients ai are to be found from a linear algebraic system of equations

XN

i¼1

ai

1� siiuj

¼ u�1j ; j ¼ 1; . . . ;N.

Characteristic equation (8) is a polynomial of the order N with respect to s2. Consequently, it has N pairs of
zeros �sk which satisfy the inequalities

0ps1ou�1N os2o u�1N�1os3o � � �osNou�11 .

It is evident that if we deal with the conservative atmosphere, i.e. l ¼ 1, then s ¼ �0 is the zero too.
Next we define two new functions which come handy in the following:

hðt;mÞ ¼ 1þ

Z 1
t

FðtÞe�ðt�tÞ=m dt (9)

and

gðt;mÞ ¼ e�t=m þ

Zt
0

FðtÞe�ðt�tÞ=m dt. (10)

Here and in all the following formulas it is assumed that mX0.
The function hðt;mÞ is a generalization of the well-known Ambarzumian–Chandrasekhar function HðmÞ

since

HðmÞ ¼ 1þ

Z 1
0

FðtÞe�t=m dt (11)

and therefore

hð0;mÞ ¼ HðmÞ.

Using Eq. (7) in Eqs. (9)–(11) we find that

hðt;mÞ ¼ 1þ m
XN

i¼1

aie
�sit

1þ sim
, (12)

HðmÞ ¼ 1þ m
XN

i¼1

ai

1þ sim
, (13)

gðt;mÞ ¼ e�t=m þ m
XN

i¼1

aiðe
�sit � e�t=mÞ

1� sim
. (14)

There is no singularity in Eq. (14) since if sim ¼ 1 the respective term in the sum is aitm�1. From Eqs. (9), (10),
(12) and (14) it follows that

gð0;mÞ ¼ 1, (15)
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gðt;1Þ ¼ 1þ
XN

i¼1

ais
�1
i ð1� e�sitÞ, (16)

hð1;mÞ ¼ 1, (17)

hðt;1Þ ¼ 1þ
XN

i¼1

ais
�1
i e�sit. (18)

For the conservative case ðl ¼ 1Þ we cannot use Eqs. (16) and (18) since then the first zero of the characteristic
equation (8) s1 ¼ 0.

3. Equations for h and g

By differentiating Eqs. (9) and (10) with respect to t we obtain differential equations for functions h and g:

�m
qhðt; mÞ

qt
þ hðt;mÞ ¼ mFðtÞ þ 1, (19)

m
qgðt;mÞ

qt
þ gðt; mÞ ¼ mFðtÞ. (20)

If we now define function bðt;�mÞ by expressions

mbðt;�mÞ ¼ hðt; mÞ � 1,

mbðt;mÞ ¼ gðt;mÞ,

then we have

�m
qbðt;�mÞ

qt
þ bðt;�mÞ ¼ FðtÞ, (21)

m
qbðt;mÞ

qt
þ bðt; mÞ ¼ FðtÞ. (22)

It is evident that our h and g functions are closely connected with the b function, defined by Kagiwada et al.
[8]. From Eqs. (21) and (22) it follows that function b is the intensity in a semi-infinite homogeneous
atmosphere which is illuminated according to the law

bð0; mÞ ¼ m�1.

For such a problem the source function is

FðtÞ ¼
1

2
l
Z þ1
�1

bðt; m0Þdm0,

or, taking into account Eqs. (21) and (22), we have

FðtÞ ¼
1

2
l
Z 1

0

½hðt; m0Þ þ gðt;m0Þ � 1�dm0=m0.

We may obtain integral equations for functions h and g. If the homogeneous semi-infinite atmosphere is
illuminated by a parallel beam which produces the flux pFm0 at the boundary of the atmosphere we have from
Eqs. (1) and (6) that

FðtÞ ¼ 2F�1
Z 1

0

Bðt;m0Þdm0=m0, (23)

where Bðt;m0Þ is the source function for such an atmosphere. Substituting Eq. (23) into Eq. (9) we have

hðt; mÞ ¼ 1þ 2mF�1
Z 1

0

Iðt;�m;m0Þdm0=m0, (24)
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where Iðt;�m; m0Þ is the intensity in an externally illuminated atmosphere, cf. Eq. (32). From Eq. (34) we have

Iðt;�m;m0Þ ¼
1

4
lF

m0Hðm0Þ
mþ m0

½hðt;mÞ þ gðt;m0Þ � 1�,

and as a result we obtain from Eq. (24) that

hðt;mÞ ¼ 1þ
1

2
lmHðmÞ

Z 1

0

Hðm0Þgðt;m0Þ
mþ m0

dm0. (25)

Here, we have used the Chandrasekhar–Ambarzumian equation for the H function [2]:

HðmÞ ¼ 1þ
1

2
lmHðmÞ

Z 1

0

Hðm0Þ
mþ m0

dm0. (26)

If t ¼ 0 then Eq. (26) follows from Eq. (25) as it should.
Analogically we obtain equation for the g function:

gðt;mÞ ¼ e�t=m þ
1

2
lm
Z 1

0

gðt;m0Þ � gðt; mÞ
m0 � m

Hðm0Þdm0. (27)

4. Approximate formulas for the resolvent

We can find the approximate formula for the resolvent from Eq. (5) by using Eq. (7). After some tedious but
straightforward calculations we find for the non conservative case ðla1Þ that

Gðt; t0Þ ¼ Fðjt� t0jÞ þ
XN

i¼1

XN

k¼1

aiak

si þ sk

½e�skjt�t0 j � e�sit�skt0 �. (28)

The formula for the conservative case is more complicated:

Gðt; t0Þ ¼ 3t̄þ Fðjt� t0jÞ þ
ffiffiffi
3
p XN

k¼2

aks�1k ð1� e�sk t̄Þ½1þ e�sk jt�t0j� þ
XN

i¼2

XN

k¼2

aiak

si þ sk

½e�skjt�t0 j � e�sit�skt0 �.

(29)

Using h and g functions we can write Eqs. (28) and (29) in a simpler form:

Gðt; t0Þ ¼
XN

i¼1

aiHðs
�1
i Þe

�siðt0�tÞ �
XN

i¼1

ai½hðt; s�1i Þ � 1�e�sit0

and

Gðt; t0Þ ¼
ffiffiffi
3
p

gðt;1Þ þ
XN

i¼2

aiHðs
�1
i Þe

�siðt0�tÞ �
XN

i¼2

ai½hðt; s�1i Þ � 1�e�sit0 .

Having obtained an explicit formula for the resolvent we can find the radiation field in a semi-infinite
homogeneous isotropically scattering atmosphere with arbitrarily distributed internal sources by integrating
Eq. (3).

5. Exponential sources

Now we have all the necessary tools to approach the problem of determination of the radiation field. First,
we consider the so-called standard problem, i.e. the case of exponentially distributed sources in the
atmosphere. This situation is usually caused by a parallel beam incident on the atmosphere.

We assume that the internal sources are described by the formula

B0ðtÞ ¼ B0e
�t=k,
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where k is a constant. In the case of an incident beam k is the cosine of the angle of incidence. Sobolev [7] has
shown that for this case

BðtÞ ¼ B0HðkÞ e�t=k þ
Z t

0

FðtÞe�ðt�tÞ=k dt

� �
. (30)

Taking into account Eq. (10) we have

BðtÞ ¼ B0HðkÞgðt;kÞ. (31)

Since the diffuse intensities of the radiation moving upward and downward in the atmosphere are expressed in
the form, respectively,

Iðt;�mÞ ¼
Z 1
t

BðtÞe�ðt�tÞ=m dt=m, (32)

Iðt; mÞ ¼
Z t

0

BðtÞe�ðt�tÞ=m dt=m, (33)

then using Eqs. (9), (10) and (20) we have

Iðt;�mÞ ¼
B0kHðkÞ
kþ m

½gðt;kÞ þ hðt;mÞ � 1�, (34)

Iðt; mÞ ¼
B0kHðkÞ
k� m

½gðt;kÞ � gðt;mÞ�. (35)

Here, argument m is the cosine of the angle between the direction of photon’s flight and the positive direction
of the t-axis.

The apparent singularity in Eq. (35) may easily be removed by the L’Hospitale rule:

Iðt; mÞ ¼ B0kHðkÞ
qgðt;kÞ

qk
,

where according to Eq. (14)

qgðt; kÞ
qk

¼ e�t=k
t
k2
�
XN

i¼1

ai

ð1� sikÞ
2
�

t
k

XN

i¼1

ai

1� sik

" #
þ
XN

i¼1

aie
�sit

ð1� sikÞ
2
.

It can be seen from Eqs. (34) and (35) that in the conservative case ðl ¼ 1Þ the atmosphere is saturated by
photons if t!1 and the radiation field does not depend on the angle arccos m any more. Using the results of
Chandrasekhar [2] we have found that in conservative case a1 ¼

ffiffiffi
3
p

and the asymptotic radiation field is
described by the formula

Iasympt ’ B0k
ffiffiffi
3
p

HðkÞ; �1pmp1.

We may note that in the case of an incident beam

B0 ¼
1
4
lF ,

where pF is the net flux of the incident beam per unit area normal to the beam.

6. Milne problem

Next we consider the Milne problem where B0ðtÞ ¼ 0 and the source function satisfies the integral equation

BðtÞ ¼
1

2
l
Z 1
0

E1ðt� tÞBðtÞdt.
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We understand that there are infinitely powerful sources of radiation at t!1. In this case the source
function can be expressed in the form [6]

BðtÞ ¼ Bð0Þ ekt þ

Z t

0

ekðt�tÞFðtÞdt

� �
¼ Bð0Þg t;�

1

k

� �
, (36)

where k is the solution of the characteristic equation

1�
l
2k

ln
1þ k

1� k
¼ 0. (37)

It is clear that for the Milne problem we have to normalize the parameters of the radiation field. We choose the
source function at t ¼ 0 to be equal to unity—Bð0Þ ¼ 1. Using Eq. (7) in (36) we have for the conservative case

BðtÞ ¼
ffiffiffi
3
p
½tþ qðtÞ�, (38)

where qðtÞ is the Hopf function which in our approximation can be expressed as

qðtÞ ¼
1ffiffiffi
3
p 1þ

XN

i¼2

ais
�1
i ð1� e�sitÞ

" #
. (39)

In the radiative theory the value of the Hopf function at infinity has played a very important role. In our
approximation it becomes

qð1Þ ¼
1ffiffiffi
3
p 1þ

XN

i¼2

ais
�1
i

 !
. (40)

According to Eqs. (32) and (33) for the conservative case

Iðt;�mÞ ¼
ffiffiffi
3
p
½tþ qðtÞ� þ hðt;mÞ � 1, (41)

Iðt;mÞ ¼
ffiffiffi
3
p
½tþ qðtÞ� � gðt;mÞ. (42)

For the non-conservative case we have

BðtÞ ¼ H
1

k

� �
ekt � h t;

1

k

� �
þ 1, (43)

Iðt;�mÞ ¼
1

1� km
H

1

k

� �
ekt � h t;

1

k

� �
þ hðt; mÞ

� �
, (44)

Iðt;mÞ ¼
1

1þ km
H

1

k

� �
ekt � h t;

1

k

� �
þ 1� gðt;mÞ

� �
. (45)

7. Polynomial sources

Our approximation allows to consider also the polynomial internal sources

B0ðtÞ ¼ p0 þ p1tþ p2t
2 þ � � � þ pmt

m. (46)

In this case only the non-conservative atmosphere can be examined since for l ¼ 1 the photons cannot
escape from the semi-infinite conservative atmosphere quickly enough to maintain a stable radiation field.
Defining

AmðtÞ ¼
Z 1
0

Gðt; tÞtm dt, (47)

we have from Eq. (4) that

BðtÞ ¼ p0 þ p1tþ p2t
2 þ � � � þ pmt

m þ p0A0ðtÞ þ p1A1ðtÞ þ � � � þ pmAmðtÞ. (48)
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Taking into account Eq. (4) and using integration by parts we get a differential equation for defining AmðtÞ
qAm

qt
¼ FðtÞAmð0Þ þmAm�1ðtÞ, (49)

since

Amð0Þ ¼

Z 1
0

FðtÞtm dt. (50)

After having solved Eq. (49) we obtain a recurrent formula to determine AmðtÞ:

AmðtÞ ¼ Amð0Þgðt;1Þ þm

Z t

0

Am�1ðtÞdt. (51)

By direct integration we obtain, using Eq. (50) and setting A�1ðtÞ ¼ 0,

A0ðtÞ ¼ Hð1Þgðt;1Þ � 1,

where

Hð1Þ ¼ 1þ
XN

i¼1

ais
�1
i ¼ ð1� lÞ�1=2.

In order to keep the formulas shorter we examine the internal sources separately. If the internal source is
constant—B0ðtÞ ¼ p0—then we have

BðtÞ ¼ p0Hð1Þgðt;1Þ, (52)

Iðt;�mÞ ¼ p0Hð1Þ½gðt;1Þ þ hðt;mÞ � 1�, (53)

Iðt; mÞ ¼ p0Hð1Þ½gðt;1Þ � gðt; mÞ�. (54)

If the internal source depends on the optical depth linearly then

p�11 BðtÞ ¼ k2
q
qk
½HðkÞgðt;kÞ�

� �
k!1

(55)

or

p�11 BðtÞ ¼ tH2ð1Þ þ gðt;1ÞR2 þHð1Þ½Q2ðtÞ � R2�, (56)

where

Rm ¼
XN

i¼1

ais
�m
i

and

QmðtÞ ¼
XN

i¼1

ais
�m
i e�sit.

According to Eqs. (32) and (33) the formulas for the intensities become

p�11 Iðt;�mÞ ¼ H2ð1Þðtþ mÞ þ R2½gðt;1Þ þ hðt;mÞ � 1� �Hð1ÞR2 þHð1Þ
XN

i¼1

ais
�2
i e�sit

1þ sim
, (57)
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p�11 Iðt; mÞ ¼ H2ð1Þðt� mÞ þ R2½gðt;1Þ � gðt;mÞ�

�Hð1ÞR2ð1� e�t=mÞ þHð1Þ
XN

i¼1

ais
�2
i

1� sim
½e�sit � e�t=m�. ð58Þ

Let us examine also the case when the internal source function is a quadratic function of the optical depth
B0ðtÞ ¼ p2t

2. Then the source function takes the form

ð2p2Þ
�1BðtÞ ¼ R3gðt;1Þ þ

1

2
t2H2ð1Þ � R2

2 þ R3Hð1Þ þ R2Q2ðtÞ �Hð1ÞQ3ðtÞ. (59)

The intensities of the radiation propagating upward and downward are, respectively,

p�12 Iðt;�mÞ ¼ 2R3½gðt;1Þ þ hðt;mÞ � 1� � 2R2
2 þ 2Hð1ÞR3

þH2ð1Þðt2 þ 2mtþ 2m2Þ þ 2R2

XN

i¼1

ais
�2
i e�sit

1þ sim
� 2Hð1Þ

XN

i¼1

ais
�3
i e�sit

1þ sim
, ð60Þ

p�12 Iðt; mÞ ¼ 2R3½gðt;1Þ þ hðt; mÞ � 1� � 2R2
2ð1� et=mÞ

þ 2Hð1ÞR3ð1� et=mÞ þH2ð1Þ½t2 � 2mtþ 2m2ð1� e�t=mÞ�

þ 2R2

XN

i¼1

ais
�2
i ðe

�sit � e�t=mÞ

1þ sim
� 2Hð1Þ

XN

i¼1

ais
�3
i ðe

�sit � e�t=mÞ

1þ sim
. ð61Þ

8. Polynomial sources combined with exponential

Next we consider the case with the internal sources expressed as

B0ðtÞ ¼ tme�t=k; m ¼ 1; 2; 3; . . . .

According to Eq. (3) for the source function we obtain

BðtÞ ¼ tme�t=k þ

Z 1
0

Gðt; tÞtme�t=k dt. (62)

Integrating by parts and using Eq. (4) we find that

CmðtÞ ¼ Cmð0Þgðt;kÞ þm

Z t

0

Cm�1ðtÞe
�ðt�tÞ=k dt, (63)

where

CmðtÞ ¼
Z 1
0

Gðt; tÞtme�t=k dt

and in our approximation

Cmð0Þ ¼ m!kmþ1
XN

i¼1

ai

ð1þ s1kÞ
mþ1

.

We give the explicit formulas for calculating the radiation field only for the case m ¼ 1. Using Eqs. (31), (34),
(35), (62) and (63) we obtain for the source function that

BðtÞ ¼ k2
q½gðt;kÞHðkÞ�

qk
(64)

and for the intensities that

Iðt;�mÞ ¼ k2
q
qk

kHðkÞ
kþ m

½gðt;kÞ þ hðt;mÞ � 1�

� �
, (65)
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Iðt; mÞ ¼ k2
q
qk

kHðkÞ
k� m

½gðt; kÞ � gðt;mÞ�
� �

. (66)

It is easy to see that if k!1 then Eqs. (64)–(66) reduce to Eqs. (55), (57) and (58) where p1 ¼ 1.
If k ¼ m the apparent singularity may again be removed by the L’Hospitale rule and in this case

Iðt; mÞ ¼ k2 HðkÞ
qgðt; kÞ

qk
þ k

dHðkÞ
dk

qgðt;kÞ
qk

þ
1

2
kHðkÞ

q2gðt;kÞ
qk2

� �
.

Here,

q2gðt;kÞ
qk2

¼
t
k2

qgðt; kÞ
qk

þ
t
k
e�t=k �

2

k2
�

2k
t

XN

i¼1

aisi

ð1� sikÞ
3

"

þ
1

k

XN

i¼1

ai

1� sik
�
XN

i¼1

aisi

ð1� sikÞ
2

#
þ 2

XN

i¼1

aisie
�sit

ð1� sikÞ
3
.

9. Infinitesimally thin emitting layer

Let us assume that there is an infinitesimally thin emitting layer at t ¼ t1 in the atmosphere. According to
Eq. (3) the source function is then

Bðt; t1Þ ¼ dðt� t1Þ þ Gðt; t1Þ, (67)

where d is the Dirac function. If tpt1 then the intensities for the nonconservative case are, respectively,

Iðt;�m; t1Þ ¼
1

m
hðt1;mÞe�ðt1�tÞ=m þ

XN

i¼1

aiHð1=siÞ

1� sim
½e�siðt1�tÞ � e�ðt1�tÞ=m�

�
XN

i¼1

aie
�sit1

1� sim
½hðt; 1=siÞ � hðt;mÞ� þ e�ðt1�tÞ=m

XN

i¼1

aie
�sit1

1� sim
½hðt1; 1=siÞ � hðt1;mÞ�

þ e�ðt1�tÞ=m
XN

i¼1

aiHð1=siÞ

1þ sim
� ½hðt1; 1=siÞ � hðt; mÞ� þ e�ðt1�tÞ=m

XN

i¼1

aihðt1; 1=siÞ

1þ sim
e�sit1 , ð68Þ

Iðt; m; t1Þ ¼
XN

i¼1

aiHð1=siÞ

1� sim
e�siðt1�tÞ �

XN

i¼1

aie
�sit1

1þ sim
½hðt; 1=siÞ þ gðt; mÞ � 1�. (69)

If tXt1 then the formulas for the intensities are

Iðt;�m; t1Þ ¼
XN

i¼1

aiHð1=siÞ

1þ sim
e�siðt�t1Þ �

XN

i¼1

aie
�sit

1þ sim
½hðt1; 1=siÞ � 1�, (70)

Iðt; m; t1Þ ¼
1

m
e�ðt�t1Þ=m þ e�ðt1�tÞ=m

XN

i¼1

aiHð1=siÞ

1þ sim
� e�ðt1�tÞ=m

XN

i¼1

aie
�sit1

1þ sim
½hðt1; 1=siÞ þ gðt;mÞ � 1�

þ
XN

i¼1

aiHð1=siÞ

1� sim
½e�siðt�t1Þ � e�ðt�t1Þ=m� �

XN

i¼1

ai

1� sim
½hðt1; 1=siÞ � 1�½e�sit � e�sit1�ðt�t1Þ=m�. ð71Þ

10. Some illustrations and the accuracy of the method

We give some examples of numerical calculations by the described method in Figs. 1–7. For all the cases
discussed in this paper we have tried to present the dependence of the intensities on the optical depth. We see
that there is a discontinuity in intensities at m ¼ 0 and at t ¼ 0 since we require that there is no radiation
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incident on the boundary of the atmosphere. For the case with a radiating surface it is clear that at the depth
of that surface and at m ¼ 0 the numerical value of the intensity theoretically approaches infinity but this
behaviour could not be depicted in full in Fig. 7.

In the Appendix we have given the expressions of the source functions and the intensities of the emerging
radiation for some theoretical internal source functions just in order to demonstrate the possibilities of the
kernel approximation method.
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Fig. 1. Intensities for the case of exponentially distributed internal sources. Right side, from above: t ¼ 0:0; 0.1; 0.2; 0.3; 0.4; 0.5.
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Fig. 2. Same as in Fig. 1 for the Milne problem.
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The resolvent function FðtÞ has a logarithmic singularity at t ¼ 0—this behaviour follows from Eq. (6) (the
properties of the resolvent function are perhaps best described by Ivanov [6]).

Accordingly, Eq. (7) can never approximate this behaviour well enough. Fortunately, the resolvent function
is usually not the function we are interested in, at least in the sense of its numerical values. What we are
traditionally interested in are the intensities and flux. As we have seen, these functions can be expressed as
certain integrals over optical depth where the resolvent function is weighted by some exponential function.
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Fig. 3. Same as in Fig. 1 for the case of constant sources.
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Fig. 4. Same as in Fig. 1 for the case of linear internal sources.
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This means that the singularity is smeared over a range of optical depths thus effectively eliminating the
influence of the singularity in the final results.

The calculations have shown that the accuracy of the method decreases quite substantially toward smaller
values of the angular variable and slightly toward larger values of l. However, the loss of accuracy at small
values of m is not very serious, as has been pointed out by Bosma and De Rooij [14] since the range of m values
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Fig. 5. Same as in Fig. 1 for the case of quadratic internal sources.
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where the less accurate results occur is rather limited and the loss of accuracy does not influence the moment
values which are generally more important in practical calculations.

There are different ways to check the accuracy of the method. One can choose from a wealth of equations
and then compare the respective LHS and RHS. In a paper [15] one of the authors (T.V.) has pointed out that
the formulas which contain integrals over the angular variable tend to give essentially more accurate results

ARTICLE IN PRESS

-1.0 -0.5 0.0 0.5 1.0
-4

-3

-2

-1

0

1

2

3

4

5

lo
g 

I(
,

,
1)

B0(  )=  (  -0.2)

=0.5

Fig. 7. Same as in Fig. 1 for the case of infinitesimally thin layer of constant sources.
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Fig. 8. The relative accuracy of the qN ð1Þ as a function of the Gaussian order N.
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than those without. So we are left with a crude but still reliable method—we gradually increase the number of
quadrature points and observe the appearance of—supposedly—correct significant figures. Still, one of the pet
methods to check the accuracy in radiative transfer calculations is to use the H function. We took for standard
the calculations of Bosma and De Rooij [14] which are perhaps the best analysed results for the H function. In
getting their results they used a modified form of Eq. (26) and the Gauss–Legendre quadrature rule with
N ¼ 128. This allowed to obtain the accuracy �p10�12. When using Eq. (13) we obtained the same accuracy at
N ¼ 61. For illustration we present Fig. 8 where the accuracy of the Hopf function at infinity is plotted as a
function of the order of the Gauss–Legendre quadrature. The value of qð1Þ with the accuracy of 10�59 is given
in [15].

The described approximation can easily be generalized for a finite homogeneous isotropically scattering
atmosphere [13,15]. The Chandrasekhar pseudoproblems render themselves to this approximation, too.
Moreover, one of the authors (R.R.) has applied this approximation to homogeneous anisotropically
scattering atmospheres by using the Sobolev approach [11].
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Appendix A

Formulas for the source functions and the intensities of the emerging radiation for some internal source
functions:

No. B0ðtÞ BðtÞ Ið0; mÞ

1 E1ðtÞ ð2=lÞFðtÞ ð2=lmÞ½HðmÞ � 1�
2 E2ðtÞ ð2=lÞ½1�

ffiffiffiffiffiffiffiffiffiffiffi
1� l
p

gðt;1Þ� HðmÞða0 � 2=lÞ þ 2=l
3 EnðtÞ

R 1
0

HðmÞgðt;mÞmn�2 dm HðmÞ
R 1
0

sn�1HðsÞðmþ sÞ�1 ds

4 FðtÞ lqFðtÞ=ql ðl=mÞqHðmÞ=ql

Here a0 is the zeroth moment of the H function.
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