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Abstract. Orographic drag formation is investigated using a numerical wave model
(NWM), based on the pressure-coordinate dynamics of non-hydrostatic HIRLAM. The
surface drag, wave stress (vertical flux of horizontal momentum), and wave drag are
split to the longitudinal and transverse components and presented as Fourier sums
of their spectral amplitudes weighted with the power spectrum of relative orographic
height. The NWM is accomplished, enabling a spectral investigation of the buoyancy
wave stress, and drag generation by orography and is then applied to a cold front,
characterised by low static stability of the upper troposphere, large vertical and di-
rectional wind variations, and intensive trapped wave generation downstream of ob-
stacles. Resonances are discovered in the stress and drag spectra in the form of high
narrow peaks. The stress conservation problem is revisited. Longitudinal stress con-
serves in unidirectional flow, 2D orography conditions, but becomes convergent for
rotating wind or 3D orography. Even in the convergent case the vertical momentum
flux from the troposphere to stratosphere remains substantial. The transverse stress
never conserves. Disappearing at the surface and on the top, it realises the main mo-
mentum exchange between lower an upper parts of the troposphere. Existence of sta-
tionary stratospheric quasi-turbulence (SQT) is established above wind minimum in
the stratosphere.
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1 Introduction

In recent years, wave and wave-originated drag modelling have become vital for appli-
cations of drag parameterisation in global circulation, numerical weather prediction, and
climate studies [1–11]. Among different buoyancy waves, orographic waves are the most
important drag source. The two kinds of drag that affect laminar atmospheric flow by
terrain are surface drag and wave drag. Surface drag was first introduced by [12] and
subsequently discussed in early studies by [13,14], and for three-dimensional orography,
by [15]. It affects the near-surface momentum mainly (as it will be demonstrated here-
after, the surface drag will vanish above mountain crests, producing wind weakening in
the front and the lees of mountains and yielding the blocking and envelope-orography
formation). Wave drag is caused by the wave stress (which is the same as the wave-
originated vertical flux of horizontal momentum) convergence in the upper-level turbu-
lent layers, which are created by the same waves when they break. Such an upper-level
drag mechanism was discussed in the pioneering work by [16] (see also [17, 18]), who
showed that wave stress is conserved in mean zonal flow (now known as the Eliassen-
Palm momentum flux conservation theorem), and proposed the wave breaking with fol-
lowing turbulent dissipation as a probable mechanism, capable of the upper-level mo-
mentum change explanation. As in this paper will be demonstrated, the major part of
the stress will pass from the troposphere to the stratosphere without notable conversion
even if it is not strictly conserved.

Whereas upper-level wave-breaking induced turbulence still remains beyond the ca-
pabilities of numerical weather prediction and climate models and requires sub-grid pa-
rameterisation, generation of surface drag and wave stress can be modelled numerically
because contemporary non-hydrostatic models do provide the necessary resolution. The
most straightforward method for stress and drag studies lies in modelling wave genera-
tion by orography. There exist a great number of research papers dedicated to wave gen-
eration by orography and wave-related drag problems. In some of the most cited works,
the problem has been studied both numerically by integrating non-stationary, non-linear,
and typically non-hydrostatic equations of atmospheric dynamics [19–29], and analyti-
cally by solving linear wave equations [30–38].

In the present paper, we will revisit the orographic drag generation problem using
an approach for wave and wave-related drag study that combines the power of the lin-
ear spectral method with the flexibility of numerical approach. A previously developed
numerical solution method [39], RZ07 hereafter, for linear spectral wave equation is ex-
tended to include stress and drag computation in a general non-stationary case for any
arbitrary thermal and wind stratification. The updated numerical wave model (NWM)
is then applied to wave and accompanying stress and drag modelling in the real atmo-
sphere. Using a friction-free, non-reflective (radiative) upper boundary condition, NWM
can handle waves vertically up to the mesosphere. The departure wave equation in
RZ07 is based on the Miller-Pearce [40,41] anelastic, non-hydrostatic, pressure-coordinate
equations, previously implemented in non-hydrostatic HIRLAM [42, 43]. These equa-
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tions are three-dimensionally non-divergent in isobaric coordinates and hence filter acous-
tic disturbances; they are omni-spectral, i.e., can describe waves from the planetary scale
to boundary-layer micro-waves without phase distortions [44].

The main problem with drag implementation in an NWM framework is that the stress
and drag vectors are initially defined in common Cartesian coordinates, whereas the
wave equation solution, which is the pressure vertical velocity (the omega velocity or
ω hereafter) intended to be used for evaluating these vectors, is presented vertically in
pressure coordinates and horizontally in the form of normal (Fourier) modes in wave-
vector space. Thus, for drag and stress evaluation from ω, their horizontally spectral,
vertically pressure-coordinate presentations are required. Due to the lack of such tools
previously, we developed the necessary formalism from scratch. In Sections 2 and 3,
a concise, wave-originated spectral pressure-coordinate drag theory is developed. In
Section 2, departing from the Miller-Pearce equations, the drag and stress vectors are
introduced via a horizontal momentum balance equation in pressure coordinates. The
surface drag, wave stress, and wave drag are expressed via basic dynamic fields. The
stress and drag vectors are initially decomposed to potential and rotational parts, which
are named the longitudinal and transverse stress and drag because their normal-mode
amplitudes appear to be opposite and transverse, respectively, to the wave vector. Such
decomposition proceeds from the splitting of horizontal wind and dynamic forcing to the
potential and rotational constituents. In turn, the wind splitting is needed for the closed
formulation of the spectral wave equation.

In Section 3, the spectral linear drag and stress formation theory is accomplished. The
Miller-Pearce equations are linearised, and then transformed into Fourier normal modes.
The spectral equations will provide the spectral presentations for the surface drag and
wave stress in a straightforward manner and enable the expression of their spectral am-
plitudes in terms of the wave equation solution. In addition, the spectral wave equa-
tion of RZ07, initially formulated in log-pressure coordinates, is reintroduced in terms of
the pressure vertical coordinate as this equation is later needed for the discussion of the
Eliassen-Palm theorem. In Section 3.5 a major effort is made to check and refine the stress
conservation conditions for NWM. To accomplish the NWM development, in Section 3.6
a discrete numerical realisation of the continuous up to this point buoyancy wave model
is concisely discussed, including the 3D-discrete spectral wave equation presentation to-
gether with the appropriate top and surface boundary condition formulation.

The NWM is applied in Section 4 in the stratified atmosphere represented by a cold
front which case is chosen in particular due to an enhanced wave generation ability by
strong frontal winds. The main stress and drag characteristic features, including the con-
servation resp. variation with altitude, are studied numerically. Several novel orographic
buoyancy wave properties, such as resonance rise in the wave, stress and drag spectra,
and the wave-originated stratospheric quasi-turbulence (SQT) formation are established
also here.
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2 Drag formation in anelastic pressure-coordinate dynamics

In this section, we introduce the non-hydrostatic, anelastic, pressure coordinate model
of atmospheric dynamics to facilitate the pressure-coordinate presentation of wave drag
basics.

2.1 Modelling domain

In the following, S (V) represents a two- (three-) dimensional body of arbitrary configura-
tion with area S (volume V). The independent variables in pressure-coordinate dynamics
are the horizontal coordinates x = {x,y}, pressure p (the vertical coordinate), and time t.
The modelling domain V is a cuboid with variable bottom height:

V=S(0)⊗{0< p< ps(x)= ps(1+µ(x))}, (2.1a)

where

S(0)={−Lx < x< Lx}⊗{−Ly <y< Ly} (2.1b)

represents a rectangular region over the plane with total area S(0)=4LxLy (see Fig. 1). In
the equation, ps(x) is the orographic mean surface pressure. Strictly speaking, instead of
the mean surface pressure, the actual total surface pressure ps(x)+p′s(x,t), where p′s(x,t)
is the variable part of the surface pressure, should be used in (2.1a). However, because
of the smallness of p′s(x,t), the domain can be bounded by the fixed bottom surface ps,
considering the dynamically variable component p′s only in the equations of motion (it is
hidden in the geopotential ϕ; see below). In agreement with Fig. 1, area S(p), occupied
by the atmosphere at pressure level p, becomes smaller for levels that intersect with the

S(p)Lo

Lo

Lo

Li(p)

n( )l
l

Lo

Figure 1: The grey area represents the 2D domain S(p) occupied by the atmosphere on level p. The white
area is the mountain-occupied domain on level p, Li(p) is the isobaric orography contour on level p, and Lo
represents the lateral boundary contour of domain V. Arrows denote horizontal unit vectors, which are normal
to the contours and directed out of the area S(p).
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orography, forming isolines of baric orography:

L(p)={ps(x)= p},

whereas S(p) is a monotonic function of the pressure, limited as follows:

0≤S(p)=
∫

S(p)
dxdy≤S(0)=4Lx Ly. (2.1c)

As introduced in (2.1a), the area-mean surface pressure is

ps =
1

S(0)
∫

S(0)
ps(x)dxdy, (2.1d)

whereas the relative orographic surface pressure fluctuation is presented as

µ=
ps−ps

ps
. (2.1e)

2.2 Equations of motion

All fields are considered to be functions of the independent variables {x,p,t}. The model
uses temperature T(x,p,t), full geopotential (i.e. including both hydrostatic and non-
hydrostatic components) ϕ(x,p,t), horizontal velocity v(x,p,t), and vertical omega ve-
locity ω(x,p,t), as basic dynamic fields. Velocities v and ω are defined as

v=
dx

dt
, ω=

dp

dt
, (2.2a)

where d/dt represents the material (substantial, Lagrangian) derivative:

d

dt
=

∂

∂t
+v·∇+ω

∂

∂p
. (2.2b)

The components of the horizontal wind can be conveniently represented using the stream
function Ψ and flow potential Φ:

v=∇Φ+ez×∇Ψ, (2.2c)

where ez is the unit vertical vector. The divergence D and vorticity (curl) ξ that will be
used hereafter are, respectively,

D=∇·v= ∂vx

∂x
+

∂vy

∂y
, ξ=curl(v)≡ ∂vy

∂x
− ∂vx

∂y
. (2.2d)

These terms can then be evaluated via Ψ and Φ as

D=∇2Φ, ξ=∇2Ψ. (2.2e)
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The basic equations in these notations are [42, 45]:

dω

dt
=− p2

H2

(
∂ϕ

∂p
+g

H

p

)
+

cv

cp

ω2

p
, (2.3a)

dv

dt
=−∇W− f ez×∇Φ, (2.3b)

dT

dt
=

R

cp

Tω

p
, (2.3c)

D+
∂ω

∂p
=0, (2.3d)

where H=RT/g is the scale height, g is the gravitational acceleration, R, cv, cp are the gas
constants, and f is the locally constant† Coriolis parameter. The potential W is defined as

W= ϕ− f Ψ, (2.3e)

ϕ is the geopotential. The connection with the common presentation of the right-side
forcing in (2.3b) is established by the relationship

∇W+ f ez×∇Φ=∇ϕ+ f ez×v.

For drag and momentum flux investigation, (2.3b) and (2.3d) are required (although
(2.3a) through (2.3d) are involved in the derivation of the wave equation).

2.3 Area- and volume-mean momenta

The area-mean momentum on the pressure level p is

u(p,t)=v(p,t)=
1

S(p)

∫

S(p)
v(x,p,t)dxdy. (2.4a)

The volume-mean momentum U is

U(t)=
1

V
∫

S(0)

∫ ps(x)

0
v(x,p,t)dpdxdy, (2.4b)

with the total domain volume

V=
∫

S(0)

∫ ps(x)

0
dpdxdy=

∫

S(0)
ps(x)dxdy=

∫ psl

0
S(p)dp. (2.4c)

The upper boundary of integration, psl , represents the sea-level standard pressure. The
area S is considered to be zero for all points below the lowest orographic point pmax≤ psl

and equal to the total area above the highest point pm on the orography:

S|(p>pmax)=0, S|(p<pm)=S(0)=4Lx Ly.

†Although f depends on the coordinate y, it is considered a slow function; the beta effect is omitted, and
∇( f ψ)= f∇ψ is assumed where appropriate.
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Note the relationship

U= 〈u〉≡ 1

V
∫ psl

0
S(p)u(p)dp, (2.4d)

which can be obtained from (2.4b) by changing the order of integration and simultane-
ously defining the vertical mean of any ψ(p):

〈ψ〉= 1

V
∫ psl

0
S(p)ψ(p)dp. (2.4e)

Note that the area mean u (2.4a) as well as the area mean temperature

T(p,t)=
1

S(p)

∫

S(p)
T(x,p,t)dxdy

are employed in the NWM as sounding fields. In the following, all fields of interest are
considered as sums of area means and fluctuation parts:

v=u+v′, T=T+T′, W=W+W ′, Ψ=Ψ+Ψ′, Φ=Φ+Φ′, ω=ω′. (2.5a)

In coarse numerical models, where the entire area S(0) is treated as a single grid cell,
the area mean functions represent the mean cell values, which vary gradually from cell
to cell. In the NWM, the area-mean steady components are omitted where appropriate,
which permits us to write

u(p)=v, T=T(p), W=0, Ψ=0, Φ=0. (2.5b)

2.4 Average forcing on level p

Although in the present paper we will deal with a linearised NWM, when introducing
drag, it is advantageous to start with the full, non-linearised momentum balance equa-
tion (2.3b) in Eulerian flux form,

∂v

∂t
=−∇W− f ez×∇Φ−∇·(vv)− ∂ωv

∂p
,

because a premature linearisation would cause a substantial loss of detail. Averaging this
equation over area S(p) yields the balance equation for mean p-level momentum (2.4a):

∂u(p,t)

∂t
=−a(p,t)−b(p,t)−c(p,t), (2.6a)

where the dynamic and advection components of the area-mean forcing are

a(p,t)=
1

S(p)

∫

S(p)
∇Wdxdy=∇W ′ , (2.6b)

b(p,t)=
1

S(p)

∫

S(p)
f ez×∇Φdxdy= f ez×∇Φ′, (2.6c)

c(p,t)=
1

S(p)

∫

S(p)

[
∂ωv

∂p
+∇·(vv)

]
dxdy. (2.6d)
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By associating any area-mean forcing with a particular drag, the above-defined av-
eraged forces will consequently be identified as the longitudinal orographic drag, the
transverse orographic drag, and the wave drag which in following will be split also to the
longitudinal and transverse constituents. The name ’orographic’ is introduced for a and b

because they arise on the inter-mountain pressure levels (i.e. on the levels p> pm, where
pm is the mean surface pressure at the highest point of orography) and vanish on the
trans-mountain pressure-levels (p< pm), as will be shown below. The names ‘longitudi-
nal’ and ‘transverse’ are introduced because the spectral amplitudes of consequent drag
components become opposite and orthogonal to the horizontal wave vector in spectral
space as also will be demonstrated later. Finally, name ’wave drag’ for c will be justified
in the course of the following transformation. Note that the presentation (2.5) is applied
in the pressure and Coriolis drag definitions (2.6b) and (2.6c), but not in the wave drag
definition (2.6d).

For further evaluation of area integrals in (2.6b) through (2.6d) and for coupling of
drag forces with buoyancy waves, the motion is considered as satisfying the wave-type
lateral boundary condition (WTLBC)

∮

Lo
ψ′dl=0

for each wave-originated field ψ′ (representing all disturbed components denoted with
a prime in (2.5a)). The contour integral over the outer contour Lo, which appears at the
transformation of an area integral to a contour integral, is considered to be vanishing with
the reasoning that either non-stationary ψ is 2D-periodic on the opposite outer bound-
aries of the domain in Fig. 1, or in the stationary case, it is created by obstacles inside the
domain and disappears on the remote outer boundary Lo. In the case of low-resolution
numerical dynamics, application of WTLBC is the only correct means for separating the
numerically unresolved sub-grid forcing (like any drag), from the large-scale, numeri-
cally resolved forces. Indeed, in a low-resolution numerical model, the area S(0) is con-
sidered as a single grid cell. Any field ψ+ψ′ consisting of the ‘resolved’, slow-changing
component ψ, and the fine-scale disturbance of local origin ψ′ in (2.5a) is represented by
the slow component only, whereas the fine-scale part remains unresolved and is disre-
garded. As an example, the averaged forcing on the right side of (2.6b) splits into

a=∇W ′+∇W,

where the representation (2.6b)’ holds for the first term, whereas the second satisfies the
representation

∇W=
1

S(0)
∮

Lo
Wndl,

which, incidentally, defines the volume-element approximation of the gradient ∇W in
grid-cell S(0). Application of WTLBC eliminates such large-scale forcing and provides
sub-grid drag treatment in the pure mode.
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In the case of (2.6b) and (2.6c), integration over the area converts, with the help of the
Gauss formula, to the line integrals over the bounding contours, which then simplify to
line integrals over the internal contour Li(p) (internal contour Li can consist of a single
loop like in Fig. 1 or of several (multiple) loops in the case of a more complex orography),
if W ′ and Φ′ satisfy WTLBC:

∫

S(p)
∇W ′dxdy=

∮

Li(p)+Lo
W ′

sndl=
∮

Li(p)
W ′

sndl,

∫

S(p)
f ez×∇Φ′dxdy=

∮

Lo+Li(p)
f Φ′ez×ndl= f ez×

∮

Li(p)
n(l)Φ′

sdl.

Here n(l) is the outer normal of the contour at any particular contour point l (see Fig. 1).
Thus, (2.6b) and (2.6c) transform to the line integral over internal contour Li:

a=
1

S(p)

∮

Li(p)
W ′

sndl, (2.6b)′

b=
f

S(p)
ez×

∮

Li(p)
nΦ′

sdl. (2.6c)′

As seen, both orographic drag components a and b act on the averaged (area-mean)
horizontal momentum on the inter-mountain levels with the finite Li(p) and vanish on
the trans-mountain levels where Li(p) disappears (becomes zero by length). They can
vanish also on the inter-mountain levels, if the potential fluctuations W ′

s and Φ′
s become

zero along particular contour. In NWM all fields, including W ′
s and Φ′

s, are expressed via
the wave equation solution (which is ω) and become disturbed in concert. Thus, the wave
generation always supports also the orographic drag creation, which however vanishes
on the trans-mountain levels.

As W ′
s is proportional to the dynamic surface pressure fluctuation in the same con-

tour point, a corresponds to the mean pressure force on level p. For simplest 2D flow
over a perpendicular 2D mountain, a is proportional to the dynamic pressure difference
between front and lee side of the mountain on level p and is directed downstream, so
that −a in (2.6a) will slow down the mean momentum u(p,t). That is, the longitudinal
orographic drag tries to stagnate the inter-mountain flow and create a low-level blocking.
In similar conditions, the transverse drag b is perpendicular to the main flow and will
accelerate the mean circulation in parallel with the mountain crest.

The wave drag in (2.6d) can be converted to

c=
1

S(p)

∂S(p)γ(p,t)

∂p
, (2.7a)

where the wave stress vector

γ(p,t)=
1

S(p)

∫

S(p)
ωvdxdy=ωv=ωv′ (2.7b)
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represents the area-mean momentum flux on level p. To prove the presentation in (2.7a)
and (2.7b), integration by parts and the Gaussian formula must be appropriately applied
in (2.6d):

∫

S(p)

[
∂ωv

∂p
+∇·(vv)

]
dxdy

=
∂

∂p

∫

S(p)
ωvdxdy+

∮

Lo
v(v·n(l))dl+

∮

Li(p)
vs

[
vs ·n+

ωs

|∇ps |

]
dl.

Here, it is considered that the line integral over the outer contour Lo vanishes if v′ satisfies
the WTLBC. The second line integral over Li(p) annihilates due to the free-slip boundary
condition on the surface

ωs=vs ·∇ps, yielding
ωs

|∇ps|
=

vs ·∇ps

|∇ps|
=−vs ·n. (2.7c)

Note that the free-slip boundary condition ignores any local tendency of the pressure,
hence ps(x) represents the time-independent mean part of the surface pressure, while the
tendency of the variable part ∂p′s/∂t is considered negligible.

The wave stress (2.7b) can be further decomposed with the help of (2.2c) to the longi-
tudinal and transverse stresses:

γ=τ+σ, τ=ω∇Φ′, σ=ez×ω∇Ψ′. (2.7d)

This enables analogous decomposition of the wave drag:

c= cl+ct, cl =
1

S
∂Sτ

∂p
, ct =

1

S
∂Sσ

∂p
. (2.7e)

The names ‘longitudinal’ and ‘transverse’ stress are justified here also because the spec-
tral amplitudes of consequent stress and drag components become opposite and orthog-
onal to the horizontal wave vector in spectral space (as will be demonstrated later).

As discussed above, a and b are altitude-dependent according to (2.6)’ and become
identically zero for trans-mountain pressure levels:

a(p,t)≡0, b(p,t)≡0, p< pm. (2.8a)

Thus, the balance equation (2.6a) simplifies for trans-mountain levels, where S(p)=S(0),
to

∂u(p,t)

∂t
=−∂τ(p,t)

∂p
− ∂σ(p,t)

∂p
, p< pm. (2.8b)
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2.5 Surface drag

Multiplication of (2.6a) with S(p), integration over p, and division by V yields the bal-
ance equation for volume-mean momentum:

∂U

∂t
=−A−B−C. (2.9a)

The first and second terms can be presented with the help of (2.6b) and (2.6c):

A= 〈a〉= 1

V
∫

S(0)

∫ ps(x)

0
∇W ′dpdxdy, (2.9b)

B= 〈b〉= f

V
∫

S(0)

∫ ps(x)

0
ez×∇Φ′dpdxdy. (2.9c)

They can be presented with the help of the identity

∫ ps

0
∇ψdp=−ψs∇ps+∇

∫ ps

0
ψdp=−ψs ps∇µ+∇

∫ ps

0
ψdp,

with the additional assumption that W ′ and Φ′ satisfy WTLBC, as

A=−(W ′
s∇µ), B=− f (Φ′

sez×∇µ). (2.9d)

The first formula defines the longitudinal surface drag, coinciding with the earlier sur-
face drag definition [12, 46] if Ws can be expressed in terms of the wave-related surface
pressure fluctuation. Thus, the vertically averaged longitudinal orographic drag yields
the longitudinal surface drag. By analogy B can be named the transverse surface drag.
In some studies it is called also ‘orographic lift’ [47].

The third term in (2.9a) vanishes:
C=0, (2.9e)

because

VC=
∫ psl

0
S(p)cdp=

∫ psl

0

∂S(p)γ(p,t)

∂p
dp=

∫

S(psl)
ωvdxdy−

∫

S(0)
ωvdxdy=0,

as S(psl)=0 in the first area integral and ω|p=0=0 in the second. The nullification of the
vertically averaged wave drag is an important property of the inviscid atmosphere, indi-
cating that the vertical momentum flux cannot change the overall horizontal momentum
of the atmosphere but merely redistributes it among different levels.

Though A and B are evaluated according to (2.9d) as area-mean integrals over un-
derlying surface, and thus seemingly should affect the near-surface momentum, actually
they are defined in (2.9b)-(2.9c) as the volume means. Thus, at the drag parameterisation
they have to be applied in any particular grid-cell at all pressure levels alike, supple-
menting the momentum equation (2.3b) with the constant forcing −A−B on the right
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side. Such coarse surface drag parametrisation is justified only if the vertical resolution
of the numerical model is very coarse (an one-layer shallow-water model, as an example).
Meanwhile, A and B can be equally evaluated as A=〈a〉, B=〈b〉, where vertical averag-
ing 〈ψ〉 is defined by (2.4e), whilst the orographic drag vectors a and b are computed from
(2.6b)’ and (2.6c)’. As it was established before, a and b are highly altitude-dependent,
affecting the inter-mountain mean momentum and vanishing on the trans-mountain lev-
els p< pm . That gives an idea to modify the surface drag concept, confining the vertical
averaging to the inter-mountain levels

A(pm)=
1

V(pm)

∫ psl

pm

S(p)a(p)dp, (2.9f)

B(pm)=
1

V(pm)

∫ psl

pm

S(p)b(p)dp, (2.9g)

V(pm)=
∫ psl

pm

S(p)dp, (2.9h)

and apply the surface drag to the inter-mountain air layer only. We are not aware of any
analogous modification of the surface drag before. In this paper we will still confine the
treatment with the common definitions (2.9d), because the modified surface drags can be
find via those using

A(pm)=
V

V(pm)
A, B(pm)=

V
V(pm)

B. (2.9i)

3 Spectral numerical wave model

Of prime interest for wave-related drag study are the longitudinal and transverse surface
drag (2.9d), the longitudinal and transverse wave stress (2.7d), and the longitudinal and
transverse wave drag as defined in (2.7e), (2.8b). To take their wave origin into consid-
eration explicitly, it becomes vital to express their underlying fields W ′, Φ′, and Ψ′ in the
framework of the linear NWM. For this purpose, a concise revisiting of the linear wave
model as initiated in RZ07 is required.

3.1 Linear equations

Using (2.5) and separating the linear and nonlinear parts of the substantial derivative

d

dt
=

d0

dt
+

d′

dt
,

d0

dt
=

∂

∂t
+u(p)·∇,

d′

dt
=v′ ·∇+ω

∂

∂p
,
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the kinematic relationships (2.2c) through (2.2e) reduce to

v′=∇Φ′+ez×∇Ψ′, (3.1a)

ξ=curl(v′)≡
∂v′y
∂x

− ∂v′x
∂y

, (3.1b)

∇2Φ′=∇·v′=−∂ω

∂p
, (3.1c)

∇2Ψ′= ξ, (3.1d)

whereas the system represented by (2.3) withdraws to the linear equations (which means
that all second-order small constructs such as ψ′

1ψ′
2 and d′ψ′/dt are omitted) for vertical

velocity ω, temperature fluctuation T′, and vorticity ξ:

d0ω

dt
=− p2

H2

(
∂ϕ′

∂p
+

RT′

p

)
, (3.2a)

d0ξ

dt
= f

∂ω

∂p
+ez

(
∂u

∂p
×∇ω

)
, (3.2b)

d0

dt

∂ω

∂p
=∇2W ′+

∂u

∂p
·∇ω, (3.2c)

d0T′

dt
=

θω

p
, (3.2d)

W ′= ϕ′− f Ψ′ , (3.2e)

where H=RT/g, θ=(R/cp)T−p∂T/∂p. System (3.2) is the basis for the wave equation
and drag component presentation via the wave equation solution.

3.2 Spectral equations

Though the drag and stress components are expressed in common Cartesian coordinates
x,y, the NWM itself is essentially a spectral model. Thus, system (3.2) must be trans-
formed into Fourier space with the following wave equation deduction and spectral rep-
resentation of stress and drag. For this, all functions of interest are presented as normal-
mode series in horizontal coordinates and time:

ψ(x,p,t)=∑
ν,k

ψ̂ν
k(p)ei[νt−(k·x)]=∑

k

ψ̂0
k(p)e−i(k·x)+ ∑

ν 6=0,k

ψ̂ν
k(p)ei[νt−(k·x)], (3.3a)

with corresponding surface projections of

ψs(x,t)≡ψ(x,ps(x),t)=∑
ν,k

ψ̂ν
skei[νt−(k·x)]. (3.3b)
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ψ̂ν
k represents the spectral amplitudes or normal modes of ψ with frequency (wave equa-

tion eigenvalue) ν and discrete wave vector k:

k={kx,ky}; kx = jxπ/Lx, ky = jyπ/Ly; jx, jy =0,±1,±2,±3,··· . (3.3c)

The summation in (3.3) proceeds over the discrete set of {kx ,ky,ν}. Case ν=0 yields the

stationary mode. The partial sum ∑k ψ̂0
k(p)e−i(k·x) in (3.3a) represents the stationary part

of ψ. The relationships in (3.1) are transformed to relationships for normal modes:

v̂′ν
k =−ikΦ̂ν

k−i(ez×k)Ψ̂ν
k, (3.4a)

ξ̂ν
k =−ikx(v̂

′
y)

ν
k+iky(v̂

′
x)

ν
k, (3.4b)

k2Φ̂ν
k =

∂ω̂ν
k

∂p
, (3.4c)

k2Ψ̂ν
k =−ξ̂ν

k, (3.4d)

whereas the equations in (3.2) transform to

inν
kω̂ν

k=− p2

H2

(
∂ϕ̂ν

k

∂p
+

RT̂′ν
k

p

)
, (3.5a)

inν
k ξ̂ν

k = f
∂ω̂ν

k

∂p
+iν2

k(p)
ω̂ν

k

p
, (3.5b)

inν
k

∂ω̂ν
k

∂p
=−k2Ŵν

k−iν1
k

ω̂ν
k

p
, (3.5c)

inν
kT′ν

k=
θω̂ν

k

p
, (3.5d)

Ŵν
k = ϕ̂ν

k− f Ψ̂ν
k, (3.5e)

where the intrinsic frequency

nν
k=nν

k(p)=ν−ν0
k , ν0

k =k·u(p) (3.6a)

represents the Fourier transform of −id0/dt. Other new parameters with frequency di-
mension are

ν1
k = p

∂k·u
∂p

= p
∂ν0

k

∂p
, ν2

k = p
∂(kxuy−kyux)

∂p
=ez ·

(
k×p

∂u

∂p

)
. (3.6b)

3.3 Spectral wave equation

If we use mutual eliminations in (3.5) (details see RZ07), a wave equation proceeds for
ω̂ν

k:

p2 ∂2ω̂ν
k

∂p2
−Qν

k p
∂ω̂ν

k

∂p
+Λν

kω̂ν
k=0, (3.7a)
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with coefficients

Qν
k(p)=

f 2

(nν
k)

2− f 2

(
ν1

k

nν
k

+
iν2

k

f

)
, (3.7b)

Λν
k(p)=ℜΛν

k+iℑΛν
k, (3.7c)

ℜΛν
k =

H2k2
(

N2−(nν
k)

2
)
+nν

kν4
k

(nν
k)

2− f 2
, ℑΛν

k =
i f

(nν
k)

2− f 2

(
ν2

k−
ν1

k

nν
k

ν2
k−ν3

k

)
, (3.7d)

N(p)=

√
Rθ

H
=

√
g

H

(
R

cp
− p

H

∂H

∂p

)
, (3.7e)

ν3
k = p

∂ν2
k

∂p
, ν4

k = p2 ∂2k·u
∂p2

= p
∂ν1

k

∂p
−ν1

k. (3.7f)

Here and further ℜZ and ℑZ will denote the real and imaginary parts of any complex Z.
Eq. (3.7a), which presents the pressure-coordinate generalisation of the Scorer equation
[48] for arbitrary shear wind and thermal stratification. It is equivalent to the equation
of RZ07, despite appearing slightly different here. The main difference is that the non-
stationary option ν 6=0 is included, and the pressure vertical co-ordinate is used instead
of the log-pressure height. The main parameter of the equation is ℜΛ(p); ℜΛ/H2 is often
called the Scorer parameter. If the wind changes slow with the altitude, so that ν1

k, ν2
k→0,

then Q and ℑΛ can be considered small perturbations and omitted, in which case the
wave equation simplifies to

p2 ∂2ω̂ν
k

∂p2
+Λν

kω̂ν
k=0, (3.8a)

whereas

Λν
k(p)=H2k2 N2−(nν

k)
2

(nν
k)

2− f 2
(3.8b)

becomes real. The term proportional to ∂2u/∂p2 in the nominator of ℜΛ in (3.7c) is omit-
ted in (3.8b) for the same reason. If, in addition, the wind is constant, then Λν

k becomes
constant also. However, the terms Q and ℑΛ cannot neglected for more rigorous wind
profiles automatically. As we will see later, they become really substantial for shear wind,
causing notable modifications of wave amplitudes and stress conservation properties.
For stationary modes ν = 0, there do exist critical combinations of wave vectors k and
wind vector u(p)

(n0
k)

2− f 2=0 → k·u=± f → k= f /|nk ·u(p)|,
for which nk=k/k is non-orthogonal to the wind u(p) (an exception is f = 0, in which case
either k = 0 or k and u(p) strictly transverse, indeed). Levels p (if they do exist for given
k) are called critical. On the critical levels both Λ and Q become infinite. For solutions
ω̂ with continuous first derivative ∂ω̂/∂p and finite (though probably discontinuous)
second derivative ∂2ω̂/∂p2, that will mean nullification of the solution on any critical
level.
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3.4 Spectral presentation of stress and drag

The wave stress (2.7d), wave drag (2.7e), and surface drag (2.9d) components all represent
area means of the kind

ψ1 ψ2(p)=
1

4LxLy

∫

S(0)
ψ1(x,p)ψ2(x,p)dxdy.

To consider also the non-stationary solutions of the wave equations in a physically rele-
vant way, it is advantageous to include time averaging into the definition of the mean:

ψ1 ψ2(p)=
1

8LxLyT

∫ T

−T

∫

S(0)
ψ1(x,p,t)ψ1(x,p,t)dxdydt, (3.9a)

where T is half the time averaging interval, which is sufficiently long to filter out short-
time oscillations but still short compared with the characteristic time-scale of the mean
momentum u in the balance equation (3.6). For ψ1 and ψ2, presented as series (3.3), the
formula (3.9a) becomes

ψ1 ψ2(p)=∑
ν,k

ψ̂ν
1k(p)(ψ̂ν

2k(p))∗. (3.9b)

If at least one of the fields ψ1 or ψ2 is stationary (the second may also contain an oscillating
part), (3.9a) and (3.9b) automatically revert to the former case of areal averaging:

ψ1 ψ2(p)=
1

4LxLy

∫

S(0)
ψ1(x,p)ψ2(x,p)dxdy=∑

k

ψ̂0
1k(p)ψ̂0∗

2k(p). (3.9c)

The spectral representations for surface drag (2.9d) and wave stress (2.7d) are

A=−i∑
k

kŴs
0

kµ̂k
∗, B=−i f ∑

k

(ez×k)Φ̂s
0

kµ̂k
∗, (3.10a)

τ= i∑
ν,k

kω̂ν
k(p)(Φ̂ν

k)
∗, σ= i∑

ν,k

(ez×k)ω̂ν
k(p)(Ψ̂ν

k)
∗, (3.10b)

with coefficients from (3.4) and (3.5):

Ŵν
k =

−i

k2

(
nν

k

∂ω̂ν
k

∂p
+ν1

k

ω̂ν
k

p

)
, Φ̂ν

k =
1

k2

∂ω̂ν
k

∂p
, Ψ̂ν

k =
1

k2nν
k

(
i f

∂ω̂ν
k

∂p
− ν2

kω̂ν
k

p

)
. (3.10c)

For separation of orography and stratification effects in the final spectral formulations, it
is advantageous to re-norm the spectral solution of the wave equation as follows:

ω̂ν
k(p)=−i(us ·k)

{
µ̂k, ν=0
αν

k, ν 6=0

}
Ων

k(p), Ων
k(ps)=Ων

sk=

{
ps, ν=0,

0, ν 6=0,
(3.11a)

where µ̂k represents the spectrum of relative height of orography µ(x), whereas αν
k are the

amplitudes of the non-stationary solution, which are specified from the initial conditions
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for ω. Because the stationary solution satisfies the free slip condition on the surface (2.7c),
which in normal modes becomes

ω̂0
sk=−i(us ·k) ps µ̂k, (3.11b)

whereas for non-stationary modes
ω̂ν

sk=0, (3.11c)

the new normal modes Ων
k(p) are expected to satisfy the lower boundary condition in

(3.11a).
Using (3.10c) and (3.11), the (3.5) in series (3.10) can be presented

A=∑
k

Ak|µ̂k|2, B=∑
k

Bk|µ̂k|2, (3.12a)

τ(p)=∑
k

τ0
k(p)|µk |2+ ∑

ν 6=0,k

τν
k(p)|αν

k|2, (3.12b)

σ(p)=∑
k

σ0
k(p)|µk |2+ ∑

ν 6=0,k

σν
k(p)|αν

k |2, (3.12c)

with the spectral amplitudes as

Ak=k
(us ·k)2

k2
ℑ
(

∂Ω0
k

∂p

)

s

, Bk=−(ez×k)
f (us ·k)

k2
ℜ
(

∂Ω0
k

∂p

)

s

, (3.13a)

τν
k(p)=k

(us ·k)2

k2
ℑ
(

Ων∗
k

∂Ων
k

∂p

)
, σν

k(p)=(ez×k)
f (us ·k)2

nν
kk2

ℜ
(

Ων∗
k

∂Ων
k

∂p

)
, (3.13b)

where Ak and Bk represent the spectral amplitudes of the surface drag and transverse
drag, whereas τν

k and σν
k are the spectral amplitudes of the longitudinal (i.e. parallel to

k) and transverse (to k) stress vectors, respectively.
Note the general relationships valid on the surface due to (3.11c) and the equality

(nν
k(ps))ν=0=−us ·k,

τν
k(ps)=

{
psAk,

0,
σν

k(ps)=

{
psBk, ν=0,

0, ν 6=0,
(3.14a)

and the formulae following from these relationships in the common coordinates,

τ(ps)= psA, σ(ps)= psB, (3.14b)

which make sense only in the stationary case. The linear dependence between wave
stress and surface drag was first demonstrated by [13, p. 103]. The equations in (3.14)
demonstrate that the same is correct for longitudinal and transverse parts of stress and
drag in separation. Note that the relationships in (3.14) hold for arbitrary orography and
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atmospheric conditions, being in this respect quite general. However, they do not pro-
ceed promptly from the prime definitions in (2.7d) and (2.9d), but are restricted to linear
wave dynamics with a free-slip surface boundary condition because they make use of
the linear dependencies (3.4), (3.5) of Ŵν

k, Φ̂ν
k, and Ψ̂ν

k on ω̂ν
k and of the free-slip bound-

ary condition (3.11c). In the case of two-dimensional orography with mountain ridges
aligned along the y-axis, the stationary mode solution is activated for k=kex only (waves
are completely confined to the x−p plane). In this particular situation, the formulae in
(3.13) give

Ak=ex Ak, Bk=−eyBk, (3.15a)

Ak= ku2
xsℑ
(

∂Ω0
k

∂p

)

s

, Bk= f uxsℜ
(

∂Ω0
k

∂p

)

s

, (3.15b)

τ0
k(p)=exτ0

k (p), σ0
k(p)=−eyσ0

k (p), (3.15c)

τ0
k (p)= ku2

xsℑ
(

Ω0∗
k

∂Ω0
k

∂p

)
, σ0

k (p)=
f u2

xs

ux(p)
ℜ
(

Ω0∗
k

∂Ω0
k

∂p

)
. (3.15d)

As it appears from (3.13a), the longitudinal and transverse drag vectors are parallel and
transverse to the wave vector k and thus, they are mutually orthogonal for each separate
mode. This orthogonality does not extend back to the stress vectors (3.12a) in Cartesian-
coordinates for general 3D flow case. However, the mutual orthogonality of τ and σ
will be restored for a two-dimensional flow, as in this particular situation all τν

(kx,0)
are

collinear with ex, while all σν
(kx ,0)

are collinear with ey.

3.5 Stress conservation

An absence (nullification) of the drag on some pressure level means conservation of the
stress at the same level and can be expressed as the zero vertical convergence condition

cl =
∂τ

∂p
=0, ct =

∂σ

∂p
=0, (3.16a)

or equivalently in the orthogonal-mode presentation

∂τν
k

∂p
=0,

∂σν
k

∂p
=0. (3.16b)

To our best knowledge, the transverse stress conservation was not investigated (at
least in explicit mode) before. Conservation of the longitudinal stress was proved for
stationary, two-dimensional zonal flows in [16]. The proof is often named the Eliassen-
Palm theorem. We will investigate, in which extent this theorem can be extend to three-
dimensional flows with turning reference wind, including transverse stress conservation.
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3.5.1 Longitudinal stress conservation

Applying vertical divergence to (3.13b):

∂τν
k

∂p
=

(us ·k)2

k2
ℑ
(

Ων∗
k

∂2Ων
k

∂p2

)
,

and substitution of the second vertical derivative from the wave equation (3.7a) yields

∂τν
k

∂p
=− (us ·k)2

k2
ℑ
(

Qν
k

p
Ων∗

k

∂Ων
k

∂p
+

Λν
k

p2
Ων∗

k Ων
k

)
.

The right side vanishes, if the imaginary part of the round brackets becomes zero, which
happens if Qν

k vanishes and Λν
k becomes real simultaneously:

Qν
k=0, ℑΛν

k =0. (3.17a)

Closer look on (3.7b), (3.7c) reveals that this occurs, either if

f →0, (3.17b)

or
ν1

k →0, ν2
k →0, ν3

k →0 (3.17c)

simultaneously. Condition (3.17b) means a non-rotating planet or an equatorial location
of the modelling domain as minimum. Conditions (3.17c) yield

∂u

∂p
=0,

(
p

∂

∂p

)2

u=0, (3.17d)

which, if they hold for a layer [p1,p2] (of finite or infinitesimal depth) withdraw to the
wind constancy requirement in that layer

u(p)=U, p1< p< p2. (3.17e)

This condition presents the only possible situation when the Eliassen-Palm theorem is
satisfied precisely (in the given layer) for all longitudinal stress components τν

k. Note
that the orography can be three-dimensional, but the flow must remain two-dimensional
in the layer, as no wind rotation with altitude is permitted by (3.17e) either.

If we confine treatment with the simplified wave equation (3.8), conditions (3.17a)
are satisfied per se, and thus, all longitudinal stress components become conservative
without restrictions to the wind, temperature or orography conditions (i.e. arbitrary 3D
orography spectrum is allowed with the wave vector k spanning azimuthally 180o).

However, in the general case of non-constant wind, the smallness of perturbation
terms Qν

k and ℑΛν
k becomes questionable. Quantitatively these two terms can be ne-

glected, if they become small in comparison with the main real part of Λ:

|Qν
k/ℜΛν

k|≪1, |ℑΛν
k/ℜΛν

k|≪1,
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which readily withdraws to the smallness requirement for non-dimensional parameters

ε1
k =

∣∣∣∣∣
f 2ν1

k

(HkN)2nν
k

∣∣∣∣∣ ∼
h1

k

∆z
, h1

k =
f 2

Hk2N2
, (3.17f)

ε2
k =

∣∣∣∣
f ν2

k

(HkN)2

∣∣∣∣∼
h2

k

∆z
, h2

k =
f U

HkN2
, (3.17g)

ε3
k =

∣∣∣∣∣
f ν3

k

(HkN)2

∣∣∣∣∣∼
(

h3
k

∆z

)2

, h3
k =

√
f U

kN2
, (3.17h)

where U is the wind variation amplitude, ∆z is the wind vertical variation scale, and k =
|k|. Above, estimations are applied

p
∂

∂p
∼ H

∆z
, nν

k∼Uk, ν1
k ∼ν2

k ∼ kU
H

∆z
, ν3

k ∼ kU

(
H

∆z

)2

.

The corresponding to frequencies νi
k scale heights hi

k measure the vertical variability scale
∆z of the wind. If the wind changes slow with the height, so that ∆z ≫ hi

k, the cor-
responding εi

k → 0, the corresponding characteristic frequency νi
k → 0 can be neglected

in the perturbation terms Qν
k and ℑΛν

k, and the longitudinal stress becomes conserva-
tive. Vice versa, for ∆z ∼ hi

k the perturbation terms become large and the stress becomes
convergent. Note that the parameters εi

k are correct defined and their smallness will be
sufficient for stress conservation in any vicinity of the critical levels pc (defined by the
condition nν

k(pc)=± f ) except the critical levels themselves, where Λν
k, Qν

k →∞ in sepa-
ration. As the waves are absorbed (i.e. will vanish) on their critical levels, this will lead to
the discontinuity of the longitudinal stress at the passage of critical levels: being a finite
constant below of the critical level, the stress amplitude must become abrupt zero above
it. As numerical simulations will show, this is the case indeed.

In Table 1, hi
k are presented for long (k = 0.01 km−1), medium (k = 0.1 km−1), and

short (k=0.3−1 km−1) parts of the wave spectrum. As seen, the scale height h3
k is much

larger of other two in the whole spectral domain of k, being the only large enough able to
cause substantial ε3

k and stress convergence for wind variability scales ∆z∼100−1000 m.
Such variability scales are typical for the planetary boundary layer and adjacent lower
troposphere, though rapid direction changes are observable in fronts and cyclones in the
upper troposphere also. The large h3

k points to substantial ν3
k. A look on ν3

k (3.7f) shows

Table 1: Scale heights hi
k at different wavenumbers k.

k, km−1 0.01 0.1 0.3 1

h1
k , m 100 1 0.1 0.01

h2
k , m 100 10 3 1

h3
k , m 1000 550 180 100
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that the large variability scale h3
k results from large curvature of wind (i.e., from large

(p∂/∂p)2u), which can be reached through rapid wind changes either in the amplitude
or in the direction. Wind rotation is not required in the general 3D case, i.e. the stress
becomes variable even if the wind is not rotating but just sheared vertically. That means
by the way that the Eliassen-Palm theorem can not be extended to the 3D-orography
case even for a non-rotating wind. An important exception is however presented at the
stationary wave generation by 2D orography, as in this special case the wave-spectrum
is one-dimensional, confined to k= kxex. According to (3.6b), (3.7f), we will have ν3

k =
kx(p∂/∂p)2uy, which turns zero either if wind is not returning and directed along x-
axis, or the parallel to mountain crest wind component uy remains constant. That is we
return to the classical Eliassen-Palm result for two dimensional non-rotating flow and
two-dimensional orography.

3.5.2 Transverse stress conservation

Analogical investigation of the transverse stress conservation with wave equation solu-
tion attraction shows that the isothermal 2D flow with constant wind U presents the sin-
gle case, when σ0

k becomes constant with height in the free wave domain. In the general

variable temperature case, small parameters analogous to εi
k are absent and variations of

σν
k(p) with height are co-measurable with the wind variations.

In summary, we can say that the longitudinal stress is conserved in the layers where
the wind remains constant, and also in the case of two-dimensional orography for the
wind, transverse to the mountain crest and changing with the altitude without rotation.
It is never conserved in the layers with rotating wind, though convergence can be small
for ∆z≪h3

k , i.e. for ε3
k→0. The transverse drag is always convergent. In more detail these

properties will be investigated further at the numerical modelling.

3.5.3 Relation with the theory of linear momentum fluxes

An attempt to generalise Palm-Eliassen theorem to the 3D flow conditions was made by
Broad [49] in frames of the linear momentum fluxes theory. Broad introduced a new kind
of stress (named the Broad stress hereafter), and reported its conservation for general 3D
reference flow case. As this result is fundamentally different from which was established
above for the longitudinal and transverse stress, the subject requires addressing in frames
of the present spectral theory. In our notation, the Broad stress reads

γ̃=ω(v′+ f ez×δx)=γ+ f ez×ωδx =∑
k

ω0∗
k (v′0

k+ f ez×δx0
k).

The special notation γ̃ is introduced by us, also the transition from the original z-coordi-
nates to the isobaric coordinate system is made, using substitution ρw=−ω/g → ω. The
Broad stress, which is specified for stationary waves, includes (in addition to the common
wave stress (2.7b)) a supplementary vector proportional to the horizontal displacement
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field δx defined in [49] via v′ = d0δx/dt, yielding v′0
k = in0

kδx0
k =−iν0

k δx0
k. Using this

relationship for δx0
k expression, γ̃ becomes

γ̃=∑
k

ω0∗
k

(
v′0

k+i
f

ν0
k

ez×v′0
k

)
. (3.18a)

The further result will depend on the velocity perturbation v′0
k choice. In the case of

the full perturbation with both potential and rotational components included in (3.4a),
application of (3.4c), (3.4d) and (3.5b) yields

v′0
k=− ik

k2

∂ω̂0
k

∂p
− (ez×k)

k2

(
f

ν0
k

∂ω̂0
k

∂p
+i

ν2
k(p)

ν0
k

ω̂0
k

p

)
(3.18b)

enabling to present (3.18a) as
γ̃= τ̃+2σ. (3.18c)

Here σ is the stationary transverse drag presented with the first sum (ν=0 case) in (3.12c),
while the longitudinal component

τ̃=∑
k

(
1+

f 2

(k·u)2

)
τ0

k|µk|2, (3.18d)

(where τ0
k is presented in (3.13b)) withdraws to the common longitudinal stress (3.12b),

only if the orography spectrum is located in the spectral domain f 2/(k·u)2 ≪ 1. The
presence of factor 2 in front of σ and additional term in the round brackets in (3.18c)
proceed from the double implication of the rotational part of velocity: first in the sum
(3.18a) and second in the (3.18b). Indeed, if the non-rotational velocity fluctuation

v′0
k =− ik

k2

∂ω̂0
k

∂p
(3.18e)

is assumed in (3.18a), then
γ̃=τ+σ (3.18f)

coincidentally with our stress definition. Though there is no explicit hint in [49] of which
wind perturbation was assumed, the usage of non-simplified 3D linear equations points
rather to (3.18b). Universal conservation of γ̃ for arbitrary 3D orography and reference
wind distribution was disproved for (3.18f) above. It can be disproved in the similar way
for (3.18c), i.e. acting on (3.18c) with d/dp, and using the wave equation on the right
side to eliminate the second derivatives of Ω0

k where appropriate. Thus, the general con-
clusion can be drawn that the Broad stress is not conservative in arbitrary 3D orography
and reference wind condition; its involvement will not extend the Palm-Eliassen theorem
from 2D zonal lows to more complex flow conditions.
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3.6 Numerical realisation of the wave model

Basics of the NWM are presented in RZ07. Some further refinement in the vertical dis-
cretisation and radiation boundary condition treatment is introduced meanwhile which
are shortly discussed in following, confining the treatment to stationary case ν=0.

The wave equation is discretised horizontally with the grid steps ∆x=2Lx/2Nx, ∆y=
2Ly/2Ny. Typically ∆x=∆y=500 m, Nx=Ny=512, which yields the area size 2Lx=2Ly=
512 km. The stationary part of the Fourier sum in (3.3a) is replaced with a 2D discrete
Fourier series

ω(xj,pl)=ω(jx∆x, jy∆y,pl)≡ωj,l

=
Nx−1

∑
j′x=−Nx+1

Ny−1

∑
j′y=−Ny+1

ω̂j′le
−i(xj·kj′)=

Nx−1

∑
j′x=−Nx+1

Ny−1

∑
j′y=−Ny+1

ω̂jle
−iπ(jx j′x/Nx+jy j′y/Ny). (3.19a)

The components of horizontal wave-vector kjx = jxπ/Lx, kjy= jyπ/Ly maintain their pre-
vious sense (see (3.3c)), except their numbers become finite, equal to 2Nx−1 and 2Ny−1

consequently. However, proceeding from the gradient ∇=ex
∂

∂x +ex
∂

∂y and Laplacian ∇2

to their discrete analogues ∇̃=ex∇̃x+ex∇̃y, ∇̃2= ∇̃2
x+∇̃2

y, where

∇̃xωij =(ωi+1,j−ωi−1,j)/(2∆x),

∇̃yωij=(ωi,j+1−ωi,j−1)/(2∆y),

∇̃2
xωij =(ωi+1,j+ωi−1,j−2ωij)/∆x2,

∇̃2
yωij=(ωi,j+1+ωi,j−1−2ωij)/∆y2,

yields for (3.19a) replacement of the continuous Fourier images of differential operators
by consequent discrete images as follows

∂

∂x
∼−ikx → ∇̃x ∼−ĩkjx =−i

sin(jxπ/Nx)

∆x
, (3.19b)

∂

∂y
∼−iky → ∇̃y∼−ĩkjy =−i

sin(jyπ/Ny)

∆y
, (3.19c)

∂2

∂x2
∼−k2

x → ∇̃2
x ∼−k̃2

jx =−4sin2(jxπ/Nx)

∆x2
, (3.19d)

∂2

∂y2
∼−k2

y → ∇̃2
y∼−k̃2

jy =−4sin2(jyπ/Ny)

∆y2
. (3.19e)

The horizontal discretisation yields replacement of kx,ky,k2
x,k2

y to the consequent discrete

Fourier images k̃x, k̃y, k̃2
x, k̃2

y everywhere in formulae (3.4) through (3.18).
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The vertical main grid pl , the auxiliary half-level grid pl+1/2 and the consequent ab-
solute and relative pressure differences are

0< p0 < p1< p2< ···< pl−1< pl < ···< pNp−1< pNp < pNp+1= ps, (3.19f)

pl+1/2=
pl+pl+1

2
, ∆pl+1/2 = pl+1−pl , ∆pl = pl+1/2−pl−1/2, (3.19g)

δl =
∆pl

pl
, δl+1/2=

∆pl+1/2

pl+1/2
. (3.19h)

The main grid is specified from numerical solution of the barometric equation

∂p

∂z
=− p

H
→ pl−pl−1

∆zl−1/2
=

pl+pl−1

Hl+Hl−1
→ pl−1= pl

Hl+Hl−1−∆zl−1/2

Hl+Hl−1+∆zl−1/2
. (3.19i)

The the vertical resolution and extent of modelling domain are controlled by a variable
set of vertical Cartesian-coordinate grid-steps ∆zl−1/2 = zl−zl−1. A general limitation is
set

∆zl−1/2

Hl−1/2
=

pl−pl−1

pl+pl−1
=2

∆pl−1/2

pl−1/2
=2δl−1/2≤10−2, (3.19j)

which provides sufficient resolution for all levels with the reference wind |U|> 1 m/s.
Most typically they are constant ∆zl−1/2=100 m, which for the top boundary level p0 at 30
km altitude will yield Np=300. In the neighbourhood of critical levels where |U| becomes
small, the resolution is increased up to ∆zl−1/2=10 m. Such high resolution is also applied
in some cases at accuracy tests throughout the atmosphere, yielding Np∼3000.

For each j= {jx, jy}, Eq. (3.7a) is discretised to a second order difference equation in
the form of a linear algebraic system

M−
0 ω̂j0+M0

1ω̂j1+M+
2 ω̂j2=0, l=1, (3.19k)

M−
l ω̂jl−1+M0

l ω̂jl+M+
l ω̂jl+1=0, l=2,··· ,Np−1, (3.19l)

M−
Np

ω̂jNp−1+M0
Np

ω̂jNp+M+
Np

ω̂jNp+1=0, l=Np, (3.19m)

with matrix elements (depending also on the horizontal mode-numbers j via Q and Λ)

M−
l =

δl

δl−1/2
+

δl

2

(
Qjl+1

)
, M+

l =
δl

δl+1/2
− δl

2

(
Qjl+1

)
, (3.19n)

M0
l =δ2

l Λjl−
[

δl

δl+1/2
+

δl

δl−1/2

]
, (3.19o)

System (3.19k)-(3.19m) consists of Np equations for Np unknown complex quantities ω̃l,
specified at the internal pressure levels p1,··· ,pNp . The first l=1 and last l=Np equations
in (3.19k)-(3.19m) include the spectral amplitude at the top boundary, ω̂j0, and at the
surface, ω̂jNp+1, which have to be specified from appropriate boundary conditions. At
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the surface boundary pNp+1 = ps, the free-slip condition (3.11b) is applied, which in the
discrete case becomes

ω̂jNp+1=−i(UNp+1 ·k̃j) ps µ̂j. (3.19p)

It would be misleading to apply the rigid-lid condition ω̂j0 = 0 at the top, as this would
produce strong spurious top reflection of buoyancy waves. Rather, the radiation bound-
ary condition [50] must be applied, which yields

ω̂j0=Cjω̂j1 , (3.19q)

where constants Cj depend beside mode-numbers j on the atmospheric background pa-
rameters at the top, U0 = U(p0), H0 = H(p0) and N0 = N(p0). System (3.19k)-(3.19m)
presents then as

(
M−

0 Cj+M0
1

)
ω̂j1+M+

2 ω̂j2=0, l=1, (3.19r)

M−
l ω̂jl−1+M0

l ω̂jl+M+
l ω̂jl+1=0, l=2,··· ,Np−1, (3.19s)

M−
Np

ω̂jNp−1+M0
Np

ω̂jNp =−M+
Np

ω̂jNp+1, l=Np. (3.19t)

Initially in RZ07 the radiation condition was introduced and Cj were determined assum-
ing that in the upper boundary vicinity, the wanted solution ω̂jl coincides (within a con-
stant multiplier precision) with a wave ω̃jl which transports energy upward (and has a
phase retard with the altitude) in a homogeneous medium with constant U=U0, H=H0

and N=N0. Such wave satisfies equation (3.7a) with Q=0, Λ=Λj(p0)=Λ0
j , and presents

analytically

ω̃j(p)=

(
p

p∗

)1/2+imj

, mj=
√

Λ0
j −1/4, (3.19u)

where p∗ is a fixed reference level near the top. In RZ07, p∗ = p1/2 was chosen, which
gives

ω̃j0=

(
p0

p1/2

)1/2+imj

, ω̃j1=

(
p1

p1/2

)1/2+imj

→ Cj=
ω̃j0

ω̂j1
=

(
p1/2−∆p1/2

p1/2+∆p1/2

)1/2+imj

. (3.19v)

Another option to specify Cj is to use the differential radiation boundary condition
(DRBC) which was first applied in a vertically discrete wave equation by [51]. DBRC
proceeds from (3.19u) in both continuous and discrete forms as

[
p

∂ω̂

∂p
−(1/2+imj)ω̂

]

p=p1/2

=0 → p1/2
ω̂1−ω̂0

∆p1/2
−(1/2+imj)

ω̂1+ω̂0

2
=0, (3.19w)

yielding

Cj=
ω̃j0

ω̂j1
=

1−qj

1+qj
ω̂j1, qj=(1/2+imj)

p1−p0

p1+p0
. (3.19x)
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However, the right finite-difference condition in (3.19w) is valid only for small

∆p1/2

p1/2
=2

p1−p0

p1+p0
≪1, (3.19y)

in which case the defined in (3.19x) Cj will coincide with the linearised with respect to
∆p1/2 version of Cj in (3.19v). Numerical experimentation reveals that (3.19y) presents
an essential precondition for solution accuracy. In the present NWM this condition is
fulfilled due to the global condition (3.19j).

System (3.19r)-(3.19t) can be solved as an initial value problem or a boundary value
problem for one-dimensional Laplace (i.e. second order elliptical homogeneous) equa-
tion (3.7a). In the first case (applied in RZ07) a provisional initial value 1 is assigned to
the topmost amplitude ω̂j1 = ω̃1 = 1, after which the remaining provisional amplitudes
ω̃l are solved (integrated) from (3.19r)-(3.19t) step by step, including the surface value
ω̃Np+1. The final solution is then re-normed from the provisional one using the lower
boundary condition (3.19p)

ω̂jl =
[
−i(UNp+1 ·k̃j) ps µ̂j

] ω̃l

ω̃Np+1
.

In the second case, system (3.19r)-(3.19t) is treated as a linear non-homogeneous Np-
dimensional algebraic system with the three-diagonal matrix and known right side vec-
tor (with all components except the last one equal to zero), which is solved numerically
using the standard Gaussian elimination method.

These two methods appear algebraically equivalent. The numerical testing shows
that they have similar computational efficiency also.

4 Application of the NWM

4.1 Background state of the atmosphere

A cold front is chosen to represent the background state of atmosphere. Frontal sounding
is used because of the strong winds that change direction with altitude and the low stabil-
ity in the upper troposphere, supporting intensive wave generation and substantial drag
effects. The temperature and wind profiles are extracted from a particular HIRLAM [52]
forecast. The sounding profiles of temperature, Brunt-Vaisala frequency, and wind are
presented in Fig. 2.

Two profiles of the Brunt-Vaisala frequency are applied: the authentic sounding N
(black line in Fig. 2) and the smoothed approximation N1 (red line), which accounts for
the large zigzag of N but ignores the fine-scale small-amplitude fluctuations. The wind
is represented by five different profiles, as described in Table 2 and shown in Fig. 2. The
actual sounding with the boundary layer and free-atmosphere shear and rotation is pre-
sented as WM6. Other profiles are unidirectional approximations of the real frontal wind
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Figure 2: Vertical distribution of the temperature T, Brunt-Vaisala frequency N (N1 is the smoothed approxi-
mation of the real buoyancy frequency), and wind components ux, uy for different wind profiles as described in
Table 2.

Table 2: Wind models.

Model ux uy Comment

WM1 U1 0 unidirectional, constant at 30 m s−1 wind

WM2 U2 0 unidirectional, linear shear in boundary layer, constant in free
atmosphere

WM3 U3 0 U3= |u| – absolute wind in the front

WM4 U4 0 unidirectional with frontal ux

WM5 U5 0 frontal ux below 22 km, decays to zero at 23.2 km altitude

WM6 U6 V6 actual frontal wind with rotation

in the main frontal wind direction, which is considered as being the wind direction in the
lower troposphere at the p = 850 hPa level and taken for the x-axis.

The particular front, however, is not tied to any specific orography because the drag
and stress spectra (3.13), which are the focus of our investigation, are independent of
orographic particularities. Instead, a straight two-dimensional mountain ridge with an
Agnesi profile (or a chain of such mountain ridges) is assumed such that it is oriented
transverse to the main wind direction (x-axis). The mountain crest is then oriented along
the y-axis. Such orientation is chosen to achieve the maximum wave-generation intensity
in otherwise similar conditions. Stationary orographic waves over a straight ridge always
have a two-dimensional structure with wave vectors transverse to the crest, i.e. only
stationary modes Ω0

(kx,0) with ky = 0 are activated, despite the wind turns with altitude

(the actual wind case WM6) and has a non-zero y-component at all levels.

4.2 Frontal buoyancy waves

Wave generation in frontal conditions is interesting as a case of trapped wave formation
and down-slope windstorm development. Trapped waves arrive on the lee side of moun-
tains, as first described by [48] and modelled thereafter by [21, 25, 53–57]. To illustrate
which types of trapped waves are created by various orography in NWM experiments,
the wave modelling results are shown for a witch of Agnesi mountain with h0 = 2 km
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Figure 3: Waves in the front with temperature T, buoyancy frequency N from Fig. 2, and wind WM3 above
and downstream of the bell-shape mountain with l = 5 km, h0 = 2 km. Red and blue isolines represent ω > 0
and ω<0, respectively. Thin black curves are the streamlines. (a) entire vertical extent of the atmosphere; (b)
stratosphere between 10 and 250 hPa levels.
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Figure 4: As in Fig. 3, for l=15 km.
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Figure 5: As in Fig. 3, for l=25 km.

and l =5 km, 15 km, and 25 km in Figs. 3 through 5. The modelling in these examples is
conducted for real frontal temperature T and buoyancy frequency N, as shown in Fig. 2,
for the unidirectional wind profile WM3.

To show the potential of using the buoyancy wave equation, the solution ω(x,p) of
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this equation is first projected into the terrain-following frame of reference (so-called hy-
brid co-ordinate system), after which the streamlines are calculated as air-particle trajec-
tories in the given stationary wind field u(p)+u′(x,p) = ∂Ψv/∂p, ω(x,p) =−∂Ψv/∂x,
where the velocity fluctuation u′ corresponds with the modelled ω(x,p) distribution,
while Ψv(x,p) represents the ’vertical’ stream function. These figures show both the ω
isolines and the corresponding streamlines.

Trapped wave trains several hundred kilometres in length arrive downstream of the
mountain in the case of narrow- (l = 5 km, Fig. 3) and medium-width (l = 15 km, Fig. 4)
orography. Beginning with l ∼ 20 km, the trapped component declines and disappears
completely at l = 25 km (Fig. 5). As we will see later, this decline is linked to the exis-
tence of short-wavelength resonance in the drag and stress spectra. Trapped waves are
originated by wave reflection on the tropopause under conditions of small N in the up-
per troposphere. Reflection is partial, and a fraction of the waves is refracted into the
stratosphere in the form of upright secondary wave trains, as shown in Figs. 4 and 5.

To demonstrate the wind rotation and the critical level effects, Fig. 6 reproduces the
modelling results for three different wind profiles: WM4 (non-rotating wind), WM5
(wind vanishing above 23.2 km altitude or 32 hPa level), and WM6 (the complete non-
simplified wind profile). Their wave patterns look almost identical in the troposphere
and lower stratosphere, as shown in Fig. 6(a). An essential wave breaking starts at ∼
150 hPa (14 km altitude). Above that level, waves in WM4 and WM6 still remain close
(though presented is the wave pattern of WM4), but those in model WM5 decline with the
full absorption of waves before the 32 hPa level. Above approximately the 60 hPa level,
the wave field transforms to a quasi-regular, stationary, vertically oriented vortex field.
For model WM4, the vortexes appear in Fig. 6(b) as horizontally stretched, vertically thin,
closed streamline contours between 20 and 50 hPa levels. The streamline pattern in the
case of WM4 is shown with enhanced resolution in Figs. 6(b) and 6(c). As seen, the vor-
texes are formed in the shape of closed streamline contours. Indeed, the entire streamline
contour pattern looks rather turbulent. Such turbulently fragmented wave field we will
call the stratospheric quasi-turbulence (SQT). SQT originates from rapid decay of wind
ux above the 100 hPa level, which causes increasing wave phase delay with altitude and
a strong tilt of ω-isolines. This tilt itself is not sufficient for streamline fragmentation, as
seen from Fig. 6(d), which shows a very strong negative tilt below the zero-wind level. In
addition, the breaks in the wind profile (presented by the two horizontal lines in Figs. 6(b)
and 6(c)), are needed to provide the main fragmentation at passage through the lower 55
hPa level (the 24 km break of U3,U4,U6 in Fig. 3) and further modification of SQT in
passage through the upper 30 hPa level (the 26.5 km break in Fig. 3).

The nearly identical behaviour of WM6 and WM4 shows that wind rotation has no
significant effect on the wave pattern in two-dimensional wave generation experiments
(this is not the case for stress spectra as we will see later). Concerning WM5 with critical
levels (with vanishing for p≤ 32 hPa wind), its behaviour differs from that of the WM4
case at the very top, at p<100 hPa. For WM5, all spectral waves are completely absorbed
on the critical levels pc(k): k u[pc(k)]= f , which depend on k being located slightly below



M. Zirk et al. / Commun. Comput. Phys., 15 (2014), pp. 206-245 235

 200

 400

 600

 800

 1000
 50  100  150  200  250

p
, 
h

P
a

x, km

(a) WM4 through WM6; ∆ω = 20 Pa s−1, ∆Ψv/ps = 2

m s−1

 0

 50

 100

 150

 200

 50  100  150  200  250

p
, 
h

P
a

x, km

(b) WM4; ∆ω=2 Pa s−1, ∆Ψv/ps =0.3 m s−1

 20

 40

 60

 80

 100
 50  100  150  200  250

p
, 
h

P
a

x, km

(c) WM4; ∆Ψv/ps =0.03 m s−1

 20

 40

 60

 80

 100
 50  100  150  200  250

p
, 
h

P
a

x, km

(d) WM5; ∆Ψv/ps =0.03 m s−1

Figure 6: Wave fields over a bell-shaped mountain with l = 5 km, h0 = 2 km in the case of the wind models
WM4, WM5 and WM6. In (a) and (b), the ω-isolines are blue (rising mode) and red (descending mode); the
streamlines are black in all panels. The two stripes of intensified vorticity in panels (b) and (c) are caused by
the breaks in ux profile at 55 hPa (z=23 km) and 30 hPa (z=26 km), respectively. Horizontal lines in panel

(d) mark velocity isolevels: ux=0 (cyan), 1 (red), 2 (blue), and 5 m s−1 (green). For upper levels model WM6
is not shown because of behaving close to WM4.

the p=32 hPa level but lie very close to it, because f can be treated as a small parameter
here.

4.3 Surface drag

Fig. 7 shows the modelling results of spectral drag amplitudes Ak and Bk as specified in
(3.15a). To determine the wind effect, four profiles, WM1 to WM4, were applied, because
cases WM5 and WM6 showed results very close to those of WM4. The longitudinal drag
has a high narrow peak similar to line spectra in optics and acoustics. Such spectral
drag resonance occurs because of tropospheric wave reflection on the tropopause and
subsequent trapping in the troposphere, and is thus originated by the specific behaviour
of N in frontal conditions (small N in the upper troposphere, followed by a large positive
jump). The peak of Ak is located at wavenumber kr , coinciding well with the horizontal
wavelength of the corresponding trapped wave train. The same is true for transverse
drag Bk. It is mainly located near the resonance maximum kr , where it has sharp high
peaks with different signs on both sides of kr.
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Figure 7: Longitudinal spectrum Ak and transverse spectrum Bk of surface drag according to (3.15a). Wind
models: WM1 – red; WM2 – green; WM3 – blue; WM4 through WM6 – lilac.

Concerning moderation by wind, Fig. 7 shows that the strongest effect is exerted by
the planetary boundary layer identified by the wind shear within it. If the boundary layer
is absent (WM1 with constant wind ux throughout the entire atmosphere, including the
boundary layer below 850 hPa), the resonant peaks of both longitudinal and transverse
drag amplitudes are much lower and wider and the resonance maximum lies at kr =0.21
km−1. That is, resonant waves without a boundary layer are much longer than those
with a boundary layer. The shortening of horizontal wavelength by planetary boundary
layer absorption is confirmed by earlier studies by [56,58] and by [59]. For WM2 through
WM6 with boundary layer, the resonance maximum is located at kr =0.33 km−1, and the
corresponding horizontal wavelength of the trapped waves λr = 2π/kr = 19.0 km is in
good agreement with that in Figs. 3 through 5. The drag contours of these models are
extremely narrow and close to each other. At the same time, the wind shear and rotation
in the stratosphere, the deep minimum at 22 through 26 km (WM6), or the complete wind
nullification on the top (WM5) do not noticeably affect the resonance behaviour. Finally,
it should be noted that the transverse surface drag remains modest in comparison with
the longitudinal counterpart.

4.4 Stress spectrum

The stress amplitudes were computed according to the formulae in (3.15c). Fig. 8 shows
3D graphs of the longitudinal stress τk for WM4, WM5 and WM6. The longitudinal stress
also becomes resonant, like the drag, in accordance with the relationships in (3.14), with
a sharp crest at the same kr .

In accordance with the longitudinal stress conservation for non-rotating wind as dis-
cussed above, τk remains constant with the altitude over the entire vertical extent of the
atmosphere for WM1 through WM4 (the last case is shown in Fig. 8(a)), while for WM5
this happens below of the critical (wind vanishing) level at 23.2 km altitude. The crit-
ical level leads to a strong wave absorption and longitudinal stress abrupt fall to zero
in a very narrow height interval immediately below the critical level, as seen in Fig. 8(c).
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(b) WM6 (wind rotation included)
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Figure 8: Spectra of longitudinal stress which demonstrate the wind rotation and critical level effect. The wind
rotation causes an overall decrease in the resonance amplitude and substantial vertical variations in the lower
troposphere, whereas the top wind nullification causes a noticeable resonance amplitude increase below the
critical level.
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(c) WM6 (full wind with rotation)

Figure 9: Effect of wind shear and turn on the transverse stress conservation.

Though the wind rotation had no major effect on the wave pattern, the longitudinal stress
becomes substantially convergent (Fig. 8(b)), which points to the substantial role of the
third characteristic frequency ν3

k in the wave equation for wind rotation conditions. In
WM6, the longitudinal stress conservation is mainly violated where ν3

k (i.e. wind rotation)
becomes large, i.e. at the transition from the planetary boundary layer to the free atmo-
sphere, with a strong minimum at p ∼ 800 hPa, and to a minor extent in the troposphere
but not in the stratosphere. The distributions of transverse stress spectra are presented
in Fig. 9 for WM1, WM2, and WM6 (WM3, WM4, and WM5 are similar to WM6 in this
regard). As can be seen, the transverse stress also becomes resonant, with a sharp max-
imum coincident with the longitudinal drag and stress maximum kr . In difference with
the longitudinal counterpart, it is highly height-variable at all instances, though the vari-
ation amplitude is affected by the wind vertical variability. As an instance, the amplitude
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in the case of the constant wind in Fig. 9(a) is about one tenth of that with the boundary
layer (Fig. 9(b)). The other essential quality of the transverse stress is that it becomes
large at the transition from the planetary boundary layer to the troposphere and in the
lower part of the troposphere, remaining small on the surface and completely vanishing
at the tropopause and in the stratosphere. The relationship between transverse surface
drag and stress in (3.14) is rather misleading in this respect, as the modest amplitudes of
both Bk and σ0

k (ps) give no hint that σ0
k will grow rapidly with the altitude.

4.5 Wave drag

The strong height dependence of the wave stress, evident from Figs. 8(b) and 9, should
produce a noticeable wave drag, also. For closer investigation, in Figs. 10 and 11 the
vertical distributions of the resonant, k= kr , wave stress and wave drag are shown.

The resonant longitudinal wave stress in Fig. 10(a), corresponding to the rotating
wind case WM6, reproduces the crest profile of Fig. 8(b). For comparison and empha-
sising of the great role of wind rotation on the longitudinal stress variability, the con-
stant stress value for the non-rotating wind WM4 is shown with the red vertical line.
Though the variability of the longitudinal stress in this example is large in the lower tro-
posphere (comparable to the transverse stress variability in the same wind model), it al-
most vanishes (except of small vibrations) above 400 hPa, while stress tends to a constant
value at the top, remaining finite and large everywhere. The total variation of τ0

kr
(p)/ps

in the whole vertical extent of the atmosphere consists ∼ 5.6−5.2 = 0.4 ms−2, which is
∼ 7% of its value on the surface. That is, major part of the longitudinal stress (which is
the vertical flux of the horizontal momentum) remains non-absorbed at the reaching of
top. The corresponding longitudinal drag in Fig. 10(b) exhibits coincidental large oscil-
lations of the stress convergence and divergence, indicating that there exists substantial
exchange of the longitudinal momentum between different layers in the troposphere.
Small-amplitude drag protuberances in the stratosphere owe their genesis to the rapid
vertical vibrations of the stress and are caused by the tiny variations in wind direction.

In Fig. 11(a), the height dependence of the resonant transverse stress σ0
kr
(p) is demon-

strated for different wind models from Table 2. Graphs are shown for WM1 in red, WM2
in green, WM3 (close to WM4 and WM5 due to coincidental wind profiles below 7 km al-
titude) in dark blue, and WM6 in black. In the case of WM1 with uniform wind, the trans-
verse stress has the smoothest profile and the lowest amplitude (approximately 10 % of
the longitudinal stress amplitude), with the maximum at the 450 hPa level and a negative
minimum at the 800 hPa level. In case of WM2, the stress maximum descends to the 600
hPa altitude and the minimum falls to the 900 hPa level in the planetary boundary layer.
In WM3 and WM6, the main drag minimum in the boundary layer is further lowered to
the 970 hPa level. The minimum of WM6, which is less prominent compared with that
of WM3, is determined by near-surface wind rotation (directional shear) in WM6. The
vertically narrow negative protrusive peak in the stress σ0

kr
at the 800 hPa altitude in case

of WM3 and WM6 is caused by a sharp break in the wind profile ux(p) at the transition
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Figure 10: Relative (divided by ps) longitudinal stress and longitudinal drag of WM6 at the resonance maximum
kr.
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(b) WM1-WM3,WM6: transverse drag

Figure 11: Relative (divided by ps) transverse stress and the transverse drag at the resonance maximum kr for
different wind models. Red – WM1; green – WM2; blue – WM3; black – WM6.

from the boundary layer to the free atmosphere. This peak originates from the second
derivative of the wind p2∂2ux/∂p2 in the fourth characteristic frequency ν4

(kx ,0) in Scorer

parameter Λ (see (3.7)), as the third parameter ν3
(kx ,0) becomes zero for WM3. Despite of

the large variability in details, all transverse stress profiles possess common large-scale
quality: they all are zero on the surface and on the top, predominantly negative in the
planetary boundary layer and in the lower troposphere below 700 hPa (3 km) level, and
moderately large positive between 400 trough 700 hPa (3 through 7 km) altitudes, with a
steady decline to zero at the 200 hPa (12 km tropopause) level.

The resonant transverse wave drag components ∂σ0
kr

/∂p are shown in Fig. 11(b).
This drag is rather modest in the model without boundary layer (WM1, red curve in
Fig. 11(b)). The boundary layer inclusion in case of WM2 through WM6 causes a vast
amplitude magnification (∼ 10 to 20 times that of the homogeneous case WM1). Large
outbreaks near 800 hPa (∼ 2 km) level in WM2, WM3 and WM6 correspond to the rapid
changes of the stress σ0

kr
. In general, the transverse drag is of the same amplitude with
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the longitudinal one in the case of the revolving wind WM6, but differently from the last
one it is concentrated much lower, mainly in the first 3-km layer above the surface.

5 Discussion

The first two sections, Sections 2 and 3, were completely channelled to creation of a wave-
equation-based, linear, spectral stress and drag theory in pressure coordinates. Major
effort was devoted to the stress conservation problem in Section 3.5. Application of the
wave equation for conservation proof (first applied for conservation study in this investi-
gation, to our best knowledge) enabled to classify the situations in which the longitudinal
stress conserves and to make sure that the transverse stress never conserves exactly. The
theoretical results about stress conservation were further confirmed by numerical mod-
elling.

The longitudinal stress becomes conservative and produces no drag for non-rotating
but other-way variable wind at an additional condition that the orography is two dimen-
sional, so that the waves are likewise two-dimensional producing the exact vanish of
characteristic frequencies ν3

(kx ,0) and ν2
(kx ,0) and approximate ν1

(kx ,0)→0. This is the classi-

cal Eliassen-Palm zonal flow case. In all other occurrences (including both the rotating
wind in 2D orography conditions and the non-rotating wind in the 3D orography condi-
tions), the longitudinal stress remains convergent. However, as the following numerical
treatment established, the conservation lack is not crucial for the longitudinal stress as
there always remains a substantial non-absorbed momentum flux passing from the tro-
posphere to stratosphere.

The transverse stress demonstrates height variability in all cases excluding the con-
stant wind WM1, in which case it becomes rather small and the approximate conserva-
tion may be considered. That will mean, that for the complete stress vector γ (without
prior simplifications yielding the transverse stress exclusion), the only approximate con-
servation case is provided by the constant wind model. Even an inclusion of the bound-
ary layer with wind shear (WM2 in Fig. 9) will destroy the conservation profoundly. In
general, the transverse wave stress conversion presents an novel wave drag mechanism,
which is different from the longitudinal case and which appears to be left out of consid-
eration in former wave drag treatment and in available parameterisation schemes.

Though the surface drag (2.9d) was initially defined as the volume mean of the hor-
izontal pressure and Coriolis forces, ((2.9b), (2.9c)), actually it represents the vertical av-
erage of highly altitude-dependent area-mean orographic drag forces ((2.6b)’, (2.6c)’),
which disappear on the trans-mountain levels. For numerical models which do resolve
the planetary boundary layer (but still remain modest in the horizontal resolution capa-
bility, needing thus a surface drag parameterisation), the surface drag concept should be
refined according to (2.9f)-(2.9h) and (2.9i). In the case of sufficiently high vertical res-
olution in the boundary layer, already a layer-wise vertical averaging of the orographic
drag forces a and b could become meaningful. Anyway, the surface drag presents a low-
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level forcing which affects momentum on the inter-mountain levels p> pm , including the
planetary boundary layer. It can produce the (area-mean) blocking and be responsible
for envelope-orography formation. Except of dependencies (3.14b) (which only indicate
that both the surface drag and the wave stress are of the same wave origin), surface drag
does not have much of a relationship with the upper-level momentum changes.

The trans-mountain level drag can be produced either by convergence of the wave
stress or by the turbulent dissipation of waves at the breaking levels. Modelling reveals
that both stress components can be highly variable with the altitude, depending on the
mean wind shear and rotation with height, producing remarkable drag in the boundary
layer and troposphere. Still, there exist substantial differences in their behaviour. As al-
ready discussed above, prime difference consists in the drag conservation sensitivity to
the wind rotation. The longitudinal stress remains conservative and produces no drag, if
the wind and orography both are two-dimensional and wind does not rotate; the trans-
verse stress never conserves.

Another great difference between transverse and longitudinal stress and drag con-
sists in their vertical distribution. The transverse stress is zero on the surface and dis-
appears also on the top. Depending on the wind profile, it is predominantly negative
with large local minimums in the planetary boundary layer and in the lower troposphere
below 700 hPa (3 km) level and moderately large positive between 400 trough 700 hPa
(3 through 7 km) altitudes with steady decline to zero at the 200 hPa (12 km tropopause)
level (Fig. 11(a)).

Differently from the transverse counterpart, the longitudinal stress is finite and large
on the surface and remains such on the top even in the convergent case with the rotating
wind WM6 (Fig. 10). Though its variability is of the same order with that of the transverse
component, producing also drag of the same magnitude in the troposphere, a major part
of the vertical flux of the horizontal momentum passes to the stratosphere and remains
non-absorbed up to the top. Here is the point where the Eliassen and Palm hypothesis
of the longitudinal stress absorption through wave breaking followed by turbulent dis-
sipation must be attracted. According to this hypothesis, the drag is realised above the
level where the waves break, e.g. in the upper troposphere and in the stratosphere. Up to
the breaking level, the longitudinal stress is either conservative (idealised case of a non-
rotating zonal flow and 2D orography) or if it is convergent, its decline up to the breaking
level remains modest (differently from the transverse stress, which typically vanishes to
that level) and will be absorbed in a turbulent layer above it. The critical levels present
in this respect a special case of the complete stress absorption in a very tiny layer where
the turbulent dissipation is not required (see Figs. 6(d), 8(c)). The typical wave breaking
level is expected in the upper troposphere, though for high mountains, the breaking can
start immediately above of mountain tops at the trans-mountain altitudes. In our frontal
case with tropospheric trapped waves, the breaking starts in the stratosphere at ∼ 150
hPa level (14 km altitude, see Fig. 6). The large breaking-level altitude can be explained
here with the moderate mountain height in combination with the resonant trapped wave
energy downstream transportation in the troposphere. If the breaking level dissipation
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is missing or not intense enough, the waves can rise higher into the stratosphere, to the
levels above 75 hPa (18 km), where (friction- and dissipation-free) NWM predicts for-
mation of SQT (stratospheric quasi-turbulence), a quasi-turbulent wave pattern in the
shape of stream-line vortex system, as shown in Fig. 6. SQT is not a true turbulence as
it is stationary, regular, and non-absorbing. It may be guessed that SQT will transform
to real non-stationary turbulence due to nonlinear interactions between wave vortexes
(left out in linear stationary model), causing their dissipation and further drag creation
in the stratosphere. The sudden stratospheric warming events could also be explained
with SQT-based wave energy dissipation at appropriate altitudes. However, such hy-
potheses require further study involving large eddy simulation methods or updating the
wave equation with nonlinear advection-convection terms.

Summarising, the NWM presents a helpful tool for stress- and drag-related wave
modelling in the arbitrary temperature, wind, and orography conditions. Its main ad-
vantages are very high spatial resolution, frictionless wave-propagation and application
of non-reflective boundary conditions, permitting to resolve the finest details in the mod-
elled wave fields throughout entire vertical extent of the atmosphere.

The further developments in NWM are mainly related with nonlinear effects, which
include over-mountain bending of streamlines, planetary boundary layer interaction with
orography, upper level wave breaking with turbulence generation, and possible non-
stationary dissipation of SQT.
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[39] R. Rõõm and M. Zirk, An Efficient Solution Method for the Buoyancy Wave Equation at
Variable Wind and Temperature, Mon. Weather Rev., 135 (2007), 3633–3641.

[40] M. J. Miller, On the use of pressure as vertical co-ordinate in modelling convection, Q. J. R.
Meteorol. Soc., 100 (1974), 155–162.

[41] M. J. Miller and R. P. Pearce, A three-dimensional primitive equation model of cumulonim-
bus convection, Q. J. R. Meteorol. Soc., 100 (1974), 133–154.
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