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SUMMARY

In a nonhydrostatic, anelastic, p—space model the geopotential height (GPH) field is
determined by the Poisson equation. Physically relevant boundary conditions are for-
mulated for this equation. Kinematical conditions for velocity at the ground and lateral
boundaries generate nonhomogeneous Neumann condition for the GPH. At the ground
the nonhomogeneous term includes, beside internal forces, terms, caused by the surface
curvature. The finiteness of the solution is required at p = 0 in the case of finite sources
of the Poisson equation. In an isothermal atmosphere this generates nonhomogeneous
Dirichlet condition at the ground (which is supplementary to the Neumann condition).
In the vertically nonhomogeneous atmosphere an isothermal thin shell is separated at
upper boundary and the solution finiteness is required in the shell, which yields the
nonhomogeneous radiative condition for the GSP at the upper boundary of the atmo-
sphere below the shell. For sources finite at p = 0, the depth of the shell can shrink
to zero, for nonrestricted source this is impossible and the analytical continuation of
the solution to the top shell is required. This is the case where the GPH distribution
becomes essentially nonhydrostatic at p — 0 for spatial scales, commonly treated as
belonging to the hydrostatic domain. The application of the radiative condition at the
top requires modification of the ground pressure treatment. Two particular ground
pressure models are discussed. One treats the ground pressure as completely adjusted
to the GPH distribution. In the second case the short-wave component of the ground
pressure is adjusted to the nonhydrostatic component of the GPH, while the long wave

component evolves like in the ordinary, hydrostatic, primitive—equation model.



1. Introduction

The p space was introduced by Eliassen (1949), its adaptation to the non-uniform
ground conditions was developed by Phillips (1957) in the o coordinate form. The
representation of hydrostatic (HS) dynamics in pressure-coordinates became instantly
popular and is dominating in large-scale atmospheric dynamics up to date, especially
in climate modeling and weather forecast. Recently, the growing resolution of both
numerical forecast and climate models as well as the growing requirements to the model
precision has brought the transition from hydrostatic p space dynamics to nonhydro-

static (NH) modeling into limelight.

The first formulation of nonhydrostatic (NH) dynamics in pressure—coordinates is given
by Miller (1974) and Miller and Pearce (1974). The Miller Pearce model abandons the
hydrostatic equilibrium assumption in favour of the full vertical momentum equation
but postulates the incompressibility of motion in pressure—space and in this way filters
the acoustics. In this respect the Miller-Pearce model represents a version of anelastic
models. The Miller—Pearce model requires a separation of statical background (sound-
ing) and dynamical fluctuative temperature components. As demonstrated by Room
(1997a,b), this causes an additional restriction to the model, as the energy conservation
requires the constant Brunt—Vaisala frequency of the background state. A generaliza-
tion, free of restriction of such kind, is presented by White (1989). The White model
employs the actual temperature to the full extent. A further modification of the NH
p-space dynamics is designed by Salmon and Smith (1994). The Salmon—Smith model
makes use of the Hamiltonian variational formulation of dynamics and supports the
optional thermodynamics of the atmosphere. The Miller-Pearce model was originally
designed in p-coordinates, o—coordinate versions were developed by Miller and White
(1984), and used in numerical modeling by Xue and Thorpe (1991), Miranda and James
(1992), and Room (1997a). Another, the so called elastic filtered model, is proposed
by Room and Ulejoe (1996), and generalized by Room (1997b). This model supports
the compressibility in p—space and uses approximation of infinitely high sound speed

for acoustic relaxation. In all referred models the actual pressure in an air particle is

3



treated as the vertical coordinate of the particle. Still, there exist different approaches
employing the hydrostatic component of pressure field (Laprise, 1992) or the hydrostatic

mean background pressure field in the role of a vertical coordinate (Dudhia, 1993).

A common quality of all filtered, nonhydrostatic, pressure—space models is that they
include a diagnostical field — the nonhydrostatic geopotential or geopotential height
(GPH) which is an analogue of the pressure field in the common coordinates. The
GPH distribution is governed by a generalized Poisson equation. A central problem of
the solution of this equation is the choice of boundary conditions. Commonly the homo-
geneous Neumann boundary condition is applied at all boundaries (see an overview by
Miranda, 1990). A different approach is developed and tested in the sigma—coordinate
version of the Miller—Pearce model by Room (1997a). Ground surface and lateral bound-
aries are treated as ideal constraints generating nonhomogeneous Neumann condition
for the GPH. At the top the condition of the regularity of solution (finiteness for a fi-
nite source function) is applied in the Fourier space which results in a nonhomogeneous
radiative boundary condition for the GPH. In the present study, we reexamine the prob-
lem in detail in the pressure—coordinate version. The use of p—coordinates makes the
treatment of the problem more transparent. Particularly, the treatment of the ground

pressure and its role in the nonhydrostatic dynamics gains in clarity.

2. Anelastic, nonhydrostatic p—space model

2.1. Initial equations we employ are developed by Salmon and Smith (1994) in

pressure coordinates {x,y,p}, and represented by Room (1998) in the form

i_‘t’:_gvz—fixv, (la)
i—qf = g<1 + %%;) : (10)
%:Q/T: . (1c)
Vv+g—(;=0, (1d)
w - H(g ; %) . (1)



Here the vector v is horizontal velocity and w represents vertical velocity; z is the height
of the isobaric surface (the GPH); g is the gravitational acceleration; f is the Coriolis

parameter; z is the vertical unit vector. H defines the height scale:

H- 2 (:ﬂ>
gp 9

where p is the material density in the ordinary Cartesian space The first definition here
is general while the definition in brackets corresponds to perfect gas; T is temperature
and R is gas constant. s represents entropy and @) is the heat source. w = dp/dt is

vertical velocity in pressure coordinates.

It is assumed at the deduction of the model (1) that the enthalpy density F'(p, s) is the
known function of p and s, and, in accordance with the general definition,

OF 1 gH JF

=1T.

ap p p’ Os

In the special case of perfect gas

R/cp
F(p,s) = ¢,T = ¢,1, <£> et/
n
with T,, and p,, being constants (normal temperature and pressure), ¢, is isobaric specific

heat.

The represented Salmon-Smith model is different from the original model by White on
which it is based. The Salmon—Smith model does not require perfect gas. In addition,
the vertical velocity is approximately defined by formula w = —(1/¢g)dF/dt, which
yields the final diagnostical formula (le). Such approximation allows to maintain the
energy conservation law in the model at variational formulation (Salmon and Smith
1994, Room 1998). Meanwhile, in the context of the present study these differences are
not too important. Particularly, both models coincide for perfect gas in the absence of

heat sources.

(la) — (1c) are prognostic equations for velocity and entropy, (1d) is the diagnostical
equation for z, (1e) represents the relationship for w determination, if w is known from

(1b). The knowledge of w is required for material derivative

i—gﬂLv-VﬂL 9
dt ot “op



Such an interpretation — common velocity w is the prime field and w-velocity is com-
puted diagnostically afterwards is needed for the development of the explicit diagnos-
tical equation for z. In the final version w can be eliminated and w computed from

diagnostical equation (1d).

2.2. Boundary conditions. In the case of exact, nonfiltered dynamics (Room 1990,

1997b) the domain in the p space is
x € Q, 0<p < pox,t), (2a)

where €2 is a two dimensional domain (the complete zy plain, or part of it, or the surface
of the sphere), and po(x, t) represents the ground surface pressure (time—dependent
orography in the p—space). The surface pressure evolves in accordance with equation
(expressing condition that the lower boundary surface is material in the p space and

consists of the same material particles all the time)

dpo
pre Wlpg - (20)
Boundary conditions at surface are
Z‘po(x,t) - h(X), (20)

where h is the ground surface height in the common Cartesian space, and the following

from (2c) kinematical constraint for velocity (the slipping condition at the ground)

w|p0(x7 t) = V‘po(x’ t) ’ Vh(x) : (2d)

These exact boundary conditions will be applied at the deduction of the ground bound-
ary condition for z. Still, lower boundary conditions will be discussed and revised

further, in section 8.

3. Geopotential height equation

Diagnostical equation (1d) is an implicit equation for z (for other dependent fields there

exist explicit prognostic or diagnostical equations). To get an explicit relationship, (1d)
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must be differentiated by ¢ and local time derivatives of velocity components should be

replaced from (1a), (1b)(*). The resulting equation reads

’

o |[p p 0z
v? — =1+ == = A, 3
Z+8p[H<+H0p>] ‘ (3)
where the source function is
10 01 1 0A aw 1
A, = — - - Y0 27 v . (a 2 _
gap[p<“’atﬂ+ R ot H)] gV (av + faxv),

and

0
d:V'V—f—wa—p

The explicit expression for local time derivative of 1/H in the definition of A, is

01 1 pod oh 1 po .
o1 1 pooh 1 pod., A .
ot H H? g0p ot HZ gop T (@8 + A

Relation (3) represents the diagnostical equation for the complete geopotential height.
When z is expanded to the HS and NH components:

Z = 2z + 2y, (4)

where z, is the common HS component of the geopotential height:

p Oz
— 1 =0, 5
H8p+ ' (5)

then (3) transforms to the equation for the nonhydrostatic geopotential height z,:
0 2 0z

S ) o4, v, =4,
o H26p> Vz (6)

In mechanical terms (see Serrin 1959), (1d) represents an ideal constraint upon the
system and z is the Lagrangian multiplier, or the potential of the reaction force, which
is required to keep the motion on the surface (1d) in functional space for successive
instants, if the system initially belongs to this surface. The procedure of deduction of

the diagnostical equation for the Lagrangian multiplier (z in our case, p in ordinary

anelastic models) is general for all anelastic models.
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Equations (3) and (6) are equivalent, still, equation (6) is more preferable. The HS
component is not a solution of equation (3), but of the different equation (5). Differently
from (3), elliptical operator on the left side of equation (6) is negatively definite. That
means it has non—constant solutions, only if either the right hand source A,, is different
from zero or the boundary conditions for z,, are nonhomogeneous (at least on a part of
the boundary). This quality easily permits to estimate the domain of relevance of z,
for processes with different spatial scales. And, of course, it brings out the boundary

value problem for z,.

4. The reduced final model with the eliminated vertical velocity w

Now, after the z equation (3) or (6) is deduced, it is possible to eliminate the common
velocity w along with depending on it equations (1b) and (le) (these two equations
were required just for the deduction of equation (3)). The reduced model is very close
in appearance to the common HS primitive equation model. It consists of equations
(1a) for v, (1c) for s, (1d) for w, (5) for z, and (4) and (6) for z and z,. Essentially
new in this model in comparison with the common HS equations is that the common
HS height z, is replaced by z and the system includes an additional equation (6) for
nonhydrostatic height correction z,. Still, despite apparent similarity, the described
model is nonhydrostatic to full extent, and vertical velocity is implicitly persistent. For

instance, the definition of energy (R66m 1998) includes kinetic energy of vertical motion,

w? /2.
5. Boundary condition for 2, at the ground

Like equation (1d), kinematical condition at the ground, (1d), represents an ideal con-
straint. This constraint states that material particles which are initially at the lower
boundary surface will remain there for successive moments. To achieve this, the reaction
of the surface is added to the ordinary forces at the surface. The reaction force of the
surface creates the normal gradient of z,. As a consequence, additional accelerations

arrive at the surface, and are continued via z—equation to the internal points of the

domain, forcing the real movement keep to boundary constraints.
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To get a quantitative relationship, we apply the material ”surface” derivative

do 0
@ o VeV
to (2d):
dow| dov| o
dtpo = Vh-idtpo + (v 1)ﬁ)p0hag. (7)

The short notation is used here
2

(v*0?) b :Z(ij).azh
VU7 )pgltap = VU7 )pg 8.%"6.’17]

i’jzl

If po evolves in accordance with (2b), then

do, _ (da
de P \dt o

for optional smooth a. Using this formula along with identity

0z
(Vz)pn = Vh — <a—p> Vo ,
Po

and equations of motion (1a) and (1b), condition (7) can be transformed to the condition

(- oo ], -

~ (f/9)Vh- (2 x V), + @ )phap/g — Vh- (%Vpo—FVh) =q5. (8

Po
A B C
The derived relationship represents the nonhomogeneous Neumann boundary condition
for z,. On the right side are the forces which the vertical gradient of z,, should com-
pensate to avoid intersections of particle trajectories with the ground. Nonhomogeneity

is to the full extent caused by orography and disappears in case of flat ground.
Term (A) in (8) is caused by the Coriolis force.

Term (B) describes the influence of acceleration, caused by the curvature of the ground.

hap is the curvature tensor of orography®). As this curvature-term is second order in

For a spherical, flat (not steep) hill with the orography h(z,y) = \/(r + ho)% — 22 — y2 —
ra hg— (22 +y?)/(2r), ho,z,y << 7, where hg is the height of the hill and r + hg

~ r is the radius of curvature, the curvature tensor is hog = —043/7.
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v, it becomes large not only for steep orography but increases rapidly with the rise of

wind speed, too.

The last term (C) is determined by the baroclinity of the atmosphere at the ground.
This term disappears (for nonuniform ground) if py and h are related by the barometric

formula with barotropic (independent of horizontal coordinates) height scale H (p):

“H
o (p)dp

Po
As the solution of equation (6) becomes constant (being a zero for physical reasons)
for homogeneous boundary conditions, assuming that sources A, are absent, it has
maximum values near the surface (again, if A,, is zero) for nonhomogeneous conditions.

Thus, (8) can be used for estimation of the amplitude of z, due to orographic effects.

6. Lateral boundary conditions for z,

If the model is horizontally limited it has lateral boundary . Usually the horizonal
velocity field is predetermined at this boundary. For z,, the distribution of the normal

component is essential
Uply = n-vly = a(ét), £ € X (9)

where n is the unit vector, normal to ¥, as the normal component determines the flow
through boundary, which causes additional stresses in the internal points of the domain.

Usually the flow is assumed to be in balance:

/Ev-nda = /Ea,(g)da = 0.

Kinematical condition (9) represents an ideal constraint, similar to (2d). Still, differently
from the previous case, the lateral boundary is not material, which means that individual
air particles are not restricted to the surface X, but leave (penetrate) it. Due to this
special feature, it is more straightforward to apply for (9) the local time derivative

rather than the material derivative at the deduction of the boundary condition for z.
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After the local derivative of v is substituted from the equations of motion, the resulting

lateral boundary condition for normal derivative of z,, reads

0z N dv v fax
— = —n-|— ZXV =
9 on ) s, dt : 5

190 0 (T2) + wlmae 4 wlmas ~ fu (10)
ot~ “\on )y T Fas T ¥IEG, T U

Here vy is the component of horizontal velocity, tangent to the boundary 3. This is the
boundary condition for the complete geopotential height. For the NH height fluctuation

the boundary condition reads

0z, N dv b ofaxv 4 0z
- = — . —_— Z Vv .
9 on ) dt : on /)

Note that the second and the third term at the right side are mutually compensated for

the geostrophic flow.

The most important contribution to the nonhomogeneous right side is given by the
second term in the brackets in (10). This term becomes large if the normal component
of velocity has a large normal gradient, which can easily happen at numerical modeling,

if special care is not taken to dump large normal gradients at lateral boundaries.

7. Second ”horizontal” boundary condition for z,

We do not recommend to use condition (2c) at the bottom as the second ”horizontal”
boundary condition supplementing the "first”, (8), as this would yield solutions with
"explosive” growth at p — 0. Rather we deduce the wanted condition from the principle
that the growth of z, at zero is of the same order than the growth of source A,, in (6),

and particularly, that z, is finite at zero for a restricted source.

To get quantitative relations, is suitable to transform equation (6) along with the first
boundary condition (8) into the Fourier space in horizontal coordinates x and study
the remaining boundary condition separately for each Fourier component. This lays for
finite domain  an additional restriction that this domain should be rectangular, for
nonlimited plain or spherical geometry there are no such restrictions. Another short-

coming with Fourier transform is that the transformed equation has simple structure
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(separation of different mode—equations) for horizontally homogeneous conditions with
independent of x coefficients (H in our case) and boundary condition (8). To overcome
this problem we restrict the consideration to cases where the operator on the left side in
(6) and boundary condition (8) can be divided to the main horizontally homogeneous
parts and small corrections to them, which can be included iteratively. For this we

represent (6) and (8) in the equivalent forms

0 ( p? 0z
2 — ) = A, . = A 11
Vez +8p<ﬁ25)p> + Mz ; (11a)
0| ,( 1 1\ 0z,
_ 9 S )% 11
M =~ (35 H) - (15)
and
<£%) N VS (12a)
D 0z p Oz,

- _ |(£ - : “en L% 12
Nz [(H Vh vpo) 3PL + [H 8pL (12b)

here pg represents the mean value of pg over domain €2. For real atmospheric conditions,
the terms Mz, and N z, are small corrections to the main parts on the left sides of (11a)
and (12a), which can be easily included iteratively. The procedure is studied in detail
by Miranda (1990) and Room (1997a). For the boundary problem, an extensive study of
the iterative problem is not needed and the detailed structure of perturbation operators
M, N is not required. All we need is the assumption that the perturbations are small
enough to maintain the upper boundary condition of the nonperturbed (horizontally
homogeneous) problem. In this case problem (11a), (12a) can be studied for optional
right—hand terms A} and v* with the help of the Fourier transform in x. Transformed

equation and lower boundary condition are

0 ( p? 0z «
ap <F2 ap) T Fa = A )
p Oz
LA I 13b
(F%e)_ =i (131)

where zx, A} and 77 are Fourier coefficients of z,, A* and v* consequently, and k? =

k2 + k2 represents the square of the modulus & of the wave vector k.
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7.1. The case of constant height scale. At first we will study the second boundary
condition problem for the constant H, the case of p dependent H will be studied after
that. Equation (13a) can be easily integrated for the constant H.

For £ = 0 the general solution is

0z —2 L d Po | [0z H [P,
z0(p) = 20(Po) + Po < 00> +H / Ap i _ D Po <—0> + t/ Apdp
D ) 5 p pp o )= Do Jyp

Po
(14)
If £ # 0, then
w(p) = zi(p) + zi(p) (15a)
Hi Po Hi /
; Po Oz, 2 P RN/
zi.(p) = | — a; — b;)zi(p bzp< )—szH/(—) p)—
i = () [( i) o (G )+ 0t [T (E)
(15b)
1
alsz 02:L7512—52:7;
f1 — H1 H1— M2

pro= 1/2 —\1/4 + K2, pp = 1/2 +\/1/4 + Hk2.

Note. If A; # 0, then z; are z7 not solutions separately, they perform independent
solutions only for the homogeneous equation (13a) without source. The grouping of
the solution in the form (15a) for non-zero source A} takes into account the different

asymptotic behaviour of functions z; and z;.

For k£ = 0, the general solution includes term proportional to 1/p (the last term in
(14)), to which the exponential growth with height corresponds in common Cartesian
coordinates. The specific quality of that component is that it occurs in the general
solution for the homogeneous case, Ax = 0, too. Such exponential growth is nonphysical.
Corresponding term we will call the irregular component of the general solution in
contradiction with the remaining regular solution. The main task is to get physically
relevant regular solutions by exclusion (elimination) of irregular ones. In the present
case with £ = 0, the regularization is achieved by equalizing with zero Aj(p) and ~;.
As Af(p) and 7§ represent the horizontally averaged components of A*(x,p) and v(x),
the horizontally averaged sources and nonhomogenuity of boundary condition should be

absent. Such a restriction is physical but it represents a constraint to the model which is
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beyond the boundary value problem; regularization of zy(p) cannot be achieved with the
choice of integration constants. In this respect the case k = 0 is exceptional. Anyway,
for A5(p) = 0,7 = 0, solution (14) decays to constant zo(Pg), which should put zero

on the physical consideration).

The situation is different for k£ # 0. Here the irregularity is associated with the function
22, which has the growth tendency (amplitude) ~ (po/p)#? > po/p. For the regulariza-
tion it is necessary to put the coefficient of (pg/p)*? zero at p = 0:
o o azk — 9 Po p/ 2 dp/
(a2 — b2)zk(po) — ba2Po <—> + boH / — | AW)—- =0. (16)
o )5 o \Do p
Using the definitions of as and by, this condition can be presented as

!/

[0z _ —2 [P0 (p'\* N dp
AL 1 — _H P oA 16’
po < ap>p—0 (b ) 2 (#0) /0 (p_0> #() I (16')

As gradient 0z /0p at the ground is determined by (13b), 16’) represents the condition
for 21, (Pg). Thus, for k # 0 and constant H, both "horizontal” boundary conditions are

given at the ground surface.

If condition (16) is satisfied, the regularized solution can be presented in the form

a) = 0 (L) "+ I 1) + ) (17a)

where
C = (01 — by) (@) — blp—o(%—jj)p_o (171)
1) - /_(%)A(m% zw = [ (L) ae% . an

The homogeneous part of this solution, determined by C (i.e., by the boundary condi-
tions) and corresponding to absence of sources A}, is always decreasing with the height,

as  —p1 > 0. The regularity of the nonhomogeneous part of the regularized solution

Mode k£ = 0 represents a disturbance with the infinite wavelength and belongs to the
hydrostatic domain. The proved zero—solution of zy supports the simple physical fact

that NH disturbances are absent at the long wave hydrostatic limit.
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(17) near the upper boundary p = 0 is entirely determined with the regularity of source
A% (p). Let a test source have exponential growth with the height:
D q — K2
no) = (2) (18)
Po
If ¢ < 0, then integral I,f (and consequently the solution) does not exist. For ¢ > 0

solution exists and

—H1 q—H2
1 Db _ Db _
It I T |:<p_0> (12_0> ] ¢ 7 p2—
k(P) = —p
(%) In £2 q = p2— i
1 D q—H2
I2 p) = — (:) .
k() . o

As we see, even the regularized solution can grow exponentially with the height, if the
source is increasing. This happens for 0 < ¢ < ps. For ¢ > pus the solution decreases
with height. The growth rate of the regularized solution coincides with the growth rate

of the source.

7.2. Height dependent H. The radiative boundary condition. For k& = 0
.. . . . . -2
there are no significant changes in comparison with the previous case, except that H

should be placed in (14) in the integrals. The main conclusion of the homogeneous H

is maintained: to get a regular solution, A{ and ¢; should be zero.

Essential modification is necessary for £ # 0. We shall use a special ”top shell” method.
Suppose H is a restricted smooth function near p =0. Then H(p) may be treated as
the constant H(0) in some vicinity of the upper boundary 0 < p < p; (in the top
shell). In this vertically homogeneous top shell the previous solution is applicable, if pg
is everywhere replaced by p;. For the regularity of solution condition (16’) should hold
at the lower boundary of the top shell (independently of the behaviour of the solution
below p;)

—2 1

Dt (%)m — (w2 — Da(pr) = — H (0)—/0pt (P/)(M_l) Ap(@)dp” . (19)

142
Dy

At the same time, (19) is the upper boundary condition for the atmosphere below level

p. In fact, this is the nonhomogeneous generalization of the widely used "radiative”
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boundary condition. Thus, in the lower, nonhomogeneous atmosphere the problem
can be solved numerically with ”horizontal” boundary conditions (13b) and (19), and

continued analytically into the top shell.

For source Ay, finite at zero, it is possible to consider the limiting case of disappearing

top shell, modifying (19) as

[ Oz _ H(0)45(0) :
})E}%pa—p(wl)zk}—T- (19)

Still, this is not possible for source, unlimited at zero. For instance, in the case of a test
source (analogical to (18))
q — w2
P
Ao = ()

D
with the (independent of p;) constant p,, the right side of (19) becomes infinite at
pr — 0,if 0 < g < po, though the regularized solution exists. If source function

has such a "bad” growth, either the top shell of finite depth must be employed or the

source should be modified upon physical assumptions.

The systematical growth of the source with height is observable (realistic) in many

/2 1pn

cases. An example is presented by free orographic waves, for which Ay ~ 1/p
such cases the amplitude of the z; is increasing with the height, and there exists a
region in the upper atmosphere where nonhydrostatic correction z, becomes significant
and comparable with fluctuations of the hydrostatic height distribution even at scales,

which are traditionally treated as the hydrostatic ones.

Boundary condition (19) has been employed and tested in a numerical model (R66m

1997a). The testing results are positive.

Evidently, boundary condition (19) is not restricted to nonhomogeneous stratification
but can be employed equally for the atmosphere with constant H. In this case (19) and

(16”) present equivalent boundary conditions.
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8. Revision of the lower boundary treatment

The developed radiative upper boundary condition (19) and the initial boundary con-
dition (2c) are contradictory and eliminate each other. The initial boundary condition
(2¢), which in the context of the present investigation was necessary for the foundation
of the kinematical condition (2d), represents in reality the boundary condition for the
exact, acoustically nonfiltered dynamics. In the present anelastic, acoustically filtered
model this boundary condition leads to nonphysical amplitudes with irregular growth
of the nonhydrostatic geopotential height fluctuation. This is obvious from the solu-

tion (15). In turn, the use of regularizing boundary conditions (16’) or (19) removes

boundary condition (2c).

We support the point of view (which is still hypothetical and requires future detailed
study of acoustical adjustment process with emphasis on the ground pressure relaxation)
that irregular modes, if such tend to develop, are governed by acoustical processes and
are removed from the system in the course of acoustical relaxation. As a result, the
ground surface pressure is adjusted to the regular height distribution of the z,. That
means, the condition (2c¢) is an equation for the determination of the ground pressure
po from the known geopotential height distribution z(x, p, t). Consequently, evolution
equation (2b) is disregarded, which (in agreement with the ground pressure adjustment
assumption) assumes the elimination of long transient ground pressure (i.e., mass) waves

from the model.

The presented ground pressure treatment assumes complete acoustic relaxation. If one
wants to maintain the evolutional development of long nonbalanced mass waves, the
following approximative model is straightforward. We will use the circumstance that
the NH component z, and the barotropic component of the HS height z; are spectrally
well-separated. The spatial scale of z, is less than 30 km (usually even less than 10
km), while the typical scale of the barotropic component of z; (which is responsible
for ground pressure waves) is about 1000 km or larger. This permits to associate the
acoustical adjustment of the ground pressure with its short—scale component. For that

we present the ground pressure as the sum of hydrostatic long wave component ps and
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small NH short—wave correction p,, to it:

po(x, t) = ps(x, t) + pu(x, t). (20)

The geometry of the domain is governed by the long—wave component (this approxi-
mation is correct because both the mean and time variable components of py are much

larger by the amplitude than p,):

x € Q, 0<p < ps(x,t), (21a)
dps
dt = wps 3 (21b)

i.e. instead of the full ground pressure in (2a) — (2c), here stands the hydrostatic

surface pressure. The last evolution equation can be presented with the help of (1d) as

the vertically integrated mass conservation law

Ps
Ops +v-/ vdp = 0 . (218)
o1 .

The small nonhydrostatic ground pressure correction p,, in (20), supplementary to the
main hydrostatic component, is estimated with the help of (2¢) via z,. Extrapolation

of the left hand term of (2¢) from level p, yields

2% ps(X, 1), + zalx, ps(x, 1),8] + pu(x, 1) (%pp’t)) T h(x) .

As

and approximately
( dp )
Ds

n\X,
pn(X: t) - ps(X= t) H(

we get for p,,

(22)
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