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BOUNDARY VALUE PROBLEM FOR NONHYDROSTATIC,PRESSURE{COORDINATE GEOPOTENTIAL HEIGHT EQUATION
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SUMMARYIn a nonhydrostatic, anelastic, p{space model the geopotential height (GPH) �eld isdetermined by the Poisson equation. Physically relevant boundary conditions are for-mulated for this equation. Kinematical conditions for velocity at the ground and lateralboundaries generate nonhomogeneous Neumann condition for the GPH. At the groundthe nonhomogeneous term includes, beside internal forces, terms, caused by the surfacecurvature. The �niteness of the solution is required at p = 0 in the case of �nite sourcesof the Poisson equation. In an isothermal atmosphere this generates nonhomogeneousDirichlet condition at the ground (which is supplementary to the Neumann condition).In the vertically nonhomogeneous atmosphere an isothermal thin shell is separated atupper boundary and the solution �niteness is required in the shell, which yields thenonhomogeneous radiative condition for the GSP at the upper boundary of the atmo-sphere below the shell. For sources �nite at p = 0, the depth of the shell can shrinkto zero, for nonrestricted source this is impossible and the analytical continuation ofthe solution to the top shell is required. This is the case where the GPH distributionbecomes essentially nonhydrostatic at p ! 0 for spatial scales, commonly treated asbelonging to the hydrostatic domain. The application of the radiative condition at thetop requires modi�cation of the ground pressure treatment. Two particular groundpressure models are discussed. One treats the ground pressure as completely adjustedto the GPH distribution. In the second case the short{wave component of the groundpressure is adjusted to the nonhydrostatic component of the GPH, while the long{wavecomponent evolves like in the ordinary, hydrostatic, primitive{equation model.

2



1. IntroductionThe p{space was introduced by Eliassen (1949), its adaptation to the non-uniformground conditions was developed by Phillips (1957) in the �{coordinate form. Therepresentation of hydrostatic (HS) dynamics in pressure-coordinates became instantlypopular and is dominating in large-scale atmospheric dynamics up to date, especiallyin climate modeling and weather forecast. Recently, the growing resolution of bothnumerical forecast and climate models as well as the growing requirements to the modelprecision has brought the transition from hydrostatic p{space dynamics to nonhydro-static (NH) modeling into limelight.The �rst formulation of nonhydrostatic (NH) dynamics in pressure{coordinates is givenby Miller (1974) and Miller and Pearce (1974). The Miller{Pearce model abandons thehydrostatic equilibrium assumption in favour of the full vertical momentum equationbut postulates the incompressibility of motion in pressure{space and in this way �ltersthe acoustics. In this respect the Miller-Pearce model represents a version of anelasticmodels. The Miller{Pearce model requires a separation of statical background (sound-ing) and dynamical 
uctuative temperature components. As demonstrated by R~o~om(1997a,b), this causes an additional restriction to the model, as the energy conservationrequires the constant Brunt{V�ais�al�a frequency of the background state. A generaliza-tion, free of restriction of such kind, is presented by White (1989). The White modelemploys the actual temperature to the full extent. A further modi�cation of the NHp{space dynamics is designed by Salmon and Smith (1994). The Salmon{Smith modelmakes use of the Hamiltonian variational formulation of dynamics and supports theoptional thermodynamics of the atmosphere. The Miller-Pearce model was originallydesigned in p{coordinates, �{coordinate versions were developed by Miller and White(1984), and used in numerical modeling by Xue and Thorpe (1991), Miranda and James(1992), and R~o~om (1997a). Another, the so{called elastic �ltered model, is proposedby R~o~om and �Ulej~oe (1996), and generalized by R~o~om (1997b). This model supportsthe compressibility in p{space and uses approximation of in�nitely high sound speedfor acoustic relaxation. In all referred models the actual pressure in an air particle is3



treated as the vertical coordinate of the particle. Still, there exist di�erent approachesemploying the hydrostatic component of pressure �eld (Laprise, 1992) or the hydrostaticmean background pressure �eld in the role of a vertical coordinate (Dudhia, 1993).A common quality of all �ltered, nonhydrostatic, pressure{space models is that theyinclude a diagnostical �eld { the nonhydrostatic geopotential or geopotential height(GPH) { which is an analogue of the pressure �eld in the common coordinates. TheGPH distribution is governed by a generalized Poisson equation. A central problem ofthe solution of this equation is the choice of boundary conditions. Commonly the homo-geneous Neumann boundary condition is applied at all boundaries (see an overview byMiranda, 1990). A di�erent approach is developed and tested in the sigma{coordinateversion of the Miller{Pearce model by R~o~om (1997a). Ground surface and lateral bound-aries are treated as ideal constraints generating nonhomogeneous Neumann conditionfor the GPH. At the top the condition of the regularity of solution (�niteness for a �-nite source function) is applied in the Fourier space which results in a nonhomogeneousradiative boundary condition for the GPH. In the present study, we reexamine the prob-lem in detail in the pressure{coordinate version. The use of p{coordinates makes thetreatment of the problem more transparent. Particularly, the treatment of the groundpressure and its role in the nonhydrostatic dynamics gains in clarity.2. Anelastic, nonhydrostatic p{space model2.1. Initial equations we employ are developed by Salmon and Smith (1994) inpressure coordinates fx; y; pg, and represented by R~o~om (1998) in the formdvdt = � grz � f ẑ� v ; (1a)dwdt = g�1 + pH @z@p� ; (1b)dsdt = Q=T � As ; (1c)r � v + @!@p = 0 ; (1d)w = � H �!p + AsR � : (1e)4



Here the vector v is horizontal velocity and w represents vertical velocity; z is the heightof the isobaric surface (the GPH); g is the gravitational acceleration; f is the Coriolisparameter; ẑ is the vertical unit vector. H de�nes the height scale:H = pg� � = RTg � ;where � is the material density in the ordinary Cartesian space The �rst de�nition hereis general while the de�nition in brackets corresponds to perfect gas; T is temperatureand R is gas constant. s represents entropy and Q is the heat source. ! = dp=dt isvertical velocity in pressure coordinates.It is assumed at the deduction of the model (1) that the enthalpy density F (p; s) is theknown function of p and s, and, in accordance with the general de�nition,@F@p = 1� = gHp ; @F@s = T :In the special case of perfect gasF (p; s) = cpT = cpTn � ppn�R=cp es=cp :with Tn and pn being constants (normal temperature and pressure), cp is isobaric speci�cheat.The represented Salmon{Smith model is di�erent from the original model by White onwhich it is based. The Salmon{Smith model does not require perfect gas. In addition,the vertical velocity is approximately de�ned by formula w = �(1=g)dF/dt, whichyields the �nal diagnostical formula (1e). Such approximation allows to maintain theenergy conservation law in the model at variational formulation (Salmon and Smith1994, R~o~om 1998). Meanwhile, in the context of the present study these di�erences arenot too important. Particularly, both models coincide for perfect gas in the absence ofheat sources.(1a) { (1c) are prognostic equations for velocity and entropy, (1d) is the diagnosticalequation for z, (1e) represents the relationship for ! determination, if w is known from(1b). The knowledge of ! is required for material derivativeddt = @@t + v � r + ! @@p :5



Such an interpretation { common velocity w is the prime �eld and !{velocity is com-puted diagnostically afterwards { is needed for the development of the explicit diagnos-tical equation for z. In the �nal version w can be eliminated and ! computed fromdiagnostical equation (1d).2.2. Boundary conditions. In the case of exact, non�ltered dynamics (R~o~om 1990,1997b) the domain in the p{space isx 2 
 ; 0 < p < p0(x; t) ; (2a)where 
 is a two{dimensional domain (the complete xy{plain, or part of it, or the surfaceof the sphere), and p0(x; t) represents the ground surface pressure (time{dependentorography in the p{space). The surface pressure evolves in accordance with equation(expressing condition that the lower boundary surface is material in the p{space andconsists of the same material particles all the time)dp0dt = !jp0 : (2b)Boundary conditions at surface arezjp0(x;t) = h(x) ; (2c)where h is the ground surface height in the common Cartesian space, and the followingfrom (2c) kinematical constraint for velocity (the slipping condition at the ground)wjp0(x; t) = vjp0(x; t) � rh(x) : (2d)These exact boundary conditions will be applied at the deduction of the ground bound-ary condition for z. Still, lower boundary conditions will be discussed and revisedfurther, in section 8.3. Geopotential height equationDiagnostical equation (1d) is an implicit equation for z (for other dependent �elds thereexist explicit prognostic or diagnostical equations). To get an explicit relationship, (1d)6



must be di�erentiated by t and local time derivatives of velocity components should bereplaced from (1a), (1b)(�). The resulting equation readsr2z + @@p � pH �1 + pH @z@p�� = Az ; (3)where the source function isAz = � 1g @@p �p�w @@t 1H + 1R @As@t � âwH �� � 1gr � (âv + f ẑ� v) ;and â = v � r + ! @@pThe explicit expression for local time derivative of 1=H in the de�nition of Az is@@t 1H = � 1H2 pg @@p @h@t = � 1H2 pg @@p [T (âs + As)] :Relation (3) represents the diagnostical equation for the complete geopotential height.When z is expanded to the HS and NH components:z = zs + zn ; (4)where zs is the common HS component of the geopotential height:pH @zs@p + 1 = 0 ; (5)then (3) transforms to the equation for the nonhydrostatic geopotential height zn:r2zn + @@p � p2H2 @zn@p � = Az � r2zs � An : (6)(�) In mechanical terms (see Serrin 1959), (1d) represents an ideal constraint upon thesystem and z is the Lagrangian multiplier, or the potential of the reaction force, whichis required to keep the motion on the surface (1d) in functional space for successiveinstants, if the system initially belongs to this surface. The procedure of deduction ofthe diagnostical equation for the Lagrangian multiplier (z in our case, p in ordinaryanelastic models) is general for all anelastic models.7



Equations (3) and (6) are equivalent, still, equation (6) is more preferable. The HScomponent is not a solution of equation (3), but of the di�erent equation (5). Di�erentlyfrom (3), elliptical operator on the left side of equation (6) is negatively de�nite. Thatmeans it has non{constant solutions, only if either the right hand source An is di�erentfrom zero or the boundary conditions for zn are nonhomogeneous (at least on a part ofthe boundary). This quality easily permits to estimate the domain of relevance of znfor processes with di�erent spatial scales. And, of course, it brings out the boundaryvalue problem for zn.4. The reduced �nal model with the eliminated vertical velocity wNow, after the z{equation (3) or (6) is deduced, it is possible to eliminate the commonvelocity w along with depending on it equations (1b) and (1e) (these two equationswere required just for the deduction of equation (3)). The reduced model is very closein appearance to the common HS primitive equation model. It consists of equations(1a) for v, (1c) for s, (1d) for !, (5) for zs and (4) and (6) for z and zn. Essentiallynew in this model in comparison with the common HS equations is that the commonHS height zs is replaced by z and the system includes an additional equation (6) fornonhydrostatic height correction zn. Still, despite apparent similarity, the describedmodel is nonhydrostatic to full extent, and vertical velocity is implicitly persistent. Forinstance, the de�nition of energy (R~o~om 1998) includes kinetic energy of vertical motion,w2=2.5. Boundary condition for zn at the groundLike equation (1d), kinematical condition at the ground, (1d), represents an ideal con-straint. This constraint states that material particles which are initially at the lowerboundary surface will remain there for successive moments. To achieve this, the reactionof the surface is added to the ordinary forces at the surface. The reaction force of thesurface creates the normal gradient of zn. As a consequence, additional accelerationsarrive at the surface, and are continued via z{equation to the internal points of thedomain, forcing the real movement keep to boundary constraints.8



To get a quantitative relationship, we apply the material "surface" derivatived0dt = @@t + vjp0 � rto (2d): d0wjp0dt = rh � d0vjp0dt + (v�v�)p0h�� : (7)The short notation is used here(v�v�)p0h�� � 2Xi;j=1(vivj)p0 � @2h@xi@xj :If p0 evolves in accordance with (2b), thend0dt ajp0 = �dadt�p0for optional smooth a. Using this formula along with identity(rz)p0 = rh � �@z@p�p0 rp0 ;and equations of motion (1a) and (1b), condition (7) can be transformed to the condition�� pH � rh � rp0� @zn@p �p0 =� (f=g)rh � (ẑ� v)p0 + (v�v�)p0h��=g � rh � �Hp rp0 +rh�p0 � 
 : (8)A B CThe derived relationship represents the nonhomogeneous Neumann boundary conditionfor zn. On the right side are the forces which the vertical gradient of zn should com-pensate to avoid intersections of particle trajectories with the ground. Nonhomogeneityis to the full extent caused by orography and disappears in case of 
at ground.Term (A) in (8) is caused by the Coriolis force.Term (B) describes the in
uence of acceleration, caused by the curvature of the ground.h�� is the curvature tensor of orography(�). As this curvature{term is second order in(�) For a spherical, 
at (not steep) hill with the orography h(x; y) =p(r + h0)2 � x2 � y2 �r � h0 � (x2+ y2)=(2r); h0; x; y << r, where h0 is the height of the hill and r+ h0� r is the radius of curvature, the curvature tensor is h�� = ����=r.9



v, it becomes large not only for steep orography but increases rapidly with the rise ofwind speed, too.The last term (C) is determined by the baroclinity of the atmosphere at the ground.This term disappears (for nonuniform ground) if p0 and h are related by the barometricformula with barotropic (independent of horizontal coordinates) height scale H(p):h = Z ap0 H(p)p dp :As the solution of equation (6) becomes constant (being a zero for physical reasons)for homogeneous boundary conditions, assuming that sources An are absent, it hasmaximum values near the surface (again, if An is zero) for nonhomogeneous conditions.Thus, (8) can be used for estimation of the amplitude of zn due to orographic e�ects.6. Lateral boundary conditions for znIf the model is horizontally limited it has lateral boundary �. Usually the horizonalvelocity �eld is predetermined at this boundary. For zn, the distribution of the normalcomponent is essential vnj� � n � vj� = a(�; t) ; � 2 � (9)where n is the unit vector, normal to �, as the normal component determines the 
owthrough boundary, which causes additional stresses in the internal points of the domain.Usually the 
ow is assumed to be in balance:Z� v � nd� = Z� a(�)d� = 0 :Kinematical condition (9) represents an ideal constraint, similar to (2d). Still, di�erentlyfrom the previous case, the lateral boundary is not material, which means that individualair particles are not restricted to the surface �, but leave (penetrate) it. Due to thisspecial feature, it is more straightforward to apply for (9) the local time derivativerather than the material derivative at the deduction of the boundary condition for z.10



After the local derivative of v is substituted from the equations of motion, the resultinglateral boundary condition for normal derivative of zn readsg� @z@n�� = �n � �dvdt + f ẑ� v�� =� �@a@t + a�@vn@n �� + vsj� @a@s + !j� @a@p � fvsj�� : (10)Here vs is the component of horizontal velocity, tangent to the boundary �. This is theboundary condition for the complete geopotential height. For the NH height 
uctuationthe boundary condition readsg�@zn@n �� = �n � �dvdt + f ẑ� v + @zs@n �� :Note that the second and the third term at the right side are mutually compensated forthe geostrophic 
ow.The most important contribution to the nonhomogeneous right side is given by thesecond term in the brackets in (10). This term becomes large if the normal componentof velocity has a large normal gradient, which can easily happen at numerical modeling,if special care is not taken to dump large normal gradients at lateral boundaries.7. Second "horizontal" boundary condition for znWe do not recommend to use condition (2c) at the bottom as the second "horizontal"boundary condition supplementing the "�rst", (8), as this would yield solutions with"explosive" growth at p! 0. Rather we deduce the wanted condition from the principlethat the growth of zn at zero is of the same order than the growth of source An in (6),and particularly, that zn is �nite at zero for a restricted source.To get quantitative relations, is suitable to transform equation (6) along with the �rstboundary condition (8) into the Fourier space in horizontal coordinates x and studythe remaining boundary condition separately for each Fourier component. This lays for�nite domain 
 an additional restriction that this domain should be rectangular, fornonlimited plain or spherical geometry there are no such restrictions. Another short-coming with Fourier transform is that the transformed equation has simple structure11



(separation of di�erent mode{equations) for horizontally homogeneous conditions withindependent of x coe�cients (H in our case) and boundary condition (8). To overcomethis problem we restrict the consideration to cases where the operator on the left side in(6) and boundary condition (8) can be divided to the main horizontally homogeneousparts and small corrections to them, which can be included iteratively. For this werepresent (6) and (8) in the equivalent formsr2zn + @@p � p2H2 @zn@p � = An + Mzn � A� ; (11a)Mzn = � @@p �p2� 1H2 � 1H2� @zn@p � (11b)and � pH @zn@p �p0 = 
 + N zn � 
� ; (12a)N zn = � �� pH � rh � rp0� @zn@p �p0 + � pH @zn@p �p0 (12b)here p0 represents the mean value of p0 over domain 
. For real atmospheric conditions,the termsMzn and N zn are small corrections to the main parts on the left sides of (11a)and (12a), which can be easily included iteratively. The procedure is studied in detailby Miranda (1990) and R~o~om (1997a). For the boundary problem, an extensive study ofthe iterative problem is not needed and the detailed structure of perturbation operatorsM; N is not required. All we need is the assumption that the perturbations are smallenough to maintain the upper boundary condition of the nonperturbed (horizontallyhomogeneous) problem. In this case problem (11a), (12a) can be studied for optionalright{hand terms A�n and 
� with the help of the Fourier transform in x. Transformedequation and lower boundary condition are@@p � p2H2 @zk@p � � k2zk = A�k ; (13a)� pH @zk@p �p0 = 
�k ; (13b)where zk, A�k and 
�k are Fourier coe�cients of zn, A� and 
� consequently, and k2 =k2x + k2y represents the square of the modulus k of the wave vector k.12



7.1. The case of constant height scale. At �rst we will study the second boundarycondition problem for the constant H, the case of p{dependent H will be studied afterthat. Equation (13a) can be easily integrated for the constant H.For k = 0 the general solution isz0(p) = z0(p0) + p0�@z0@p �p0 + H2 Z p0p A�0 dp0p0 � p0p "p0 �@z0@p �p0 + H2p0 Z p0p A�0dp0#(14)If k 6= 0, then zk(p) = z1k(p) + z2k(p) ; (15a)zik(p) = �p0p ��i "(ai � bi) zk(p0) � bip0 �@zk@p �p0 + biH2 Z p0p � p0p0��i A�k(p0)dp0p0 # ;(15b)a1 = �1�1 � �2 ; a2 = �2�2 � �1 ; b1 = � b2 = 1�1 � �2 ;�1 = 1=2 �q1=4 + H2k2 ; �2 = 1=2 +q1=4 + H2k2 :Note. If A�k 6= 0, then z1k are z2k not solutions separately, they perform independentsolutions only for the homogeneous equation (13a) without source. The grouping ofthe solution in the form (15a) for non{zero source A�k takes into account the di�erentasymptotic behaviour of functions z1k and z2k.For k = 0, the general solution includes term proportional to 1=p (the last term in(14)), to which the exponential growth with height corresponds in common Cartesiancoordinates. The speci�c quality of that component is that it occurs in the generalsolution for the homogeneous case, A� � 0, too. Such exponential growth is nonphysical.Corresponding term we will call the irregular component of the general solution incontradiction with the remaining regular solution. The main task is to get physicallyrelevant regular solutions by exclusion (elimination) of irregular ones. In the presentcase with k = 0, the regularization is achieved by equalizing with zero A�0(p) and 
�0 .As A�0(p) and 
�0 represent the horizontally averaged components of A�(x; p) and 
(x),the horizontally averaged sources and nonhomogenuity of boundary condition should beabsent. Such a restriction is physical but it represents a constraint to the model which is13



beyond the boundary value problem; regularization of z0(p) cannot be achieved with thechoice of integration constants. In this respect the case k = 0 is exceptional. Anyway,for A�0(p) = 0, 
�0 = 0, solution (14) decays to constant z0(p0), which should put zeroon the physical consideration(�).The situation is di�erent for k 6= 0. Here the irregularity is associated with the functionz2k, which has the growth tendency (amplitude) � (p0=p)�2 > p0=p. For the regulariza-tion it is necessary to put the coe�cient of (p0=p)�2 zero at p = 0:(a2 � b2) zk(p0) � b2p0 �@zk@p �p0 + b2H2 Z p00 � p0p0��2 A�k(p0)dp0p0 = 0 : (16)Using the de�nitions of a2 and b2, this condition can be presented asp0 �@zk@p �p0 � (�2 � 1) zk(p0) = � H2 Z p00 � p0p0��2 A�k(p0)dp0p0 : (160)As gradient @zk=@p at the ground is determined by (13b), 16') represents the conditionfor zk(p0). Thus, for k 6= 0 and constant H, both "horizontal" boundary conditions aregiven at the ground surface.If condition (16) is satis�ed, the regularized solution can be presented in the formzk(p) = C � pp0���1 + b1H2 �I1k(p) + I2k(p)� ; (17a)where C = (a1 � b1) zk(p0) � b1p0 �@zk@p �p0 (17b)I1k(p) = Z p0p �p0p ��1 A�k(p0)dp0p0 ; I2k(p) = Z p0 �p0p ��2 A�k(p0)dp0p0 : (17c)The homogeneous part of this solution, determined by C (i.e., by the boundary condi-tions) and corresponding to absence of sources A�k, is always decreasing with the height,as ��1 > 0. The regularity of the nonhomogeneous part of the regularized solution(�) Mode k = 0 represents a disturbance with the in�nite wavelength and belongs to thehydrostatic domain. The proved zero{solution of z0 supports the simple physical factthat NH disturbances are absent at the long{wave hydrostatic limit.14



(17) near the upper boundary p = 0 is entirely determined with the regularity of sourceA�k(p). Let a test source have exponential growth with the height:A�k(p) = � pp0�q � �2 : (18)If q � 0, then integral I2k (and consequently the solution) does not exist. For q > 0solution exists andI1k(p) = 8><>: 1q + �1��2 �� pp0���1 � � pp0�q��2� q 6= �2 � �1� pp0���1 ln p0p q = �2 � �1I2k(p) = 1q � pp0�q��2 :As we see, even the regularized solution can grow exponentially with the height, if thesource is increasing. This happens for 0 < q < �2. For q > �2 the solution decreaseswith height. The growth rate of the regularized solution coincides with the growth rateof the source.7.2. Height{dependent H. The radiative boundary condition. For k = 0there are no signi�cant changes in comparison with the previous case, except that H2should be placed in (14) in the integrals. The main conclusion of the homogeneous His maintained: to get a regular solution, A�0 and q�0 should be zero.Essential modi�cation is necessary for k 6= 0. We shall use a special "top shell" method.Suppose H is a restricted smooth function near p =0. Then H(p) may be treated asthe constant H(0) in some vicinity of the upper boundary 0 < p < pt (in the topshell). In this vertically homogeneous top shell the previous solution is applicable, if p0is everywhere replaced by pt. For the regularity of solution condition (16') should holdat the lower boundary of the top shell (independently of the behaviour of the solutionbelow pt)pt �@zk@p �pt � (�2 � 1) zk(pt) = � H2(0) 1p�2t Z pt0 (p0)(�2�1)A�k(p0)dp0 : (19)At the same time, (19) is the upper boundary condition for the atmosphere below levelpt. In fact, this is the nonhomogeneous generalization of the widely used "radiative"15



boundary condition. Thus, in the lower, nonhomogeneous atmosphere the problemcan be solved numerically with "horizontal" boundary conditions (13b) and (19), andcontinued analytically into the top shell.For source A�k, �nite at zero, it is possible to consider the limiting case of disappearingtop shell, modifying (19) aslimp!0 �p@zk@p � (�2 � 1) zk� = � H2(0)A�k(0)�2 : (190)Still, this is not possible for source, unlimited at zero. For instance, in the case of a testsource (analogical to (18)) A�k(p) = � pp��q � �2with the (independent of pt) constant p�, the right side of (19) becomes in�nite atpt ! 0, if 0 < q < �2, though the regularized solution exists. If source functionhas such a "bad" growth, either the top shell of �nite depth must be employed or thesource should be modi�ed upon physical assumptions.The systematical growth of the source with height is observable (realistic) in manycases. An example is presented by free orographic waves, for which A�k � 1=p1=2. Insuch cases the amplitude of the zk is increasing with the height, and there exists aregion in the upper atmosphere where nonhydrostatic correction zn becomes signi�cantand comparable with 
uctuations of the hydrostatic height distribution even at scales,which are traditionally treated as the hydrostatic ones.Boundary condition (19) has been employed and tested in a numerical model (R~o~om1997a). The testing results are positive.Evidently, boundary condition (19) is not restricted to nonhomogeneous strati�cationbut can be employed equally for the atmosphere with constant H. In this case (19) and(16') present equivalent boundary conditions.16



8. Revision of the lower boundary treatmentThe developed radiative upper boundary condition (19) and the initial boundary con-dition (2c) are contradictory and eliminate each other. The initial boundary condition(2c), which in the context of the present investigation was necessary for the foundationof the kinematical condition (2d), represents in reality the boundary condition for theexact, acoustically non�ltered dynamics. In the present anelastic, acoustically �lteredmodel this boundary condition leads to nonphysical amplitudes with irregular growthof the nonhydrostatic geopotential height 
uctuation. This is obvious from the solu-tion (15). In turn, the use of regularizing boundary conditions (16') or (19) removesboundary condition (2c).We support the point of view (which is still hypothetical and requires future detailedstudy of acoustical adjustment process with emphasis on the ground pressure relaxation)that irregular modes, if such tend to develop, are governed by acoustical processes andare removed from the system in the course of acoustical relaxation. As a result, theground surface pressure is adjusted to the regular height distribution of the zn. Thatmeans, the condition (2c) is an equation for the determination of the ground pressurep0 from the known geopotential height distribution z(x; p; t). Consequently, evolutionequation (2b) is disregarded, which (in agreement with the ground pressure adjustmentassumption) assumes the elimination of long transient ground pressure (i.e., mass) wavesfrom the model.The presented ground pressure treatment assumes complete acoustic relaxation. If onewants to maintain the evolutional development of long nonbalanced mass waves, thefollowing approximative model is straightforward. We will use the circumstance thatthe NH component zn and the barotropic component of the HS height zs are spectrallywell{separated. The spatial scale of zn is less than 30 km (usually even less than 10km), while the typical scale of the barotropic component of zs (which is responsiblefor ground pressure waves) is about 1000 km or larger. This permits to associate theacoustical adjustment of the ground pressure with its short{scale component. For thatwe present the ground pressure as the sum of hydrostatic long{wave component ps and17



small NH short{wave correction pn to it:p0(x; t) = ps(x; t) + pn(x; t) : (20)The geometry of the domain is governed by the long{wave component (this approxi-mation is correct because both the mean and time{variable components of ps are muchlarger by the amplitude than pn):x 2 
 ; 0 < p < ps(x; t) ; (21a)dpsdt = !jps ; (21b)i.e. instead of the full ground pressure in (2a) { (2c), here stands the hydrostaticsurface pressure. The last evolution equation can be presented with the help of (1d) asthe vertically integrated mass conservation law@ps@t + r � Z ps0 vdp = 0 : (21b0)The small nonhydrostatic ground pressure correction pn in (20), supplementary to themain hydrostatic component, is estimated with the help of (2c) via zn. Extrapolationof the left hand term of (2c) from level ps yieldszs[x; ps(x; t); t] + zn[x; ps(x; t); t] + pn(x; t)�@z(x; p; t)@p �ps(x; t) = h(x) :As zs[x; ps(x; t); t] = h(x) ;and approximately �@z@p�ps � �@zs@p �ps = � �H(x; p; t)p �ps ;we get for pn pn(x; t) = ps(x; t) zn(x; ps(x; t); t)H(x; ps(x; t); t) : (22)
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