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INTRODUCTION

The aim of this investigation is to present a comprehensive introduction to nonhydro-
static atmospheric dynamics in the unified pressure-coordinate framework.

The pressure (or isobaric) coordinates (further ”p-coordinates” as well as the ”p-space”
will be often used) were introduced by Eliassen (1949), their adaptation to the non-
uniform ground conditions was developed by Phillips (1957). Representation of the
hydrostatic (HS) dynamics, which was (and still is) prevailing in climate modeling and
weather forecast problems, in pressure-coordinates became instantly popular and is
dominating in large-scale atmospheric dynamics up to date. One reason for such pop-
ularity is that the p—coordinates are the ones in which the real atmospheric sounding
results are recorded. The balloon-borne radio-sounds present temperature, humidity
and wind component as functions of pressure p (besides horizontal coordinates, z, y,
and time, t) rather than the balloon height, z. Another reason for the popularity of
pressure-coordinates, more fundamental for theoretical investigations, is that the atmo-
sphere is incompressible and its dynamics represents circulation of an incompressible
liquid in p-space, supposing the governing equations are HS equations. This is un-
derstandable because incompressible flows have many advantages in comparison with
compressible models: the number of independent functions is less by one; fast acoustic
disturbances are removed; mathematical formulation and interpretation of the results
is simpler; there exist several nonlinear, nonstationary problems with known exact an-
alytical solutions. These multiple advantages make pressure-space very attractive for
theoreticians and fully compensate the only disadvantage: the p-space is a little bit
more abstract and it takes some additional efforts to become familiar with it.

The growing resolution of both numerical forecast and climate models as well as the
growing requirements to the model precision has brought the transition from hydrostatic
dynamics to nonhydrostatic (NH) models into limelight. The development of nonhydro-
static models has been going on for about three decades, it started with the development
of NH models for mesoscale-investigations (Ogura and Charney 1962, Dutton and Fichtl
1969, Miller and Pearce 1974, Tapp and White 1976, Klemp and Wilhelmson 1978, Re-
delsberger and Sommeria 1981, Pielke 1984). The present state of affairs in use of NH
models in operational forecast is that they are as a rule high-resolution meso-models
and are treated as supporting tools in addition to the main HS forecast models. In the
next five to ten year period all HS models are likely to be replaced or updated to NH
versions.

For general circulation and local-area forecast models the NH-updating process must
go on in the way that the connections with existing models, computing environment
and pre- and post-processing utilities were not lost. In such a situation dynamic models
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gain primary significance which enable employment of NH dynamics without departure
with pressure related coordinate-spaces. Three main trends can be recognized:

i. Models which employ actual pressure of an air-particle for its vertical coordinate
(Miller 1974, Miller and Pearce 1974, Miller and White 1984, White 1989, Room 1990).
This trend has a longer history.

ii. Models which employ the hydrostatic component of pressure field as a vertical
coordinate (Laprise 1992), this coordinate system is used for instance in the Meteo-
France model Aladin.

iii. Models which use the hydrostatic mean background pressure field in the role of a
vertical coordinate. This coordinate frame is employed in the NH-extension of the Penn
State — NCAR model (Dudhia 1993).

The first and probably best known NH model in pressure space is the Miller—Pearce
model, hereafter the MPM (Miller 1974, Miller and Pearce 1974). This model abandons
the hydrostatic equilibrium assumption in favour of the full vertical momentum equation
but postulates the incompressibility of motion in pressure—space and in this way filters
the acoustic model. In a most general form the MPM is presented by White, 1989. Ma-
jority of numerical relaxation and physical filtering schemes employ partial linearization
with separation of the background and perturbation states. This is needed for explicit
revealing of acoustic subsystem of the model. The MPM is not an exclusion in this
respect. The White generalization represents an exception in this respect, because it
substitutes the horizontally homogeneous background temperature of the original MPM
by an optional background temperature field which can represent some real synoptical
situation. This generality makes the White version quite valuable. The MPM was orig-
inally designed in p—coordinates, sigma—coordinate versions were developed by Miller
and White, 1984, and used in numerical modeling by Xue and Thorpe, 1991, and Mi-
randa and James, 1992. Still, there existed many unresolved or theoretically poorly
founded aspects of the model, owing their origin to the phenomenological rather than
theoretical foundation, like problems with changing geometry and boundary values of
different field on these replacing boundaries, and the question of scales of application
(is there a limiting scale, below of which the Miller-Pearce model cannot be applied,
or is it valid until the laboratory scale?). Therefore, further theoretical investigation in
the field of NH p-space dynamics is actual and necessary.

The present technical report makes an attempt to fill some existing gaps in the theory
of nonhydrostatic pressure-space dynamics. General nonhydrostatic nonfiltered hydro-
dynamic equations in pressure coordinates (Room 1989, 1990) yield a ground for such
theoretical task. This model, hereafter referred to as the ExM (the Exact Model) is de-
duced with the help of the direct transformation of complete nonfiltered equations, using
the curvilinear coordinate covariant differencing formalism, from the ordinary space to
the p-space. It does not assume any preliminary simplification (including the preser-
vation of the full Coriolis force). Using these equations as a starting point, it makes
possible a systematic treatment of acoustic relaxation process and rise of incompressible
motion in pressure space, as well as reexamination of the boundary value problem. As

In this respect the MPM represents a version of anelastic models.
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a result, our understanding of the NH dynamics in p-space should improve, which will
result in better numerical forecast and circulation models.

The main objectives of the present technical report are:
— to establish a systematic way of deduction of filtered models in pressure space;
— to estimate quality and domains of applications of different filtered models;

— to examine quality of nonlinear filtered models, especially the geopotential height
equation and its boundary value problem:;

— give recommendations for creation of numerical algorithms;
— elaborate an example numerical algorithm to prove these recommendations.
The content of the report is as follows.

In Chapter One the basic equations (the ExM) are presented and discussed and the
formal transition to the MPM is described.

In Chapters Two to Four the main topics are the filtering problems and the quality es-
timation of filtered models. In these chapters the treatment is mainly engaged in linear
models. In Chapter Two a systematical way of acoustic filtering of the initial com-
plete linear ExM is proposed and elaborated, which bases on the use of the Lagrangian
formulation of linear hydrodynamics along with the least action (Hamiltonian) princi-
ple. The output of the filtering is a model called the ”Elastic filtered model” (EFM)
which is different from the common MPM. The most fundamental quality of the EFM
is that it supports (weakly) compressible dynamics in pressure-space (this justifies its
name). Chapter Three has the assisting nature, its aim is to generalize linear models
of the previous chapter (both the complete and filtered versions), designed for resting
background, to more general shear-flow background conditions in the presence of the
Coriolis force. The aim of this generalization is to get p—space models which are simple
and allow analytical solutions and at the same time are close enought to real atmo-
spheric conditions. The corresponding linear equation for the MPM and hydrostatic
primitive-equation model (HSM) are deduced as well. All developed models are subject
to numerical modeling and mutual comparison in Chapter Four. General conclusions
from modeling with linear equations is that (I) the EFM can be employed without
spacial-scale restrictions, i.e. it is an all-scale model, valid from micro-turbulence (I ~
10 cm) till planetary scale (I ~ 10 000 km) dynamics; (II) the MPM is applicable in
scales [ > 100 m. The conclusion that the domain of the MPM is restricted from short-
scale side is certainly unexpected. Still, the MPM includes all the planetary, synoptic
and meso-scale domains, leaving out the small-scale convection and turbulent mixing
processes only. Along with the incompressibility of the MPM this means that the MPM
claims to be a most useful filtered model.

The general topic of Chapters Five and Six is the numerical modeling of the nonlinear
atmospheric dynamics in a limited area with typical dimensions in horizontal directions
100x100 km?. In Chapter Five the nonlinear equations (both ExM and filtered models)
are transformed into the o-space, which presents a convenient way for the introduction
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of orography. Still, the main objective of the chapter is the study of the diagnosti-
cal equation for the nonhydrostatic geopotential height distribution. This is a Poisson
equation and it represents a most fundamental relationship in all acoustically adjusted
(relaxed) nonhydrostatic models, as (the gradient of) its solution determines the main
actual force acting on an air-particle in the atmosphere. Much attention is paid to the
boundary conditions of this equation. The double character of model geometry — atmo-
sphere is a compressible gas in ordinary physical space with firm lower and free upper
boundary, whereas in the p-space it represents an incompressible liquid with fixed upper
and free lower boundary — is a potential source for misinterpretations. The main idea
used in the present investigation to clear the situation is that the lower boundary (and
lateral boundaries, if the model has ones) is treated as an ideal constraint. This leads
to the interpretation of normal gradient of the geopotential height at the boundary as
forces of constraint reaction. At the upper boundary both the rigid-lid and free-surface
conditions are applied in the physical space, which leads to two different models. The
rigid-lid model is artificial and it is developed to demonstrate the role of upper boundary
condition. The main model is the ”free upper boundary model” which assumes that
there is no upper boundary in the physical space at all. Corresponding free boundary
condition is formulated in the p-space using a special solution-continuation technique.
The deduced condition is a generalization of the "radiative” boundary condition.

In Chapter Six ideas of previous Chapters are applied for the creation of a simple
adiabatic numerical model in pressure coordinates. As the departure point the numerical
model NH3D, elaborated by Miranda (1990), is used. Besides the boundary condition
and initialization revision the main modification is that the domain, occupied by the
atmosphere in the p-space, is the fixed one during integration. Numerical experiments
with the new version and comparison of results with analytical solutions exhibit its good
precision and numerical stability. Along with the results of previous chapters this leads
to the general conclusion, that the proposed pressure-space models are useful tools in
numerical applications and have good perspective to be employed in the future forecast
and general circulation models of the atmosphere.

As this investigation represents the first attempt to describe nonhydrostatic acoustically
filtered dynamics in pressure-space in an unified framework on the base of general non-
hydrostatic p-space equations, the presented material is original in major part and is
published first here.

An initial heading of the present investigation, which was carried out as the Grant
NO. 172 under the sponsorship of the Estonian Science Foundation, was ”Dynamic
model of local atmospheric circulation for mesoscale processes and air pollution study”.
The developed numerical model NHAD, described in the last Chapter, represents the
realization of this heading. Still, the actual main trend of the realized investigation
turned out to be in the area of pressure-space dynamic foundation rather than in the
field of elaboration of specific applications, therefore the final heading was corrected to
be more concordant with the actual content.



CHAPTER ONE

Basic Equations in Pressure Coordinates

1.1. Height of the isobaric surface.

In general case the pressure field p(x,y, z) consists of hydrostatic main component, ps,
and a NH correction, p,: p = ps + pn. Correspondingly, in pressure coordinates (x, p),

x = (z, y), the height of an isobaric surface z(x, p, t) presents in the similar way
(Fig. 1.1):
z(x, p, t) = zs(x, p, t) + zn(x, p, t), (la)
R [0 7(x, o, ¢
Zs(xv b, t) = h(X) + _/ wdp/ . (lb)
9/, p

Here h(x, p, t) is the height of the ground above sea—level, py(x, t) represents the
atmospheric pressure field at the ground and T'(x, p, t) is the temperature. The hy-
drostatic height component z; corresponds to the height, which the particle will have,
if the pressure inside that particle is entirely determined by hydrostatic effect, i.e., by
the weight of the atmospheric column above that particle. The remaining part of the
height, z,, is defined as the difference of actual and hydrostatic heights of the parti-
cle. The independent height—coordinate, p, corresponds to the actual pressure in the
particle. Such pressure interpretation performs the most fundamental difference of this
model from models of Laprise 1992, with the hydrostatic pressure in the role of vertical
coordinate, and Dudhia 1993, with the undisturbed background pressure as the vertical
coordinate.

— Z(X!p)
z == ZS(X,p) o
—2(p) Fig. 1.1
Components of the isobaric
-7 height in the NH atmosphere.
Zp)
Z(x,p)
Iovel
X




The correction term z, is entirely caused by the nonhydrostatic pressure deviation p,,.
Because |z,| << zs; and |p,| << p in the atmosphere, the nonhydrostatic pressure
and height corrections are related as (Fig. 1.2)

Zn Pn
= 2 2
H P ( )

where H = RT/g is the height scale of the atmosphere. For processes with infinites-
imal amplitudes (which can be described in the framework of linearized models) this
approximate equality may be replaced by the exact one

Zn Pn /
_— = — 2
H D ( )

These formulae are useful for comparison of different pressure— and height—coordinate
models, as they permit to express pressure—forces via gradients of the geopotential height
and vice versa.

z _¢(va):o .
\ ——- d(zp)=0 Fig. 1.2

Mlustration of formula(2).
¢ and s are the implicit
actual and hydrostatic re-

lationships between z and p
for fixed t and x.

Z(p)
z(p)

Ps(2 P2 P

1.2. General NH equations in p—coordinates.

If the pressure field is a monotone function of height,

op

— <0

0z ’
then it is possible to transform the dynamic equations of the atmosphere from Carte-
sian coordinates {x, y, z, t} to pressure coordinates {z, y, p, t}, disregarding the
hydrostatic assumption. Such transformation can be performed, using the curvilinear
coordinate transformation and covariant differencing technique (R66m 1989, 1990). The
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resulting complete, nonfiltered, nonhydrostatic p—coordinate equations can be presented
after minor simplification of the Coriolis force in the form:

d
d_j = w (3a)
dw
—— — q(1 = 3b
d
nd—::—sz—nfixv, (3¢)
dT RTw
g , 3d
" i Q (3d)
dn
il n(V-v + 0w/0p) , (3e)
p 0z
_ _boz 3
= - fa (35)
Here v. = (u,v) and w are horizontal wind vector and vertical wind respectively,
w = dp/dt presents the omega—velocity of an air particle, n is the normalized, nondi-

mensional density in pressure coordinates, which is related to the ordinary air density
as:
nop = gpoz

() is the thermal forcing (heat source divided by c¢,), po presents the ground surface
pressure, z represents the vertical unit vector, and the total (or Lagrangian) derivative
is defined as

dt ot op

1.3. Boundary conditions

Conditions at the lateral boundaries are the same as in Cartesian coordinate models and
do not present special interest in the context of the present study. The main differences
with the ordinary model occur in the ”horizontal” conditions at the top and at the
bottom. The domain occupied by the atmosphere is

0 < p <po(x, t) (4a)

where the lower boundary surface in the p—space, pg, is not fixed, but evolves in accor-
dance with the equation
dpo
dt
which expresses the condition that the lower boundary consists all the time of the same
air particles. Thus, domain is varying in time and (4b) presents an additional evolutional
(prognostic) equation which must be integrated simultaneously with the system (3).

= Wpo (4b)
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Boundary conditions at p = po(x, t) and p = 0 are
zlpe = h(x), (5a)

w|0 = 0. (5b)

The first assumes the existence of rigid underlying surface in the ordinary physical space.
The second defines a fixed boundary in the p—space at the level p = 0, this boundary
condition forbids the mass outflow to the cosmos in the physical space.

Relations (4) and (5) define the prime boundary conditions. Other conditions at bound-
aries which arise in the course of particular problem formulation, model simplification
and discretization must be concordant with the primary one. The most common sec-
ondary condition, which will be employed further at mountain-wave simulation and in
numerical schemes, is the slipping condition at the lower boundary, which follows at the
differencing of (5a) in time:

w|p0 = Vpo -Vh . (5(1/)

If a continuous medium has a bounding surface, which moves in accordance with a
differential equation governed by the state of that medium, this surface is called free.
In this respect po(x, t) describes a free boundary and in the p—space the atmosphere
is a continuous medium with free surface at p = pg. At the same time, at the level
p = 0 there exists a rigid lid in the p-space in accordance with (5b). The situation
in the p-space is just opposite with conditions in the ordinary Cartesian space, where
atmosphere has the rigid boundary at the bottom (condition (5a)), but has no definite
boundary at the top.

1.4. Diagnostic equation for w. Time—order lowering

Model (3) presents a closed system consisting of seven equations for seven fields z, u,
v, w, T, n and w. All quantities here, except w, are prognostic fields, and system
(3) includes a single diagnostic equation (3f). This equation must be used for the
determination of the diagnostic field w. As (3f) does not include w explicitly, the only
way to proceed is to differentiate (3f) by ¢ and eliminate time derivatives by the help of
other equations in system (3). The result is an explicit equation for w

w Q P ow ov
ap T - <3p 3pvz> V-v , (6)
where
Cy
a = —.
Cp

In equation (6) the quantity on the right hand side, denoted as D, represents the diver-
gence of the three—dimensional velocity {u, v, w} in the common Cartesian space:

<8u> (81}) <8w>
D = |+ + | + | = :
ox Yz oy o 0z vy
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Thus, (6) is the general tendency equation for the thermodynamic pressure field, appear-
ing in the isobaric coordinate space as a diagnostic relationship. It is a thermodynamic
definition for w and presents a standard form of the thermodynamic equation, written
in terms of dp/dt upon application of the continuity equation and the perfect gas law.
As the pressure plays the key-role in acoustic adjustment, (6) will be an equation of
primary significance for further treatment.

Now, after the diagnostic equation for w has been derived, the initial relationship for its
derivation, equation (3f), has played its role, and, in principal plane, it may be dropped
from further treatment. But there exists an alternative possibility — we can employ
diagnostic equation (3f) for the determination of one of three dependent variables (z,
n, T'), and drop the evolutional equation for that variable (ie. (3a), (3e) or (3d)) from
consideration. This means, we can go ahead with three different sets of equations, which
differ by appearance but are all equivalent to each other. As a result of modification,
the time—order of the final model will be five, ie., it will be by one step smaller than in
the initial equations (3). The reduced in this way model we shall use in point 3.4.

1.5. The primitive—equation asymptotic

For movements with small vertical accelerations, dw/dt — 0,
z = zg, n — 1, (7)

where z; satisfies the hydrostatic condition (equivalent to definition (1b))

% - 2 (¥

dp D

Equations (3) transform at this limit to the ordinary HS model. Formally the HS can
be reached, substituting everywhere in (3) n by 1 and z by z,. The continuity equation
(3e) transforms at the hydrostatic limit to the condition of the incompressibility,

V-v + 0w/dp = 0. (9)
The hydrostatic analogue for (6) is

w
p T H

(07

Q p [ Ows ov
= V) - Vv, 1
<8p 8sz> V-v (10)

It can be deduced from the HSM in the same way which was used for the deduction of
(6), if the definition
ws = dzg/dt (11)

is assumed for the vertical velocity at hydrostatic limit. Note that (10) is very close
in appearance to the original nonhydrostatic version (6) and can be deduced from (6),
using limit (7). Though the HSM does not need equation (10), this diagnostic relation
may be used for the determination of the hydrostatic vertical velocity, defined by (11).
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Due to the assumption of the incompressibility the HSM filters acoustic waves. An
exception is presented by the external, or surface waves, which are supported when the
pressure at the lower boundary evolves according to nonbalanced equation (4b).

1.6. The Miller—-Pearce model

Another model, which filters the sound waves, is the MPM. The MPM was alternatively
derived from the Hamilton principle by Salmon and Smith 1994. Here we will outline
the deduction of the MPM from the general NH model (3).

The MPM grounds on two fundamental approximations, which are introduced into the
initial model (3). The first one is the incompressibility approximation, n = 1, which
is used everywhere, except the right side of equation (3b). Due to this approximation,
equation (3e) transforms to the continuity relation for incompressible fluid :

V-v + 0w/dp = 0 (12a)

(which filters acoustic waves by the way). The another approximation stands in the
approximate presentation of the total derivative for z in (3a) as follows

This enables to reduce the initial evolutional equation (3) to the diagnostic relationship

w
w = —H—, 12b
D (12b)

where w stands for for the approximate value of vertical velocity, which is defined by
(12b) and which obviously differs (for given w = dp/dt) from both the exact definition
(3a), w, and the quasi-static definition (11), ws. In momentum equations the density
n is approximated by the unit value except the right side of (3b), where it is expressed

using (3f):
dw p 0z
R 1 s 12
i—::—sz—fixv. (12d)

Finally, the thermodynamic equation takes with the help of (12b) the form

dT g .
- - _Z . 12
% pr + Q (12e¢)

The obtained equations coincide with the MPM in its most general form (White 1989).

Differently from HSM, which has an adjusted analogue (10) for equation (6), the MPM
lacks such analogue. This occurs due to the use of the (more restrictive) approximation
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1)

(12b) instead of the "natural” assumption (11)%). This difference is the main motivation
to look further, in point 3, for acoustically filtered models which, differently from the
MPM, support the diagnostical relationship (6).

1.7. Energy conservation
The energy conservation law can be presented for (3) in the form

d 9,
nse + V(vgz) + a—p(wgz) = nc,Q (13)

where the energy density is
2 2
A w 1
e:7+7+cpT+(l—ﬁ>gz. (14)

The last term here presents additional energy, which atmosphere has due to its com-
pressibility. In both described incompressible models, the HSM and the MPM, this
term is absent. In the MPM the energy density turns to the form

V2 QI)2

€:7+7+CPT, (14/)

the HSM lacks the vertical kinetic energy in addition:

VZ

e =5 + ¢, T . (14

By the way, difference in (11) and (12b) exhibits, that the MPM is not physically
identical to the HSM at the long—wave limit.
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CHAPTER TWO

Acoustic Filtering

In this Chapter the ExM is linearized and the acoustic filtering is carried out with
the help of the least action (Hamiltonian) principle. The least action principle we
use represents the classical formulation of the mechanics of continuous medium in the
Lagrangian representation (Herivel 1955, Serrin 1959), which is in linear case close to the
variational formulation of the classical field theory (Landau and Lifchitz 1987). It should
be noted that there exists another way of variational formulation of the continuous
mechanics (which is not used in the present investigation): the symplectic formalism
which employs the Eulerian representation rather than the Lagrangian one (Salmon
1983, 1988a,b, Salmon and Smith 1994, Roulstone and Brice 1995).

In short, the variational technique is used for filtration task as follows. The nonlin-
ear ExM is linearized and the Lagrangian function is constructed for the linear model.
The filtering approximations are introduced promptly into the Lagrangian. Possible
approximations, which yield wave—filtration, are not very numerous and they are eas-
ily recognizable as they all belong to the approximations, resulting in the time—order
lowering. In turn, the filtered Lagrangian generates filtered dynamics, if one moves in
opposite direction from the Lagrangian back to the equations with the help of the least
action principle. The use of this principle guarantees in accordance with the Noether
theorem maintenance of conservation laws of the initial linearized model (assuming, of
course, that the filtered Lagrangian has the same temporal and spacial symmetry which
has the original, nonfiltered Lagrangian). As a final step, the linear filtered equations
are supplemented to a nonlinear model. As it turns out, the Lagrangian function of
the initial nonfiltered system is a most fundamental characteristic of the model and its
composing represents the central problem. After the Lagrangian is constructed, the
remaining part of solution represents a technical task.

In this chapter the Coriolis force will be neglected. This means, the treatment is re-
stricted to the mesoscale domain with horizontal scales [, < 100 km.

2.1. Linear model

Linearization of equations (1.3) according to the hydrostatic equilibrium state, charac-
terised by the mean temperature, Ty(p), yields equations
0z

w
— hadl 1
5 w+H0p, (la)
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o = —9n (1b)

88—: = —gV 2, (1c)
- Eia, (1a)
33_’”;' = — (Vv + 0w/dp), (le)
oo (22D 1)

Here 2z’ and T" and n’ represent isobaric height, temperature and density fluctuations,

H() = RT()/g, and

T, = ETO - p%
Cp dp

is the stability parameter (”stability temperature”) of the background state.
2.2. ”Horizontal” boundary conditions for linear model

The domain occupied by the atmosphere in the p—space is fixed in linear case:
0 < p <Pp(x), —00 <z, 9y < 0.

Boundary conditions at the bottom and top are

dh

w|ﬁ0 - E - V|ﬁ0'Vh’ w|0 =0. (2)

The first one represents an extrapolation to the mean lower boundary p, of exact relation
w|p, = dh/dt, which follows from (1.3a) and (1.5a), the second coincides with (1.5b).

The existence of free boundary in the p—space manifests itself in the bottom condition
for 2 at the mean lower boundary

N
25, = Ho(py)=> , (3a)
Po

where pj, represents the ground surface pressure fluctuation. For determination of py,
the linearized form of (1.4b) must be employed:

oph _ . dp,
ot Po dt

As the mean ground surface pressure p, and the ground surface height h are related

with the barometric formula
9 / h(x)  qy
R Jy TO(Z)
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(where a represents the standard sea-level pressure) and, consequently,

dpy _ _ Py dh (w)
dt Ho(py) ),
the tendency equation for the ground surface pressure fluctuation can be presented as
Ipg pw
= c ) 3b
ot Y . (85)

Equations (3) govern the lower boundary evolution in linear case and are responsible
for ground surface pressure waves.

2.3. The reduced linear system

Diagnostic equation for w can be deduced in the same way as for the nonlinear case and
the resulting expression coincides with the linearized version of the equation (6):
p Ow Q

- = - V.v+

w
o — — . 4
D H, op To )

This equation along with (1f) enable us to get from (1) a reduced set of equations which
is closed according to 2/, w, v, and T” and does not include n’ and w, though equations
for these fields, (1f) and (4), remain valid.

We introduce nondimensional fluctuative fields in place of 2’ and T":

2 T’ Tiz’
C - ) n = - . (5)
H, To ToHy

¢ presents a relative height fluctuation, scaled in Hy, 1 can be identified as the relative
fluctuation of the entropy. Namely, let us define the nondimensional entropy as the
function of the potential temperature, ©:

T a R/cp
S(@) = ln@, @ = T—a (5) 5

where T}, and a are constants (the mean temperature and pressure at the sea—level), and
let Sp(z) presents the background hydrostatic value of S as a function of the geometric
height:

So(z) = S[Op(2)] .

We define the relative entropy as a difference in its actual and background values at the
same pressure level:

S(X7 D, t) = S[@(X7 D, t)] - SO[Z(X7 b, t)] = QO[@(X, D, t)v Z(X, b, t)] - (6)

The defined in this way s is a known functional ¢(©, z) of the potential temperature
and height of the particle. This relative entropy turns zero for background conditions:

So(P) = 8|®0(p),zo(p) = 80[@0(10),20(1?)] =0,
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and for small temperature and height perturbations it coincides with the defined by (5)

field n:
S/ — a_@ @/ + a_@ Zl —
99 ) 0, 2 0%z ) 0, 2

@l % /o T/ Tl /

09 * dzoz Ty ToHoz ’
because dS()/dZ() = TZ/(T()H())

Thus, n represents in linearized model, like s in the nonlinear case, the difference between
actual entropy of an air particle and the value which the air particle would have at the
same height in the background atmosphere.

Using new field variables, the reduced minimal linear model can be presented as

oc 1 9, Q
aE—H(](a%—pap)w Vv+TO, (7a)
on N3w Q
a - g + T, (7b)
ow 0
o g [(a—pp - CY)C + 77] ; (7c)
0
5 = — 9V ¢, (7d)

where N = \/RT;/Hy represents the Vaisala frequency.

Note that the exact nonlinear equation for the relative entropy is

d
o =~ Si2w + % (70)

where S, = dSp/dz. Because this derivative can be approximated for small fluctuations
of z as
T,  N?

Sh(e) ~ Sy(a) = g = -

(7e)

equation (7b) represents the linearized version of equation (7b’).
2.4. Wave equations

It is easy to get two second order equations for ¢ and 7, differentiating (7a) and (7b)
according to the time and eliminating the first order time derivatives with the help of
(7c) and (7d):

1 02 9 9 0
7 (o =) = (g = o) (G )<= (g =) - @
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1)

1 92 9,
<W@+1>n+<a—pp—a>g“:€2n, (8())

where R 9Q RTy 9Q
- _ _ _ v — 0 _v
Qo= @ = g
ca = +/RTp/a is the sound speed!) and (a%p + )¢, where ¢ is an arbitrary

function, is the short notation for a%(pqﬁ) + a¢. These equations can be employed
for the modeling of linear wave processes in p—coordinate presentation in a general,
nonfiltered case.

2.5. The Lagrangian function and energy

The significance of wave equations for the present study is that they have a Lagrangian
function £ and can be deduced with the help of the least action (or Hamiltonian)
principle

t1
0S = 0 dt/ dzdydp L = 0 for optional d((x, p, t), on(x, p, t),
to Q

as extremes of the Lagrangian action S. The Lagrangian L is supposed to be a function
of field variables (, n and their derivatives:

‘C - ‘C(C 7Ct7 C$7 Cyv Cpa 77 777t7 77m7 77y7 77p) 9

where (; = 0(/0t,(, = 0(/0x, etc. are short notations for partial derivatives. Action
S is varied in variations 6((x, p, t), dn(x, p, t), which turn zero at the boundaries of the
domain €2 and at the initial and final moments, ¢ty and ¢;. The condition of extremity
0S = 0 for optional 6¢ and 7 yields Lagrangian equations

o 90L 99L 00L 90L _
¢  0tdG  dxdl,  Oyag,  Ipag
0L Q0 0OL 9 L o oL o oL
on  Otom,  Oxdn,  Oydn,  Opon,

which must coincide with the wave equations (8). For that it is sufficient to choose the
Lagrangian function £ in the form

L=T-V, (9a)

Following the traditional way of wave-equation representations we have chosen the
sound speed ¢, for the prime acoustic characteristic of the atmosphere and the Vaisala
frequency N for the prime characteristic of the buoyancy. Though most relevant in
physical context, such choice is not the best from the point of view of the symmetry
(which is always important in Lagrangian formalism). For the maximum symmetry
either the characteristic frequency N, = ¢,/Hy instead of ¢4, or the characteristic
buoyancy—wave phase—speed ¢; = \/RT; = NH, instead of N, should be used.
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where the generalized kinetic and potential energy densities, 7 and V, are

_1 HO 2 1 ’I]tz

T-g(g@ +5(%) (99)
y = Yver + L(2 2 )
—5(00 +5{<8—pp—04>§+77} — CQ¢ — 1nQy . (9¢)

The purpose of the described Lagrangian formalism is to provide us with necessary tools
for the optimal acoustic filtering. On the one hand, the existence of the Lagrangian
guarantees energy conservation for the linearized system. On the other hand, with the
help of the Lagrangian formalism it is easy to get filtered versions of the model which are
still energy—conserving. The energy in linear system differs from the nonlinear model
energy, (1.14). For the linear equations of motion (7) the total energy is

E, = / e; dedydp
1%

with the energy density

1

2H2
elEF(C,’I],V,’w):_<g .

2
Ca

g2
N2

5 ¢+ n”? + v: + w2> . (10)
The first two terms present potential energy which air particle has due to the isobaric
height and temperature fluctuations, the remaining two terms are kinetic energy.

Alternatively, the induced by the linear model (7) wave system (8) possesses according
to the Noether theorem wave energy

E, = /’Hda:dydp,
14

with the density
oL oL
H = (— = L = V. 10’

Ct3Ct +nt3€t T + (107)
Both E; and E, are conservative, if the system is isolated from external forcing, i.e., if
@ = 0. Introduced two kinds of energies F; and E are different but still close related.
In conservative case, () = 0, consequent densities ¢; and H are bound with the help of
the formula

gz'H = F(Ctv Nty Vi, wt) ’

where F' is defined according to (10). This relationship is easy to check, expressing the
generalized potential energy density, V, with the help of equations (7c) and (7d) as the
function of v and w. As a consequence, and this presents a matter of primary importance
for the present study, the conservation of E, guarantees always the conservation of Fj,
too.
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The least action principle for wave equations is formulated here in its first, Lagrangian
form. It uses the Lagrangian function, £, as the prime field and results in two Lagrangian
equations (8), which are both second order in time. Alternatively, there exists (see
Salmon 1983, for example) another, Hamiltonian formulation of the problem, which in
that formulation is called the Hamiltonian principle. The Hamiltonian formulation uses
H as the prime function and results in four first order equations. The Hamiltonian
equations may turn useful for some applications. For that reason they are presented at
the end of this chapter, in section 2.11.

2.6 Acoustic filtering in Lagrangian

For slow atmospheric movements with small Mach number,
F = U?/ << 1,

where U is the characteristic amplitude of velocity, it is reasonable to filter the model
acoustically, i.e. to simplify equations in the way they do not include acoustic—wave so-
lutions anymore, though still maintain other waves and slow movements. Essentially the
filtering consists of lowering the time order of the system by two. The filtering task can
be solved in a most straightforward manner using the Lagrangian formalism. The main
idea is that filtering (ie. time—order reduction) should be carried out in the Lagrangian
function, which must be approximated in the way the resulting wave equations do not
include acoustic-wave solutions. As the approximate model has still the Lagrangian
function, it supports the energy conservation law. The filtered wave equations with the
conserving wave energy are the main output of the filtered Lagrangian function. It is
easy (though not trivial) to establish simplifications which should be introduced into
the initial linear model (7) to get the filtered linear system which originates these wave
equations. Finally, it is easy to generalize the linear filtered model to the nonlinear one.

Approximation ¢, — oco0. This model has been introduced by Room and Ulejoe
(1996), here it will be presented in an extended version. As the main assumption it
employs the approximation that the sound speed can be treated as infinitely large in
comparison with slow advective and convective flows.

The physical basis for filtering can be deduced from the scale analysis of the Lagrangian
(9a). If the Mach number is small, then the first term in 7 is small in comparison with
two first terms in V in all spatial scales and, thus, in the first approximation it can be
neglected. The resulting expression for the Lagrangian function is:

o 2
£ = %{%(m)z - mve? - (g - a) <+l } Qe+ @y

2.7. Filtered wave equations

Filtered wave equations, corresponding to this Lagrangian, can be deduced directly from
(8) with the help of the formal passage ¢, — oo in equation (8a):

5 () (e (oo o
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1 02 0
- 1 = — | =—p — ) 11b
<N23t2+ >77 <app a><+Qn (11b)
As a result, the time order of the system reduces by two and two solutions of the four
of initial model are filtered. The eliminated in this way solutions belong to acoustic
modes, as equations (11) do not include sound speed, c¢,, anymore. At the same time,

buoyancy waves are maintained, as the wave equation, "responsible” for their existence,
(11b), maintains its initial appearance and still includes the Viisélé frequency N.

The main consequence of the filtering is that the wave equation (8a) is replaced by the
Poisson equation in ¢, (11a). This equation defines ( as a quasi-static field which is
determined by the forcing on the right side of the equation. The name ”quasi-static” is
justified, because the solution ¢ of equation (11a) coincides for stationary forcing with
the exact static (time-independent) solution of the exact nonfiltered equations (8) in
stationary conditions. For nonstationary conditions the quasi-static ( depends on time
parametrically, via @ and n (and, perhaps, via nonstationary boundary conditions). In
general, the quasi-static ( is different from the hydrostatic height fluctuation (s, which
corresponds to the fluctuative part of the hydrostatic height, (1b), and which represents
a solution of the hydrostatic equation. The hydrostatic equation reads in terms of n, ¢
(instead of common 7", 2'):

(20 e -

As it can be seen, the solution ((s, 7) of this equation is a solution of system (11) at
the limit of infinitely slow processes (9?1/0t> — 0, 0Q/0t — 0) with sufficiently large
horizontal scales (V2¢ — 0).

The described filtering scheme is optimal in the sense it enables exact solutions for
infinitely slow processes. For finite speed processes the filtered model yields approximate
solutions, of course. Meanwhile, these solutions can be further improved, if needed, and
the filtering scheme shows a natural way for the improvement. Let us write (11a) as a

linear operator equation for ¢
PC = - A )

where the source term A is known function of  and (). Then the nonfiltered equation
(8a) can be represented as

A 82C
P = - A € — .
¢ T
The last term on the right hand side can be treated for slow processes as a perturbation
with the small perturbation parameter e = HZ/c2, and the solution of this equation

a’
can be presented as a series

¢ =2C + G+ &+ ..

where (; ~ €. The first term (, represents a solution of the filtered equation (11a).
Other members of the series are successive correction terms, which can be calculated
from equations

9%Ci1

PCz = £ 3t2 , 0

= 1,2,....
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Most meaningful is the first correction term, (;, which can be interpreted as an acoustic
component of the motion, generated by slow dynamics.

2.8. The linear filtered dynamics

The linear model, corresponding to the filtered wave equations (11), can be derived from
(7) substituting equation (7a) by the balance condition

1 0 Q
- j— . _ = . 1
T <a+p8p>w V-v + T, 0 (13)

This relation presents a diagnostic equation for (. The explicit equation for ¢ can be
obtained, differentiating (13) by ¢. This results in the Poisson equation (11a). After this
equation for C is employed, relation (13) can be used instead of (7¢) for the determination
of the vertical wind w.

As (13) is deduced from the initial linearized system with the help of the passage 90(/0t
— 0, it can be treated as a consequence of the equation (4) and

w
Hy

(14)

w

.
Equations (7b) — (7d) along with diagnostic relations (13) and (14) represent the closed
linear acoustically filtered system of equations, which is most close to initial nonfil-

tered linear model and which yields filtered wave—equations (11). Therefore, this set of
equations will be a basis for nonlinear generalization.

The energy density filtered model (7b) — (7d), (13), (14) is
1(g , 2 2
In comparison with the nonfiltered version (10) it lacks the term, proportional to (2.

2.9. Compressibility in filtered model

Relation (14) presents the adjusted version of equation (1a) and coincides with the MPM
equation (12b). That means, the vertical velocity w is, like in the MPM, an approxi-
mated field. Still, differently from the MPM, our model preserves the thermodynamic
relationship for w, (4). This is achieved due to the maintenance of the compressibility.
For the three-dimensional divergence of velocity in the p—space,

ow
D =V. — 16
from (4) and (14) a diagnostic equation follows
N2 Q
D=—"w+ 2. 17
g To (17)



The right hand term has the amplitude 10=7 — 10=* s~!. Thus, D is really a small
term. Nevertheless, it differs from the exact zero and the medium is compressible.
Thus, the developed model can be called as the ”Elastic Filtered Model” (EFM). As
we will be convinced in the section 4, for many cases of importance this compressibility
is dynamically unsubstantial, and the medium can be treated with high efficiency as
incompressible. Nevertheless, there exist situations (various short-scale flows), where
incompressibility assumption in the p-space yields distortions of modelled dynamics in
comparison with the reality.

Comparison of equation (7b) with (16), (17) exhibits that 7 satisfies equation

o _ gy M _,
ot op

Because the density fluctuation, n’, satisfies the continuity equation (1e) (this is a matter
of the definition of continuous medium), the sum 7y = n’ + 7 presents a local invariant,
which is constant in time at every point of the medium. This detailed balance of entropy
and density fluctuations is that mechanism, which eliminates the acoustic waves.

2.10. Nonlinear filtered model

Because the linear filtered model is compressible in the p—space, there is no deep sense
to try to build incompressible nonlinear extensions to it.

If the compressibility is supported, then the nonlinear generalization of the linear model
(7b) — (7d), (13), (14) can be obtained in straightforward manner, complementing the
system with the nonlinear continuity equation and substituting everywhere the local
time derivative 0/0t by the construct nd/dt. To maintain the conservation law for the
energy density in quadratic form (15) it is reasonable, before generalization of local
time derivative to the Lagrangian one, to rewrite the linear entropy—equation (7b) in
the more symmetric way:

n
4 - _ 0 LA 1
at N 70t N (18)
The resulting model is:
dn N Q
-1 - _ 1
"HEN 7 TN, (19a)
dw 0 2!
_ Y, _ el 19b
n— g{(app a>H0 +n] , (19b)
dv , .
n— = —gV 2z — nfzxv, (19¢)
dt
dn Ow
b . =) = 19d
dt+n(Vv+ap> 0, (19d)
1 0 Q
_ il _ . =~ =0 19
H0<a+pap>w Vv+T0 , (19e¢)



w w

— = - — . 19f

Hy D (19)
We have restored in the nonlinear version the Coriolis force and turned back to the
height fluctuation, 2.

The entropy equation (19a) includes in nonlinear case an additional term, which is
introduced especially for the energy conservation. To demonstrate that, one can rewrite
(19a) as

dn N? dln N Q

_ N A 194’
g gw+ndzonw+nT0 (19a')

Comparison of this equation with the exact one, (7b’), exhibits, that beside the lin-
earized definition for entropy (7 is used instead of s), and the approximation (7e), an
additional approximation is made by introduction of the second term onto the right
hand side of equation (19a’). The only purpose of this term is to maintain the en-
ergy conservation law for the density (15). As it includes the product w - 7, this term
is second—order in dependent variables and thus, it is small in slow processes in com-
parison with the first term on right hand side, which is linear in perturbation terms.
Additionally, for many realistic situations the vertical derivative dN/dz is small, and
the discussed correction term represents a third order small quantity (By the way, it
turns zero for models with constant N). Another possibility to overcome difficulties
with energy—conservation is to maintain the filtered entropy equation in its initial lin-
earized form (18). That variant was discussed in R66m and Ulejoe, 1996. Because they
were aware of the exact equation for the relative entropy, (7b’), they lack a possibility
to estimate accuracy of different approximations. The present model (19) presents as a
more realistic version because it includes the entropy advection.

It is possible to substitute the horizontally homogeneous background temperature Tp(p)
by the nonhomogeneous, time-dependent field Ts(x, p, t) (corresponding to some re-
alistic synoptical situation, for instance) along with the simultaneous substitutions of
Hy(p), N(p) by the nonhomogeneous parameters Hy(x, p, t) and Ns(x, p, t).

2.11. Hamiltonian principle for linear model

Generalized momenta for Lagrangian (9) are

W_%_al_igc Lo 9L _oT 1
<_3Ct_3Ct_Cit7 n_aﬁt_aﬁt_sz'

Using these definitions, kinetic energy (9b) can be presented as a function of m¢, m,

1022 12 o
T_EH—%Wc+§N7Tn

and the Hamiltonian (10’) turns to a function of ¢, n, m¢, m,.
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The Hamiltonian principle is a variational extremum condition in the form
t1
) dt/ daedydp (¢me + mmyy — H) = 0, V¢, o, dne, omy .
to 1%

where variations of all fields must be zero at initial and final moments and variations
of ¢, n must be zero at the boundary of the domain V. Solutions of this extremum
problem are the Hamiltonian equations

o oM 9 O

ot ome’ ot omy,

ome _ 0 Omy - OH
oo s¢ ot  on’
Because
H T _ e M 0T e
ome ome _Hgg’ oy Omy "
OH oV

0 0
% =5 = - mve (arog) (G- e)era] - e

OH oV 0
= <a_pp_a>g+n_Qn7

E s % s
an explicit form of Hamiltonian equations is

a _ a O

= - = 2
ot =~ e o - N
e (o )8 o] e
on 0
8—;:—<8—pp—a>C—77+Qn-

Elimination of generalized momenta from the obtained equations turns them to the

Lagrangian equations (8). An acoustically filtered variant follows, if 0¢/0t and w; are
put to zero.
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2.12. Model with nonzero adjustment. It is possible to express 2’ as a sum of
hydrostatic fluctuation z, and nonhydrostatic component z, (see (1.1a)):

/

2= 2L+ oz, (20a)
where the hydrostatic component satisfies the quasi-static equation

p 0z, N T’
Hy Op To

~ 0. (200)

This expansion generates analogous representations for the field variables ( and 7:

C = Cs + Cnv n="n + M, (21(1)
zl T' T; 2.
G = 7 Ns = =+ — 77 > (21b)
Hy To ToHg
Zn Tz,
n = Ir n — = : 21
¢ 7o ! ToIT, (21c)

Among the defined four field variables (s, (., ns and n,, only two are functionally
independent. As independent variables (s and (,, can be chosen, in which case

0 T;
Ns = — <a_pp - a) Cs sy — — ?Ogn . (21d)

2.12.1. Basic approximations. For the long—wave domain, [, >> Hj, the atmo-
sphere is with good accuracy in hydrostatic balance and (,, ~ 0. This means, ¢ ~ (s,
and n ~ ns. As a consequence, in this domain the tendencies (; and 7, are adjusted to
the hydrostatic values (g, ns¢ as well. We hypothesise that these adjustments of time
derivatives can be extended into the mesoscale domain:

¢ 9¢ an _ Ons _ o (o
o S e w S T T a\gpt T )% (22)

The first approximation, (; ~ (s, represents a modification of the main filtering as-
sumption of the previous model’). As the first term in the Lagrangian (23b) is always
small, this modification does not cause a large variation in the filtered model. The main
modification is a consequence of the second approximation 7, ~ ng. To justify this
approximation we note that in the short—scale limit the relative pressure fluctuations
are small in comparison with the relative temperature fluctuations: |dp/p| << |T'/Ty].
Thus,

| = (Ti/To)lCnl ~ (T3/To)|op/pl << [T"/To| ~ Ins|.

1) Because (; is in general different from (y, the approximation presented here differs for
¢ from the solution (, + (y +..., discussed in section 2.7.
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2.12.2. Lagrangian function and wave equations. The use of (22) in (23) yields
an approximate Lagrangian which can be expressed as a functional of (5 and (,, as

1 (Hy, \? 1 (9 ?
£‘5{<E<“> v (g - a)e] -

- VG + ) - (g - ) cnr} pOMG 09 (g3

gT; Op Ot
where
N
o = « T,
The corresponding wave equations are
H3V?(Cs + Co) + (o + 0 3 ¢ 0, (24a)
0 s n pap a n —
0? 0 1 0 Hg 202
BTl [(a + p3_p> N2 (3_pp ) - —2} HyV=((s + Cn) =
__Hod (poQ
B g Op (T 8t> ' (245)

In appearance these equations are quite different from the exact ones, (22), and from
the wave equations ofthe previous model, (11). As will be demonstrated in the next
section, the dynamic model which corresponds to system (24) is the MPM.

2.12.3. Filtered nonlinear hydrodynamics

It is easy to prove the identities
o + 2 1 0 e ig = | H 2p—ng
pap 3pp CCQL Y = Oﬁpc% ap 0¥,
0 o), = 2 O0zn
o7 " e op

where ¢ is any function. Equations (24) can be transformed with the help of these
relations to the equivalent system

o ( p? 0z
2 (2 - — =) = 24a’
Ve (z, + 2zn) +8p<H§3p> 0, (24a')
0% 0 (p? 0z o [ p? 0z, 10 (poQ ,
o E0) o mas) = —e (o) - ew)
ot2 0p \ ¢ Op dp \ H§ Op gOop \T; Ot
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It is clear that the Poisson equation in z,, (24a’), is a consequence of the balance
condition

0 U,
YV — —p= = 2
V-v 8ppH0 0, (25a)

supposing the linear momentum equations are

ow p 0z,
= g—" 2
at ~ YH, op (250)
ov ,
AN ) 2
V= gVt ) (250)

The remaining equation, (24b’), is satisfied if the temperature equation has the form

0 w
—T7 = —T,— . 25d
ot m, e (25d)

Finally, comparison of this equation and the exact linear temperature equation, (15d),
shows that w and w are related according to equation
w w

— = — — . 25e
Hy b ( )

The received model (25) represents the linearized version of the MPM. Thus, the filtered
Lagrangian (23) yields the nonlinear MPM. In turn, wave equations (24) along with the
Lagrangian (23) follow from the MPM at the linear limit.
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CHAPTER THREFE

Linear Shear Flow

In previous chapter linearized models where treated, where linearization was performed
according to the resting background state without Coriolis force. For different applica-
tions it is highly recommended to get linearizations according to some sounding profile
which represents a uniform flow and include the Coriolis term into linear version. In
this chapter we will develop such linearizations. The material will represent a link be-
tween ideas of the previous chapter and the next one, where the obtained in this chapter
results will be used for numerical modeling and model evaluation.

In the first section general linear shear flow model in pressure coordinate framework
is presented. This general treatment is useful, as all particular shear-flow models can
be easily derived from this one. Special efforts are undertaken to get wave equations
which possess Lagrangian. The situation is a little complicated with the presence of the
Coriolis force. Due to this complication, the trivial local invariant of linear models in
Chapter 1, the non-divergent horizontal flow v, = V x1), which enabled the time-order
reduction to the fourth order, must be replaced by the more general local invariant —
the linearized potential vorticity.

In Section 3.3 general model is simplified to the inertial background flow with a wind
profile, depending on the height only. These equations will present special interest for
stability problems of different kind.

Finally, the maximum simplified model equations with the uniform height-independent
background wind are described in 3.4 and 3.5. background flow is presented

3.1. Linearization according to stationary shear flow. General case

Up to now our treatment included the simplest resting background in full hydrostatic
equilibrium. Here we will study situations, where medium flows, for instance, over
smooth low orography which causes small perturbations in that medium.

The sounding state of the atmosphere is as follows:

z = ZO(y7p) ) T = TO(y7p) y V. = iU(y7p) , W = 07 n =1 ) (1)
9z Hoy(y,p) 0z f(y)
_ = — , = ——U , . 2
9 ) oy p (y,p) (2)

This is a stationary regime, which satisfies exact equations. If there exist small ad-
ditional perturbations in the atmosphere (which will be denoted with the prime), the
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complete fields are
2 =20 + 7, T =Ty +T, V=3%U+v, w=uw, n=1+n",

d & . d 0 o 9
- T w T wm Vg A= VV e (3)

Linearization of the complete equations (1.3) according to perturbations yields equations

TGy o
oy (40)
dc‘l]_t":_gvz'—fzxv—ﬁ<vy%—g+w%—g>, (4¢)
ey )

dg;" = (Vv + w/dp), (4e)

W o= - <§0%—i + %) . (4f)

As we can see, equations include terms which describe advection of the perturbation
wields by the background flow.

Material derivative % commutates with all background fields U, Ty, 2o, f, but it is not
commutable with the differential operators a% and a%’ except special cases where U is

not a function of the consequent coordinate y or p. This non-computability must be
taken into account at derivation of the diagnostical equation for w:

!/
QL pOw o P O%Oy  p U Q

» ~ Hoop Ho oy op | Hoop oz | Ty (5)

Again, this equation, deduced from the linear system (4), coincides with the linearized
version of relation (1.6).

The reduced linearized model for n, (, v, w reads

d1C . 1 0 320 1 3T() Q
a—> = T (oz + p3p> (w Uy 3y> V-v vyTO oy + T, (6a)
dop _  N? w _ . 2% o L 970 Q (6b)
dt g Y oy YTy Oy Ty’



e

oU oU
= —gH)V( — fzxv — X — + w1 . d
gH\V ( zZ X x(vy ” w ) (6 )

doV
dt
where the notation is used

di  do p oU 0
At~ dt +a3p3$' (6e)

It is worth to underline onse more that derived linear equations represent the exact
adiabatic model in the p—space, which include all the spectrum of possible motions
of small amplitude in a uniform steady background flow. They can be employed, for
instance, for the investigation of stability problems at all spatial and temporal scales.

Notable difference in comparison with the resting background model is the material
derivative d;/dt on the left hand side in (6a). This derivative may become large, if
the vertical gradient of U makes large. Other additional terms in 1 and { equations
which include derivatives of zy and T in y are not so important, as usually horizontal
gradients are much smaller in the atmosphere than vertical gradients. An important
problem with these derivatives is that they are to be omitted, if one wants to introduce
the EFM. It is clear that this is justified only, if all referred terms are moderate.

To get the corresponding to (6) wave equations, we deduce from (6d) equations for
divergence and vorticity

D=V-v, Q =12z (Vxv), (7)

acting on (6d) with V- and z- (Vx ) :

doD _ 2 _ _ 00U 0woU
Ao, oU 9 oU o ( U
. <f 3y>D "y <f 3y> T (w 310) - (8

The last equation coincides (without the last term on the right hand side) with the
linearized version of the shallow water model absolute vorticity equation

a0
T PDQ=0,0=7F +aVxv) =f+Q.

Let us introduce the potential vorticity

_ fg (0 U
J——Qr+afC+F0<a—pp—a>— (9)
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as the independent dynamic field instead of relative vorticity €2,. Equations (8) read in
terms of D, J as

oD o 000U 0wdU
dt gHV"G P 2 Jr Oy ox Op *
o Ty
f[—J+OéfC+f<a—ppf_—1>77}y (10a)
doJ U g ( oU ) U
Wt e ) e ()
oUu o0 T' Jd [ p 0Ty
f{pa—pa—mi ~ [ﬁ- (a—y - Q)]} ' (105

Now we are ready to perform the final step and to deduce wave equations for n and ¢
from (6a) — (6d). For that we act on (6a) and (6b with dy/d¢ and eliminate dow/dt ja
doD/dt using (6¢) and (10a):

(i + PHP)¢ + ﬁ+(1_§_22>n _

&(ﬁa_Uﬁ_w _ Q9w U 3_w3_U> H0@< L pt,, 920 Ly%) _

g \(Ho Op Ox ox Oy ox Op ?dt Hy Uya—y Ty 0y
BHy R doQ Hof
P00y, — =20 20 5 11
g " g> di g (11a)
1 do 2 N N2 820 1 8T0 do’U 1 d() Q
g0 p¢ = (20 - T0 v 0% (1
[(th) n+ PG < s oy Toon) @ T Nar W
where 5
. 1dod
L =mH2(V2 - 22212 L 11
0 (V c2 dt dt 2 )’ (11c)
. 0 . 0
Pt = p— P = —p — . 11d

The deduced wave system (11) is central in many different ways. First, it represents
non-filtered dynamics and in this sense it is an exact linear model. Secondly, despite
the linearity it is quite representative in the sense it is capable of modeling different
real situations like stationary flows over complex orography, generation of instabilities
in shear flows etc. Thirdly, it is convenient for the use in filtration study. Particularly,
the EFM can be deduced from it with a minimum number of simplifications.

Model (11) includes all linear terms. In many cases horizontal shear of the background
fields can be omitted, which yield simplification. These will be treated in the next
section.
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3.2. Linearization according to quasi-inertial shear flow

The simplest model, which incorporates the Coriolis effect simultaneously with the lack
of horizontal shear of the background wind, can be presented as

f = const., Ty = To(p), z(y,p) = — §U(p)-y- (12a)

Nevertheless, in most cases the horizontal gradient 0zy9/dy is so small in comparison
with other competing terms that we can disregard it and introduce a quasi-inertial
background

f = const., Ty = To(p), 20 = 20(p) =, U = U(p) . (12b)

This background model enables, for instance, investigation of baroclinic and symmetric
instabilities in the presence of acoustic effects. Its barotropic sub-case,

f = const., To = To(p), z0 = 20(p), U = const, (12¢)

will be treated in the next sections, here we present the model (6) — (11) for background
(12b).

The reduced linear system (6a), (6b), (10b), (10a) simplifies to

a%:%<a+p%>w—D+%, (13a)
%:—N?ZerT%, (13b)

dg—:} = g{(%p — a)( + n} , (13¢)

% = —gH\V* — Z_Zaa_g + f[—J + af¢ + f(a%p% - 1)77] , (13d)
E 7t R r S 6L | R

The corresponding wave equations (11a) and (11b) have simpler right hand terms

. L . 2 Hy [ p 0w ow\ oU Rdo@Q Hyf
L + PtP~ pr(1-L ), = Ho(pdw 0w)OU EdQ Hof
( ' >C+ ( N2>n g \(Hy Oz dr ) dp g2 dit g T
(14a)
]-dO ? _ 1 doQ
~ . 1 P C =+ -+ 14
(th> L K (145)




Equations (14) represent the ExM for background (12b). The corresponding EFM can
be obtained, putting the left hand side of (13a) to zero, which in (14a) results with the
simplification L. = Ly:

T 2 2 / 2
L(] = HO (V - g) . (15)
This approximation of L (and consequently, the EFM) is valid, if
= ||l=—==—Il/IIV
e = g g/

represents a small quantity. Using estimations

d d oU 0
2|~ /L2, |22 ~ U/L, ||=2|] ~ |lp=———1|| ~ (Hy/L)-U/L
V30~ /22 NG~ U/L G~ lipG eIl ~ (Ho/L)- U/L.
€ can be evaluated with a formula
Hy U?
€ I & )

For L = 100 m, U = 10 m/s this estimate yields e ~ 0.1. Thus, for such a small spacial
scale of background fields the EFM can cause notable errors.

If one wants to maintain the accuracy of the EFM, he (she) has to use a more complicated
operator L instead of L

2
L, = H? (vZ _1dopoU 0 f_> . (15)

c2 dt a Op Ox c2
which corresponds to the approximation

doﬁ_do(do p@U@) _>d0 p8U8

dtdt — dt dt o dp Oz

dt a dp Ox

3.3. Wave equation for vertical velocity in simplest shear flow model

In the special case of the barotropic background, (12¢), and adiabatic model, @ = 0, J
turns to a local invariant

doJ
dt
Restricting the further treatment with

= 0.

J =0,

(14) turn to homogeneous closed wave equations for n and (, which are identical to
consequent equations of the model with the resting background, (2.11), except that
0/0t is changed by a more general material derivative dg/dt:

. ) £2
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1d°2+1 + P =0 (16b)
N dt 7 -
keeping in mind further numerical comparison of different filtered models in shear flow
regime, it is advantageous to deduce a single fourth order in ¢ scalar wave equation
for one dynamical field. Here we choose vertical wind speed w for that independent

dynamical variable. The equation for w can be deduced in two steps. First, action on
(16a) with P~ (1/H2)- and use of (16b) yields

1 d3 1 d3 f?
ﬁ(m@ + 1)77 + M(W@ + m n = 0, (17)
where 2 7
A 1 .1 .
— L H2 — 2 _ __0 _ 7 — P__P+
£ /Ho v c2 dt? 2’ M H?

(it is assumed here at the definition of £, that d; /dt = dy/dt). Action on equation (17)
with do/dt (an essential attribute of the barotropic model is that dop/d¢ commutates
with all operators in this equation) and use of (6b) yields

dg+N2£+ d%+f2M 0 (18)
—_— w —_— w = .

dt? dt?

The presented equations (17) and (18) correspond to the ExM. The EFM can be ob-
tained, omitting the second term in the £ definition. The error of this approximation,
e, does not exceed 1 — 2 % at the present case with constant U.

For some theoretical purpoces and practical applications it is convenient to have a equa-
tion for @ = —pw/Hy. For filtered models @ coinsides with the true omega-velocity, still,
for the exact model it represents an artificial construction. Using operator—identities

~ 1 0 T; 1 . 0 T;
P‘—s0=£<—+ >s0, —P+s0=<—— >£s0,
Hy Ho \0p  pTj Hy op  pTy/) Ho
it is straightforward to get from (18) an equation

d(ZJ 2 ~ d(ZJ 2 p° 0 A /
<E+N>£w+<@+f H_ga_gﬂ_m(p)w_o’ (18')

where

T; >2 N d(T; /pTo) |

m() = (- o

3.4. Linear MPM and HSM in simplest shear flow model
Linearization of MPM in according to the background state (2) is

dow p 02 T
= £z 7 — 19
dt g <H0 3p + T() ’ ( a)
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— 19b
ow
D — =0 19
w w
L - ¢ 19d
T 5 (19d)

to which horizontal wind equations (6d) ja (6e) are to be added.
Potential vorticity is

and it evolves according to the equation

T/
doJ _ <3PQ _9Upd ) _ 9 U (200)

1 d2 T’ p 07 1 do @
S U D e s 4 21
<N2dt2 * >T0 T Hop T Nan’ (21a)
o p? 0 2\ ol p 2\ 17 2 0w OU f
9pr 9 g LA A I S N T ST
<8pH§8p * ) zr op | Hy N2 ) T, g 0x Op g (210)

Assuming that background is (12c)a, and @ = 0, J = 0, it is easy to deduce from these
equations a scalar wave equation for T”/T), second oder in ¢:

1 d2 T ~ (1 d2 2\ 1
V=22 +1)=—+ M=+ )= =0 22
<N2dt2 * >T0 + <N2dt2 U To ’ (22)
where
v _ P09 p
B Hy 0p dp H

Equation for w follows, after acting on (22) with dg/dt, with the help of the relation

1 do T’ . w
N2dtT, g
The wanted equation is
d3 2 2 d3 2\ 1)
E—FN Vw + @-l—f Mw = 0. (23)

Obviously, (22) represents the analogue of (17) and (23) — the analogue of (18).

38



Analoque of (18’) for w (hat can be omitted in the case of the MPM) is

d3 2 2 d3 2\ p* 0
(E%-N)Vw—k E-Ff H—§3—p2w:0' (23)

Wave equation in HSM. Because this is the very standard case which is presented
in different copy-books, we reproduce the final equation for 77/Ty only

~ 1 d2 T/ R f2 T/
M—-2— V2t M=) =0 24
N2 dt? Ty * < * N2> To ’ (24)

This equation is a long-wave asymptote of (22). Thus, in the linear case there is no
need to treat the HSM as an independent model but as the long-wave asymptote of the
MPM.

3.5. Boundary conditions for vertical velocity equation

The condition for w at the ground follows from (15a’):

doh oh
Wy, = o U@a (25)

where h is the ground height above the sea level.

On the top of the atmosphere, p — 0, we employ the "radiation condition” for the sep-
aration among possible wave solutions physically relevant ones. This condition specifies
that the waves radiate ”out of the top” without reflection and there is no downward prop-
agation of wave energy in the vicinity of the upper boundary. The radiation condition
can be quantitatively formulated in the spectral space. An comprehensive discussion of
the topic can be found in the monograph by P. Baines (1995). For acoustically relaxed
models EFM and MPM the most general upper boundary condition for vertical velocity
can be deduced from the "regularity requirement”, that geopotential height fluctuation,
¢ lacks exponentially growing modes near p = 0. The regularity requirement will be
discussed in detail in Chapter Five. Here we accept without detailed proof that in linear
models the radiation condition is an consequence of the regularity requirement.

At the lateral boundaries periodic conditions will be used.
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CHAPTER FOUR

Testing of Filtration Accuracy

In this chapter the model tests are carried out. For that wave solutions of equations
(3.18) and (3.23) are compared. Equation (3.18) supplies us with exact solutions and
(for ¢, = oo) with EFM-solutions, while (3.23) yields solutions for the MPM and (in
long-wave limit) — for the HSM.

We will study waves in the model atmosphere with homogeneous stratification:
Hy = 10* m , N =102, 2-1072 57!, U = 10, 25m/s . (1)

General solution of (3.18) and (3.23) can be presented as a sum of the stationary par-
ticular solution ws with nonhomogeneous lower boundary condition (3.25) and general
nonstationary solution wy, with homogeneous lower condition (3.25):

(x, p, t) = ws(x, p) + wy(x, p, t). (2)

In this representation the nonstationary general solution, which represents propagat-
ing wave component, is not affected by the orography. In following, stationary and
nonstationary solutions are treated separately.

4.1. Propagating waves in different models

Wewill look for nonstationary waves wyin the form

—1/2
w o~ <£> sin(plnpg/p) - exp(—ikx + ivt) . (3)
Po

Substitution of this assumed solution into (3.18) or (3.13) yields dispersion relationships
between wave numbers p, k and frequency v. Solution of the dispersion relationship
with regard to p gives

= Va (4a)

where ¢ is for the ExM:

2 2 2 2
77212 / V, N* — v 2
qg = Hyk -<1 + oy — c§k2>' R — (@ = 1/2)% (4b)
for the EFM:
£\ NP - w2
q = H2K?. <1 + i) e (a — 1/2)%, (4c)



for the MPM:

N2 — 2

and for the HSM:
N2
27.2
g = Hjk* — — 1/4. (4e)
EIENE
It is instructive to complement this series with consequent formulae for the anelastic
model without Coriolis force:

N2 — 2

g = Hik*- — — 1/4, (41)

v
for the Boussinesq (shallow convection model):

N2 — 2
17212

and for the Euler linear model of incompressible laboratory fluid:

q = — HZk*. (4h)
The intrinsic frequency v, in these formulae,

ve, = v — Uk, (49)

represents the frequency which is recorded by a observer moving along with the wind.
As it can be seen, all models are simplified forms of the general model (4b).

Dimensionless vertical wave-number g determines the vertical wavelength of the wave.
Its difference from the exact one, (4a), is a good indicator of the quality of approximate
model. Results of comparison of u? = ¢ as function of v, for different horizontal scales
I, = 1/k are presented on Fig. 1.1a — 1d for parameters Hy = 10 km, N = 1072 s~ 1.
Because orography is for propagating waves irrelevant (in linear case, of course), we
can take without loss of generality v, = v. As it may be concluded from these figures,
all filtered models have notable error for very long waves, 1/k ~ 10 000 km. This
is the domain of planetary waves, where the used approximation of constant Coriolis
parameter f is not the very best choice. In more shorter scales up to 1/k = 10 km
filtered models coincide with the exact one with a good accuracy.
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In Fig. 4.2a and 4.2b are presented relative absolute errors of ¢ for the EFM and
MPM. The diagonally oriented ridge on both figures corresponds to ultimate case of
two-dimensional waves with infinite vertical wave-length, Q@ g, = 0. The error of any
approximation is large by the definition in this case. Two additional ridges parallel to
the k-axis correspond to frequencies v, = N and v, = f. The relative error of both
filtered models is large in the vicinity of these ridges as well (still, on the frequency v,
= N the error of EFM turns to exact zero). The plateau surrounded with this three
ridges corresponds to the domain kH — 0, f << v, << N. Relative error of both
approximations are large at this plateau (~ 1). The real domain of application of
filtered models for transient waves lies to the right of the ridge, ie. to waves with lower
frequencies and shorter horizontal wave-lengths. This is the domain of gravity waves.
In addition, the MPM has large error, which was documented on Fig. la already, for
kH < 102 at frequencies v, < f.

4.2. Stationary orographic waves. Sinusoidal orography

Though the studied in the previous section transient free modes are interesting in the-
oretical aspect, in real atmosphere they are rarely exited to large amplitudes and thus
represent a relatively exotic phenomenon. In numerical models they arise more often
from nonbalanced initial conditions and should be eliminated at the initialization.

Much more essential for slow dynamics are (quasi-)stationary orographic waves, which
are in real atmosphere permanently exited, interact (in nonlinear models) with the
large-scale wind fields and cause the wave-drag.

Stationary orographic and mountain waves have elementary representation for one-
dimensional harmonical (sinusoidal) orography

h = hype ¢ ke (5)

More complex (but still one-dimensional) orography can be presented as the sum of
elementary oscillations (5). Due to the linearity of wave equation the solution with
complex orography is a sum of elementary solutions corresponding to elementary modes

(5)-

The elementary solution to (5) has the same structure for all models:

doa .
UJk(-T,p) - % = —ikU Clk(l',p), (6&),
where
/2
o) = i () 7 erttin - vammn (61)

For ¢ > 0 this solution satisfies the radiative boundary condition at the top, for ¢ < 0
it yields a trapped wave, if

va = V-l = =ivldl (6¢)
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(Baines, 1995; Holton, 1992). Expression for ¢ coincides with (4) for v = 0 and v, =
—Uk. For different models it has the following representation
— the exact model:

U? 2.2 C?‘ C%/Uz - Hgkz 2
q(k) = [(1 — g> Hik* + % .H§k2 — c?/[ﬂ — (a = 1/2)%, (7a)

— the EFM:
ct\ /U — HZK?
k) = |H2? + L. 2 0" _ (o — 1/2)? b
q( ) ( 0 Ci) Hng _ C?/UZ (O{ / ) ’ (7)
— the MPM:
2 U2 o H2k2
k) = m2 . G 0% _ /4 7
Q( ) 0 Hgkz _ C%/Uz / ) ( C)
— the HSM:
2 /U2
k) = mERE . Cil —1/4 7d
Q( ) 0 Hgkz _ C%/UQ / ) ( )
— the anelastic model:
g(k) = ¢/U* — HZk* — 1/4, (7e)
— the Boussinesq model:
q(k) = ¢}/U* — HZk*. (7f)

Constant ¢; = v/RT; ~ 100 m/s represents the characteristic phase speed of internal
buoyancy waves (real phase speed is proportional to it), and ¢y = fHy ~ 1 m/s. The
anelastic and Boussinesq model ¢ are presented for the check, no special modeling is
carried out with these two approximations. Note that for the Boussinesq model the
factor (po/p)'/? in (6b) must be left out.

Like in the nonstationary case, ¢ plays again the central role. This function is presented
for different U and N on Fig.3. As it turns out, ¢ of the EFM is very close to the
exact model in stationary case at all spatial scales so far as U?/c2 << 1. Because
in the atmosphere this condition holds at all spatial scales with high accuracy, one
can conclude that for slow (stationary and quasi-stationary) flows the EFM represents
the filtered model of the global range, ie., it is valid at all spatial scales from micro-
turbulence till planetary scale motions. The same is true for the MPM, except the
very long waves, Hok — 0, where slight difference appear: For the ExM and EFM ¢
— —[c?/c2 + (o — 1/2)?] =~ —0.15, whereas for the MPM ¢ — —0.25. Still, as it will
be demonstrated in the next section, this difference is irrelevant because it causes very
small(really negligible) difference of wave pattern in comparison with the exact case.
Thus, so far as ¢ is the only characteristic of the solutions, the EFM and MPM are not
distinguishable from the exact model and from each other.
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Fig. 4.3 q(kHy) for stationary orographic waves. Curves correspond to the exact
model (7a). Other two models, the EFM (7b), and the MPM (7c), are so close to the
ExM that their curves would coincide with the curves on the figure.
1-N=10"21/s,U =10m/s;2- N =10"21/s, U =25 m/s; 3 - N = 2:1072 1/s,
U =10m/s.

Summarising, we can conclude, that the field of vertical velocity w is in similar conditions
practically same for all compared models, ExM, EFM and MPM.

For other quantities the similarity is not so close anymore, as the algorithm of their
calculation from primary field w will depend on the model. Formula for n follows from
(3.13b) with @ = 0, it is of the same appearance for ExM and EFM (the MPM does
not define this field):
NZ
nk(xvp) = _7 ak(a:vp)v (8(1)

Formula for ¢ of the ExM and EFM results from (3.13c) with the help of (8a):

N2 — 2U?
912 —a+iyq

and (1.5) yields for the relative temperature fluctuation

Ce(z,p) =

) ag (.T,p) (Sb)

it = = 0 ) e, (s0)
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where

T, K2U%/N? — 1
To 1/2—a+iyq -

dy, =

At the same time, from (3.19b) and (3.19d) with the help of (6a) it follows a formula
for the temperature fluctuation in MPM:

T; ak(z,p) N2

TI;/TO = _To o, = —7 ak(xvp)' (10)

Which is clearly different from (8c). The exact model and EFM have in comparison with
the MPM an additional term, proportional to the ”correction factor” dj (9). Temper-
ature fluctuations of the ExM and EFM, (8c), and of the MPM, (10), are close, if this
correction factor is small. As it may be convinced from Fig. 4.4a, 4.4b, which represent
the real- and imaginary parts of dj respectively, dj is small everywhere except at very
short scales. The level |dg| > 0.1 is reached (depending upon background parameters)

at spatial scales [, ~ 1/k ~ 100 —— 500 m, and it increases rapidly towards shorter
scales.
05 - Fig. 4.4a
N 3 Real part of the correction
e ‘21 1 factor dy.
1-N=10"21/s,U = 10
037 | 1 m/s; 2 - N = 21072 1/s,
5 \ U=10m/s; 3- N =102
002 1 1/s,U=25m/s;4 - N =
2:1072 1/s, U = 25 m/s.
0.1 r
ol T e T
0 0.1 0.2

1/(k H)

Differently from the real part, the imaginary part of d (Fig. 4.4b) is zero for short waves
and restricted at long scales.
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The general conclusion from this treatment is that temperature fluctuations differ de-
pending on the model choice. This is an example of the situation, where a particular
field — temperature in this example — is differently calculated and yields different values
for different models. Another example, which is just opposite to this, represents the
relative entropy fluctuation. For the EFM and ExM this is 7, defined as (2.5) and rep-
resented by formula (8a). For the MPM the (relative) entropy fluctuation is defined as s’
= T"/T,, which is obviously quite different from (2.5). At the same time, its particular
representation in the present model case is (10), ie., numerically it coincides with 7!

With the help of formula

p 07 0 . .
P (p2 4 - , — o + /Ty,
Hy Op <P3p+ Oé)( « a + T;/To
and treating o* at the integration as a constant, from (3.21) and (10) an expression for
¢ in MPM framework follows:

N2 o k2U2
g(1/2 —a* +1i\/q

The only difference of this approximate formula in comparison with the exact one, (8b)
is the use of o* instead a. This difference in value of « is not large, approximately 10
% , and has influence on the amplitude of , if ¢ ~ 0, ie., in the vicinity of the critical
wave-number k.. Critical wave-number k. is determined with the condition ¢(k.) = 0
and it is approximately

Ce(z,p) =

] ax(z,p) . (11)

kc ~ C,’/(UH()),

which yields I, = 1/k. ~ 102 m. Thus, vertical accelerations in MPM have most
significant deviations (about 10 % ) from exact value in the region iy ~ 1 km.

The hydrostatic/nonhydrostatic character of the dynamics depends much on the hori-
zontal scale of the orography [, (= 1/k for sinusoidal surface). For long waves atmo-
sphere is with good accuracy in hydrostatic balance, and { ~ (s (see (2.12)), for short
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waves departure from hydrostatic state, determined with the amplitude of (,, = ( — (s,
should be comparable with (. The transition from hydrostatic state to nonhydrostatic
with the decrease of the characteristic scale is demonstrated for ExM(®) on Fig. 4.5a-f.
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Relative fluctuation of geopotential, (, and its hydrostatic and nonhydro-
static components, (; and (;, as functions of the geometrical height, Z.
a), ¢), e) — x corresponds to the valley; b), d), f) — x corresponds to the hill-slope.

The departure from hydrostatic state is small but observable, if [, = H ~ 10 km, and
it makes substantial for [, ~ 5 km and less. It is remarkable, that nonhydrostatic cor-
rection, (,, is oppositely signed to the hydrostatic component, (s and tries to cancel it.

(1) Transition is not sensitive to the model choice.

50



As a result, the total deviation, (, is always smaller than it would be in the hydrostatic
approximation.

4.3. Stationary flow over isolated mountain

Sinusoidal profile is an artificial idealization. More close to the reality is the case of
an isolated mountain. In the following we will represent results of the modeling of
the uniform flow over the two-dimensional bell-shaped mountain, so called ”Witch of
Agnesi”:

ho
1+ (z — m)2/I1%2

Parameter hg is the maximum height, [ is the half-width and z is the location of the
mountain top. Beginning with classical works by Queney, 1948, Scorer, 1949 — 1956,
Long, 1953 and Alaka, 1960, a vast amount of papers is published on the modeling of
two-dimensional flows over isolated topography, both linear and nonlinear, analytical
and numerical content (see overviews by R. Smith 1979, and P. Baines 1995). Our
examples do not represent in this respect nothing new and original. The only purpose
of following is a model comparison. The use of well-documented examples is justified as
it increases authenticity of the results. Due to the known analytical solutions, mountain
waves are common popular objects for model tests (Laprise and Peltier 1989, Lin and
Wang 1996, Hereil and Laprise 1996).

W) = (12)

Modeling is carried out with background parameters (1) and with [, hy in domain: [ €
[10 m, 1000 km], hy € [10 m, 1.5 km]. The modelled field is the total entropy, defined
as

©

T/
©0(p) (1 + —> : (13a)
where the background profile O is a solution of the differential equation

——— = N~°. 13b
@0 dz ( )

For constant N— and Hj (as it is assumed everywhere in this Chapter):

InB0(p)/Tolpo)] = - 2 = i In(pop) (13¢)

where Z = Z(p) represents isobaric height in the undisturbed atmosphere. Thus,
O(z,p) = To(po)e™ *9[1 + T'(x,p)/To] . (13d)
Results of the modelling are represented on Fig. 4.6 — 4.16, beginning with the longest

scale, [ = 1000 km, hp = 1 km (Fig. 6a - 6b), and then continuing toward shorter scales,
until [ = hg = 10 m.
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Fig. 4.6a. Very long trapped waves. | = 1000 km, hy = 1 km, U = 25 m/s, N = 0.01
1/s, A® = 1.0 K. Differences are caused by different asymptotes in g. MPM isolines
are slightly lower.
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Fig. 4.6b. Same as Fig. 4.6a, except U = 10 m/s.
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Fig. 4.7a. All models coincide. [ = 300 km, hy = 1 km, U = 25 m/s, N = 0.01 1/s,
AOG = 1.0 K.
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Fig. 4.7b. Same as Fig. 4.7a, except U = 10 m/s.
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Fig. 4.8a. All models coincide. [ = 100 km, hy = 1 km, U = 25 m/s, N = 0.01 1/s,
ABG = 1.0 K.
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Fig. 4.8b. Same as Fig. 4.8a, except U = 10 m/s.
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Fig. 4.8c. Same as Fig. 4.8a, except hy = 1.5 km.

Presented figures demonstrate that there is no difference in compared models in domain
30 km < I < 1000 km. Week difference is observable for longest waves (I = 1000 km)
between the ExM and EFM from one side, and the MPM — HSM from the other, but
this difference, caused by different asymptotes of ¢ for different two model groups, is
really very small (Fig. 4.6a and 4.6b) and can be disregarded for most applications.

The first real model-branching begins at [ < 30 km and this is the HSM which makes
difference. At first differences are recognizable for [ = 30 km and stronger winds (U =
25 m/s) as demonstrated on Fig. 4.9a and 4.9b, but they grow rapidly with decrease of
[ and become significant in the upper troposphere for [ < 10 km (Fig. 4.10a), and for
the whole depth of the troposphere for [ < 3 km (Fig. 4.11b and 4.13b). The presented
examples demonstrate, that the HSM is not (even in the linear case) usable for [ < 10
km.
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Fig. 4.9a. Comparison of the ExM and HSM. [ = 30 km, hg = 1 km, U = 25 m/s, N
=0.01 1/s, A® = 1.0 K.
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Fig. 4.9b. Different NH models. Parameters are the same as in Fig. 4.9a, except hg
= 1.5 km.
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Fig. 4.9c. The same as Fig. 4.9a, except U = 10 m/s and A© = 2.0 K. All models
(incl. the HSM) coincide with high precision.
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Fig. 4.10a. [ = 10 km, ho = 1 km, U = 25 m/s, N = 0.01 1/s, A® = 1.0 K.
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Fig. 4.10b. Exact model. EFM and MPM are very close. hg = 1.5 km, other
parameters as in Fig. 10a.
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Fig. 4.10c. Exact model. EFM and MPM are very close. U = 10 m/s, other
parameters as in Fig. 10a.
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Fig. 4.11a. Model ExM. Other NH models EFM and MPM are very close to it.
[ =3km, hg =1km, U =25m/s, N =0.011/s, A® = 1.0 K.
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Fig. 4.11b.The model HSM in the same conditions as used in Fig. 4.11a.
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Fig. 4.11c. The same situation as in Fig. 4.11a except that U = 10 m/s.

In shorter mesoscale, [ < 3 km, all NH models still remain close to each other (Fig.
4.11a, 1lc, 12a, 12b, 13a), until at [ = 300 m the MPM becomes differ from the ExM
and EFM (Fig. 4.14a and 14b). This difference is larger for stronger wind (Fig. 4.14a)
and for shorter wave-lengths (Fig. 4.15 and 16). The lower limit, where the MPM can
be employed without restrictions is [ > 200 — 300 m. At the half-width [ = 100 m its
difference from the ExM is quite significant, if the wind is strong (Fig. 4.15a), but still
moderate for weaker wind (Fig. 4.15b).

Thus, the shorter orographic scale, where the MPM is still relevant, is ~ 100 m. Below
that ultimate limit only the EFM remains valid among filtered pressure-space models.
In the atmosphere, this is the domain of micro-turbulence. To this domain belong,
besides the modelled orographic waves, flows in vicinity of small obstacles like houses,
towers, trees, bridges etc., and turbulent processes in the lower 50 - 100 m part of the
planetary boundary layer.
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Fig. 4.12a. All NH models. [ = 1 km, hg = 500 m, U = 10 m/s, N = 0.01 1/s,
AG = 0.5 K.
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Fig. 4.12b.The same as Fig. 4.12a, except that hg = 1 km.
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Fig. 4.13a. NH models (EXM, EFM and MPM). [ = 1 km, hy = 500 m, U = 25 m/s,
N =0.01 1/s, A® = 0.5 K.
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Fig. 4.13b. HSM for the same situation.
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Fig. 4.14a. [ =300 m, hg = 200 m, U = 25 m/s, N = 0.01 1/s, A© = 0.1 K
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Fig. 4.14b. The same as Fig. 4.14a, except U = 10 m/s.
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Fig. 4.15a. [ = 100 m, hg = 100 m, U = 25 m/s, N = 0.01 1/s, A® = 0.05 K.
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Fig. 4.15b. Same as Fig. 4.15a, except U = 10 m/s.
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Fig. 4.16a. Domain, where the MPM cannot be employed: [ = 30 m, hg = 30 m.
U=25m/s, N=0.011/s, A© = 0.02 K.
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Fig. 4.16b. Domain, where the MPM cannot be employed: [ = 10 m, hg = 10 m.
(U=25m/s, N =0.011/s, A® = 0.01 K)
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CHAPTER FIVE

Nonlinear models in sigma-coordinates

The aim of this chapter is to represent the described in the Chapter 1 different NH,
nonlinear, p-space equations in a form, convenient for numerical integration. For that
(1), the equations are projected into sigma-coordinate frame (sections 1 —3), and (2), the
Poisson equation for the nonhydrostatic geopotential is deduced (section 4) along with
detailed analysis of boundary conditions (section 5) and iterative schemes of solution
(section 6).

5.1. General equations in o—coordinates

The general idea, on which all numerical algorithms ground in the pressure-space, is the
use of terrain—following sigma- (or generalized sigma-) coordinates. This representation
is used in different forms in all hydrostatic general circulation models (for instance
the ECMWEF model, see Simmons and Burridge 1981), and limited area models, like
the HIRLAM (HIRLAM Documentation Manual 1996). In nonhydrostatic version it
is described at first for the MPM by Miller and White, 1984, and used in numerical
realization of the MPM by Xue and Thorpe 1991, Miranda 1991, and Miranda and
James 1992.

For the exact nonfiltered model the sigma-representation is described first by Room,
1989. In this section the o-coordinate representation for the general non-filtered model
(the ExM) (1.3) is developed. The representation includes the exact equation for the
lower boundary evolution in the p-space.

Let us define the sigma—coordinate
p
o= —, (1)
which introduces the (non-dimensional for the convenience) density in the o—space
Po
Ng = En s (2)

where a is the standard sea-level pressure.

Transformation from p- to o coordinates performs with the help of formulae (whish are
of the same shape disregarding whether the model is hydrostatic or non-hydrostatic

one)

9, 10 B Vpo 0O
o 00 V, = V, o el (3a)

67



For compactness of notation it is reasonable to introduce operators in the ¢ coordinates

0 g _ 0

Q — _ — _ _= = H
S 880 , 805’ s s(x, o, t) o/H , (3b)
G =V, — @Uﬂ, Gt = v, — @ﬂg_ (3¢)
po Oo po Oo

These operators will be used in full extent in filtered models, here we make use of G,
which coincides with V,, in o-representation.

General equations (1.3) in o-coordinates are

dz

g v (4a)

n =g, (40)
ni—::—géz—nfixv, (4c)
i_f:f_f@{—g)w, (4d)
dg’t” — o, (va-v + %) (4e)
n = —28z. (4f)

We have maintained the pressure-space density n (which can be expressed at the need via
ne) as the primary measure of the compressibility of medium. The continuity equation
(4e) is postulated. Sigma-velocity is defined as

do
y = — 5
g dt ’ (5a)

and in accordance with this definition the Lagrangian derivative is

d 0 .0

For the right side of temperature equation (4d) the formula

w o )
c=Z 4R (50)
p o Po

is used. pg corresponds to level o in the sense it represents the rate of change of the
ground surface pressure in a point on the ground which moves in horizontal direction
with the same speed as the material particle at level o

. dpo Opo
= —] = 2) vigV .
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Though the continuity equation (4e) is postulated, it can be deduced from (1.3d) using
definition (2), formulae (3a), (5) and identity

Vp(] 8v_ 1%

po 0o pg 0o

For determination of ¢ and py it is necessary to use the omega-equation (1.6) which in
sigma-coordinates reads as

oY _Q:1<3_w_3_".@z>_@.v_ (6)
P T
After w is determined from this relation, (5c) yields with the help of condition
ol = 0 (7a)
a prognostic equation for py:
(Po); = w1 (70)

Finally, po at level ¢ can be determined using
po = (Po); + (Vo — v1)Vpo (7¢)

and ¢ using (5c¢).

Equation (7b) along with relation (6) at the lower boundary py is one of the basic
dynamical (evolutionary) equations. It rules the evolution of the lower free boundary
surface which atmosphere has in the p-space. Slow asymptotes of this equation should
be the hydrostatic ground surface pressure equation, postulated in the HSM:

1
% + V- (po/ Vd0'> = 07 (80,)
ot ;

and its acoustically filtered analogue

v. (pofolvda> ~ 0. (8h)

The detailed and careful study whether and when (7b) transforms to equations (8),
presents a special topic of investigation, which is of great interest for synoptic and
planetary scale dynamics. In shorter synoptical and mesoscale domains fluctuations of
po are very small and have no relevance for dynamics. Thus, in forthcoming study we
will disregard po fluctuations and assume that the domain in the p—space is the fixed
one.

5.2. MPM in o-coordinates Most of the MPM equations in o—coordinates can be
deduced straight either from (4) or from (1.12). Combination of (1.12b) and (5c¢) yields

-0 _ P (9a)



Equations (1.12c) and (1.12d) transform to

dv
dt

temperature equation (1.12e) does not change at all:

= —gGz — faxv, (9¢)

drT g .
_— = - — . 9d
& pr + Q (9d)

Continuity equation (1.12a), which represents diagnostical equation for z, reads as
Gt - (pov) — 5*(pow) = 0, (9e)

Most notable changes take place with the ground surface pressure equation. Equation
(9a) along with condition (7a) yields

(Po)1 = — (‘%u?)l : (10a)

it is reasonable to study separately the slipping and non-slipping ground surface. In the
case of non-slipping ground all components of velocity are zero at the surface and (10a)
yields

(o) = (88%) — 0. (100)

For slipping boundary only the component of the velocity, orthogonal to the surface, is

absent, which yields
dh

dt

UJ|1 =

and (10a) becomes

(Po)1 = — (%)1% = — (%v)l-Vh. (10c)

This is an exact relation, enabling the computation of the ground surface pressure
tendency at every instant

po _
ot

—vy-Vpy — (%V>1 -Vh . (10c)

Because the ground surface pressure fluctuations and temperature fluctuations at the
ground are always small, H can be approximated in (10c) with high efficiency with H,:

H.(x,0) = Ho(poo) , (11)
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where Hy(p) is a horizontally homogeneous background height-scale. Then

dh
(Po)1 = — <Z(.1>la (12a)
This equation has a solution
po = ae_fohf’_z : (120)
Which means B -
Po = Do, WZU. (12¢)

This approximate definition for the slipping boundary poy agrees with the non-slipping
condition (10b). It supports the supposition, formulated at the end of the previous
section that the domain can be fixed in the p-space for slow processes. We will assume
(12c) everywhere except at the referencing of the model of Miranda (1990) in the next
section. It does mean that pressure fluctuations at the ground are entirely absent in
our models. They are easily expressed via z fluctuations at the level pg. What is
expressed by (12c) is just the statement that changes in the geometry due to the small
replacements of the lower boundary in the p-space are inessential for dynamics.

Evaluation of & grounds in general on equations (9a) and (10c). An elimination of
pressure tendency from these relations yields

dza[(%)l—% +(v1—vg)-%} . (13)

Assuming (12¢) and Hy ~ H,q, (13) simplifies to

o= (- v (1)

H* H*l
If this approximation is valid, then continuity equation (9c) can be presented as

Opod i
Vo (pov) + %9 0. (13")

5.3. MPM with mean height-scale

It is possible to simplify the developed in previous section variant of MPM, using fur-
ther linearization in respect of temperature and geopotential fluctuations. Let the back-
ground geopotential

ze(x,0) = 20(Poo) (14a)
is defined in accordance with the background height-scale H,:

p 0z

—-— 1 =20,
H08p+
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then

= 0 = 0
S = S5 7 St = 5550 5= s(x,0) = o/H, (14b)
G =V, — @02, G+ = Vv, @ga. (14c)
po Oo po Oo

then the last relations are
Sz, = -1, Gz, = 0. (14d)

Let us define analogically
N, = Nolopo(x)], T. = Tolopo(x)] . (14e)

Presentation z = z, + 2/, T = T, + T"' and linearization of system (9) in 2" and T’ with
maintenance of advection terms yields

w o Po
=-- -2 1
- -B (150)
dw T =,
- — 15b
u g(T*+5z), (150)
(il_‘tf = —géz' — fzxv, (15¢)
dT’ N2
= —T,—2w . 15d
% , vt (15d)
G* - (pov) — S*+(pow) = 0, (15¢)

At the derivation of temperature equation (15d), it is useful to carry the T" separation
out in pressure coordinates and to transform the obtained equation into the sigma-space
after that. Like the nonlinear form of Chapter 3, in partially linearized model (15) the
term T, N, should be constant for energy conservation.

In the present model it is postulated explicitly that the domain is fixed in the p—
space and the lower surface, pg is time independent. This is an internally concordant
assumption: if pp = pg at initial moment, then dpy/0t = 0 and py = Py for all successive
moments. For the proof of the last statement it is sufficient to note that right side of
(10¢’) turns zero for H = H, and py = Pg. In other words, in present model the 3D
p-space velocity at the lower boundary, (v,w); = (v,—pow/H,)1, is parallel to the
boundary, which is described with equation pg(z,y) — p = 0.
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Model (15) is close to original MPM, which is at first described by Miller and Pearce
(1974) and used by Xue and Thorpe, 1991, and Miranda, 1990. Main differences still
are:

(1) In those models the potential temperature, ©,, and potential temperature fluctua-
tion, ©', are used instead of T, and T";

(2) The sigma coordinate is defined in a slab pg > p > pop > 0 rather than in the

whole atmosphere:

o = P = Ptop , (16a)

Po — DPtop
which yields in equations of motion the effective ground surface pressure p, instead of
Po:
P+« = Po — DPtop (16b)
and replacement of s = o/H, in (14b) with

_ b o o + ptop/p*
s = H . , (16¢)
and (14b), (14c) with
. 0 . 0
_ + _
S = 535 S 995 (16d)
_ _ il — — —0. 1
G Vs P el G Vo, P 55 (16¢)

(3). In numerical models by Xue and Thorpe, 1991, and Miranda, 1990, the ground
surface pressure pg in definition (16b) is treated as dynamical parameter which evolves
in accordance with (8a).

Concisely the MPM, employed by Miranda, reads

— = - - - — 17
o o Ds (17a)
dw e’ 5
— —_ 1
T g<@>k +Sz> , (17b)
(i—z:—géz'—fixv, (17¢)
de’ N?
— — Y =W ) 1
7 © p w + Q (17d)
Gt (p,v) — St(paw) = 0. (17¢)

Though in the original model by Miranda (1990) it is assumed that the lower boundary
surface p, evolves in accordance with equation (8a), in reality, as it was discussed
above, in the partially linearized version of the MPM with linearization in z’, the p,
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must be treated as the fixed surface. In this case p, = v-Vp, and last equation can
be alternatively presented with the help of (17a) as

Vo (pev) + <6 =0. (17¢")
do

This relation, as well as (13”), represents a variant of the continuity equation, written
with use of & (and valid for fixed p, only). Its integrated form is

1 g
o= —— V- (psv)do' . (18a)
P« Jo
At the lower boundary it yields
1
/ V- (psv)do = 0. (18b)
0

Because the same equation follows from the vertically integrated version of equation
(17e), if at the lower boundary kinematical condition (sw); = -(p«/p«)1 holds, (18b)is
satisfied automatically and it does not represent an independent relation, which could
be used, for instance, for the determination of ground surface pressure fluctuations.

If one disregards with differences in sigma-coordinate definition (assuming for instance
Prop = 0 and p. = Pp), then essential difference between models (17) and (15) is in
temperature equation. For © from (15d) an equation follows

de’ NZ R fler
(e e ()
dt g Cp PoT

which differs from (17d) with additional (second order) term on the right side. In other
respect both models are very similar.

Further we will use in nonlinear case model (9) and in partially linearized version — the
Miranda formulation (17a) — (17e), whish includes (at least at formal substitution ©,,
©" — T, T'") (15) as a special case. The only restriction is that p, will be treated as a
time-independent mean function:

Px = Po — Dtop - (19)
This enables in the most flexible way to treat the Miranda model and our model in the

same numerical algorithm in parallel.

For numerical applications it is useful present (17a) — (17e) in the divergent (mass-
conserving) form:

—:———.—, (20a)

O + Fo = gp. <— + Sz’) , (200)



Opyv .

9 + Fv = —gp.G2 — fpazxv, (20¢)

Op,©' . N2
DO L FO = — p0. 0+ pQ (20d)

ot g
Gt (p,v) — St(paw) = 0. (20¢)

where notation is used
0 0 0

Fo = 5 (pvsp) + 3y(p vyp) + 5 (Pe09) (20f)

5.4. Diagnostical equation for geopotential height

Let us deduce equation for z in system (9). For that we represent equations (9b), (9c¢)
and (9e) as

%_lt” = g8 + f, —Aw = F,, (21a)
3_V = —géz -, - Av = F, . (21b)
ot
G+-(pov) — ,§+(p0u7) = 0 . (210)
Forces f, and f, are
f. =g+ f2, f. = faxv + £, (22d)

where fg and —f? are components of external force (and turbulent friction forces, per-
haps). A is ordinary advection operator

N .0
A=v-V +0$. (22f)

The wanted equation follows after differencing of (21¢) in time and elimination of ve-
locity tendencies with the help of (21a) and (21b):

A A A A ]_ A ~ 3L§’+ ~
Gt . poGz + STppSz = — ; (G+-p0aw + Stpoa, + Wpow) , (23a)

where

a, = f, — Aw, a, = f, + Av. (23b)

The obtained relationship represents a Poisson equation for the total NH geopotential
height z. Analogical diagnostical equation in model (19) for 2’ reads

A A A 1 - 14 !
Gt p,. Gz +S5Tp,S7 = — ;GJF (Fv + pofz ><v)+§S+ <.7:1I) — gp*g—> . (24)
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This equations transforms after use of formula G*(p,-) = (Vps) - + p.G*- and after
multiplication with 1/p. to the corresponding equation Miranda (Miranda, 1990, Eq.
(3.21)).

5.5. Boundary conditions for the z equation

As the determination of z (or z’) requires solution of an elliptic equation, it is necessary
to supply this equation with boundary conditions at all boundary surfaces: at the
bottom, at the top and at the lateral boundaries. Note that the boundary value problem
for z is specific for filtered models, because it is created by the change of evolutionary
equation for z to an diagnostical elliptical equation (23a) or (24).

General idea which enables to formulate required boundary conditions correctly at the
bottom and at the lateral boundary, is that these boundary surfaces represent ideal
constraints, which generate ideal forces of reaction, which coincide with the normal
components of geopotential gradients at boundary.

A similar treatment is applicable at the top, if the top surface is treated as a rigid lid.
Still, in reality the top of the atmosphere, p — 0, is physically rather equivalent to
the free surface. This assumes special treatment, based on the regularity of solution at
p = 0 rather than the constraint-method.

5.5.1. Boundary condition at the bottom. Primary condition for z at the bottom
is

Z|1 = h.

This represents an ideal constraint. It generates for slipping boundary an kinematical
condition for velocity components

wliy — v[1-Vh = 0, (25a)

which is the orthogonality condition for 3D-velocity (vg, vy, w) and normal vector of
the ground, which is represented by the equation ¢(x, z) = z — h(x) = 0.

As we approximate the ground in pressurethe p-space by the mean surface pg, then
condition (25a) is for model (9) equivalent to

Ve
<;IU> +%:0, (25b)
x/1
and for model (20) to
(sw); + VIV =0, (25¢)
D

which both yield required condition for sigma-velocity at the bottom
Gy = 0. (25d)

At a very profound treatment the principle of virtual replacements should be applied
to get the required expression for the reaction force. We, still, simplify the problem
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essentially, noting, that because the underlying surface is fixed, the real replacement
coincides with one of virtual replacements. Thus, it is sufficient to differentiate (25b)
or (25¢) in time (it is indifferent whether the local or material derivative is used — the
final result is the same) and eliminate time derivatives with the help of (21a) and (21b):

d%h

. fz|1
3$aal’g .

1 g

N N 1 1
(821 = — (Vh-G2) bRl Vh 4 () (26)

This is a Neumann boundary condition for z, with the left side in the role of the reaction
force. We note without detailed proof that the same boundary condition can be deduced
for the EFM (except that n, though adjusted, is not necessarily equal to 1 exactly).

Boundary condition (26) has the following interpretation. On the left side we have the
reaction force of the ground surface, divided by g, on the right hand stay terms, which
this force has to balance at every instant to maintain the replacement of air particle
parallel to the surface. First term on the right side represents an additional non-classical
contribution to the ordinary nonhomogeneous boundary condition. It depends on the
horizontal gradient of the unknown function, ie Vz, and must be determined in the
course of solution. One way to do this is to take it into account iteratively. This
procedure will be discussed in detail later. Anyway, it is not a part of the ideal reaction
force, as it will be demonstrated later. Second and third terms together perform the
projection of external force onto the normal direction of ground surface. The last term
on the right side is the (divided by g) acceleration due to the curvature of the ground
surface. h,,g is the curvature tensor of the orography. For a spherical surface, for
instance,
*h 1

= = OaBp s

0x,0zg R
where R is the radius of curvature, which is negative for a hill-top and positive for a
hollow. Thus, the last term is in this special case v2/(gR). It is negative near the hill-
top and causes negative contribution to vertical gradient of z, which is proportional to

negative pressure fluctuation (see Fig. 1.2). As a consequence, air-flow causes pressure
depression in vicinity of a convex — a fact, which is wellknown in hydrodynamics.

Lower boundary condition for model (20) follows from (25c¢) analogically and
reads as

{

where (Q—terms are

2 / / .
5P+ do P | 98P« 95°Pi /1

/

Qw:gp*g__fwv Qv = —Fv — fpizaxv. (27b)

Equation (27a) looks very different from (26), nevertheless they are quite close and (26)
can be presented in the form, very similar to (27a), after separation of 2z’ and z,. Both
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forms have special advantages: (26) is better for theoretical discussion, while (27a) is
convenient for numerical applications.

Again on the left side an additional term arrived (beside the vertical gradient), which
depends on the horizontal gradient of the geopotential fluctuation, Vz]. From the
"boundary condition view-point” this term is an unknown quantity.

At the discussion of (26) we pointed without proof that the vertical gradient on the left
side of (26) is the force of reaction. Similar problem arrives with boundary condition
(27a): it is essential to know (for applications in other models, for energy conservation
consideration etc.) which term on the left side of (27a) represents precisely the reaction
force of the boundary. We prove now that the reaction force of the slipping lower
boundary is orthogonal to the boundary surface and its vertical component
is (in the case of model (19) and boundary condition (27a))

(2
’I“Z—gsao_l.

To prove the statement we treat the boundary equation in the form

O(x,2) = z — h(x) = 0, (28)
and assume | v
Vh = — - = k.
81 DPx

The normal vector to the surface is
z — K
V1 + K2

at that kinematical condition (19) is an orthogonality condition

N —

(v,w); L N

The ideal reaction force R = (r,, r,) is a force, which is orthogonal to surface (and thus,
being orthogonal to the 3D velocity, it does not carry out any work) and does not let a
particle to leave the surface. This yields

R =r,(z — K).
Presenting equations (15b) and (15c¢) at the boundary in the form

3V|1
ot

3w|1

=
ot #

+F;f'7 _TZK+F/:E7

we discover that r, coincides with the normal gradient of z’. Statement (28) is proved.

Z'|1 in (27a) is a non-fixed dynamic field. At numerical modeling the second term on
the left side of (27a), which is determined by 2’|1, is treated as a perturbation and it
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is calculated iteratively. If 2’ is determined, the corresponding ground surface pressure
fluctuation can be estimated from the formula (see (1.2))

(5), = (i),

For future applications it is convenient solve (27a) in (0z'/00)1:

32’)
gz ~ I, (29a)
< do o1

where

-1

<Vp*Vz’ Qw Vp* : Qv)
r, =

s2p, gD gs2p? (206)

2
1 + <Vp*>
SPx

5.5.2. Boundary condition at the top.

o=1

At first we consider in short the rigid lid boundary condition at the top. The rigid
lid yields kinematical conditions at the top

Glo = 0, (30a)

Last condition at every instant is equivalent to
dwo  (dw ~ 0
a  \dt ),
which yields with the help of (20b)

/ !/
(9 + Sa_z> = 0. (30c)
0

The last formula represents the upper boundary condition for 2’ in the rigid lid model.
It coincides with the one used by Miranda (1990).

For practical use in further application it is convenient present (30c) as

0z e’
— =TI, = — )
<8a>0 0 (s@)gzo (30d)

The free boundary condition at the top. There is no rigid lid at the top and the
only restriction to 2’ is that it must be finite (or, if the finiteness is not supported, then
it should grow near infinity with lowest possible speed). To get the required boundary
condition, which is in addition applicable in discrete numerical modeling, we propose a
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special ”top-shell” method. The essence of this method is the analytical continuation
of the solution above some certain level p,,, into the domain 0 < p < p,,), which is the
top-shell. The lower boundary of the top-shell, p,,, is not necessarily equal to p;,,. The
problem is identical for equations (23a) and (24), but for the definiteness we consider
equation (24).

Because the top-shell is very thin, coefficients of the equation (23’) in this domain,
H, ~ Hy(pm) = H,, and p, =~ Py can be treated as constants. As a result, equation
(24) simplifies essentially and takes the form

/ H2
HZV?Z + 830 <(0 + ao)zg—z> = p*A = Ay, (31)

where A represents sources on the right side of (24) (Note that on the right side we have
maintained actual values of H, and p,), and

09 = ptop/p* ~ ptop/p_*- (32)

We apply to (31) the Fourier transform in horizontal coordinates, (x — k) and in
vertical employ an coordinate transformation

¢ = Cm= — ln(m> : (33)

Om + 00
which yield (for the fixed k)

d?z' dz’
i A HZK*Y = Ay . (34)

This equation can be solved in easy way using the Laplace transform. The solution is

7= 210 + 25(0) (35a)

/ ¢
%(() = {(ai — b)) Z'(Cm) + bim] eHi(6=Cm) 4 bi/ et (€= A dC, (35b)
d¢ ;

m

1
ay = n , Q2 = s b1 = — by = ) (350)
M1 — M2 M2 — H1 M1 — M2

pr = 1/2 —y/1/4 + HZK2, ps = 1/2 +4/1/4 + H2K2. (35d)

To avoid the exponential growth of this solution at { — oo (the "regularity requirement”)
we have to choose

(as — )7 (Cm) + bz%”) s [ ©@OaQI = 0. (360)
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The detailed behaviour of the solution in the top shell has no significance for the further,
what we need, is an upper boundary (¢ = o,,) condition for for z’ in the lower domain,
which yields from (36a):

(am+ao)d2/(§gm) — (ja— 1) (om) = /Um <m>“2_lA(a)L. (360)

—op Om + 00 Om + 00

This is an exact upper boundary condition at level o, supposing the used preconditions
are exact. The specific feature of this boundary condition is that it can applied in the
Fourier-space only.

Assuming in the top-shell

we get from (36b)

d2' (0m) 1

(G + 00) — (g2 — D (o) = — <A(am) - ’ym> . (36c)

In special case oy, = 0 and A|,=_,, = 0:

- (dflfj))o ~ (- 120 = 2O (36¢')

For further discussion it is useful to represent (36b) and (36¢’) in a symbolic way

A

Lz = GA, (36d)

where L and G projection operators defined via (36b) — (36¢”).

If the described free boundary condition is applied, then there is no restriction for
vertical velocity w at the upper boundary.

5.5.3. Lateral boundary conditions.

If the momentum flow through the lateral boundary is given at every instant, then the
momentum equations yield a condition for the normal derivative 9z’ /dn, at which this
flow will be maintained:

(%)Z - T . (37a)

This is a Neumann condition, derivative is evaluated along the external normal at every
point and I' is (for equation 15a’)

1 Op+ < 0z .
rp = — n- (Y L fy - ng*O'—z + fpez XV : (37b)
gPx ot oo -
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The velocity tendency is an external (given) field. The only restriction to dv/0t|y is
that it must be mass-balanced: the total mass flow through ¥ must be equal to zero.
This condition, representing a consequence of the incompressibility of medium in the
p-space, is absolute for the rigid lid upper boundary condition. For the free upper
boundary model this condition is not so absolute in kinematical sense, but in reality it
is valid high precision.

Boundary condition is, analogically to the rigid lid condition, an absolute rigid lateral
boundary condition (condition (37) corresponds to a rigid lateral boundary, which re-
places at every instant in its normal direction with the fixed speed). This rigidness is
a potential source of nonphysical phenomena, like reflection on ¥ of wave-like distur-
bances, which move with the speed, different from v. In reality, where there is no rigid
lateral surface, these waves leave (or enter) the integration domain without reflections.

There exist two wellknown methods to turn the lateral boundary transparent not alter-
ing at that boundary condition (37a). The first one, which is simpler but more time-
consuming at numerical realization, is the ”"sponge layer” method. In this approach an
absorbing layer is introduced near the lateral boundary, in which the horizontal velocity
evolution is ruled by the Rayleigh relaxation mechanism
0

a(v —vp) ~ —K(V — Vp). (38)
v, represents the external velocity field which is determined in the whole sponge layer,
and k is the relaxation coefficient (Rayleigh friction coefficient), with smooth monotone
grow from zero at the internal boundary of the sponge layer to its maximum value at .
The sponge layer model is used, for instance, in the HIRLAM (HIRLAM Doc Manual,
1996).

Other method is known as the "radiative” boundary condition. In this method, the
lateral boundary is turned transparent to quick waves with the special choice of dv /0t
in (37b). This method is proposed by Orlanski (1976) extended by Raymond and Kuo
(1984) and modified and in detail discussed by Miranda (1990). Further, in numerical
realization we will use Miranda algorithm without modifications.

Summarising, we have (and will use in numerical model) two kind of boundary conditions
for elliptic equations (23a), (24):

— the rigid lid model, Neumann boundary condition is applied at all boundary.

— the free surface model,where the Neumann boundary condition is applied at the bot-
tom and at the lateral boundary, but at the top the mixed Neumann—Dirichlet boundary
condition (36) is used.

5.6. Solution of the elliptic equation for 2’

In this section the iterative solution procedure for (24) will be discussed in details.
Equation (23a) can be solved in the same way. In general lines, the solution algorithm
follows the Miranda scheme (1990), the detailed revision is needed because both the
geometry and boundary conditions are different from those applied in the Miranda
scheme.
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The Miranda method consists of division of the elliptical operator on the left side of (24)
to the main, horizontally homogeneous component, and horizontally inhomogeneous
perturbation operator. An additional specific and very powerful method employed by
Miranda is the use of the Williams transformation (Williams, 1969), which transforms
the initial nonhomogeneous boundary value problem to the homogeneous one and makes
applicable the fast Fourier transform (FFT). The specific method, which we add to the
scheme of Miranda, is the iterative approximation of boundary condition at the lower
boundary (first terms on the right side of (26) and (29b) are estimated from previous
iteration) and in the free boundary model at the top (source function A in (36) is
calculated from previous iteration).

For expansion of the elliptical operator in (24) we present
s = 3(0) + s'(x,0), s =0,

where overline means horizontal mean. With the help of this expansion equation (24)
can be presented (after some "algebra” and division by p,) as

L2 + Mz = A, (39a)

where £ and M are the horizontally homogeneous main operator and the nonhomoge-
neous perturbation operator consequently:

0 _, 0
_ 2 =2
L =V" + 9" o (390)
| L (Vp\> Vp, 0 \ B,
pu— _— R — —_ —_— —_ 2 . —_—
M 9 |7 ( o ) + s 9 Y drm o Vaag , (39¢)

and A is the divided by p, right side term of (24). Operator V represents the gradient
on the constant sigma surface.

Perturbation operator M depends on the surface orography only and makes zero for the
flat underlying surface. As orography (except very artifical model situations) is allays
low and in most cases smooth, the perturbation term is small in comparison with the
main operator £, which justifies the iteration technique.

It is convenient at qualitative discussion to present the boundary condition as a linear
projector P: R3 — X
P2 = T'(2). (40)

In the rigid lid model

at all boundary, and (40) is explicitly as

8z’> 0z 0z
) e (E) one (E) one o
(80— o=1 on 3L 0o o=0
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where T';, defined by (29b), includes 2’ as perturbation. I'z, is defined by (37b) and T’y
is defined by (30d).

For the free boundary model the conditions are the same at the bottom and lateral
boundary, but at the top, according to (36d), we have a different situation:

07 B , 0z B s, A ,
<a—0>021 = I'1(7), <%>2L =TIy, L =GA - M). (42)

It is an essential feature of the algorithm, that the projective operator G corresponds
to the undisturbed main elliptical operator £, therefore in (42) operator G acts both
on the source function and perturbation operator.

The solution is looked for iteratively, for which equation (39a) is presented as
L2 = A — MY, (43a)

Here z(") represents the ith iterative (approximate) solution of the problem. Conse-
quently, boundary conditions for (43a) are

P20 = D(z0-D) . (43b)

The required solution will be presented as a sum of two functions,

/

2=z, + 2, (44a)
and consequently, iterative approximations as
PAREES z,(f) + z,()i), (44b)

where z; (or zéi)) is a known function, which satisfies the nonhomogeneous boundary

condition on the (part of) boundary, and zj, (z,(:)) is the new unknown function, which
obviously satisfies on the consequent part of the boundary the homogeneous boundary
condition. The choice of z; is in certain degree arbitrary. In the discrete model it is
straightforward to choice this reference function equal to zero at internal points and
non-zero at the consequent boundary points. The main purpose of the expansion (44) is
to get homogeneous boundary condition for the new unknown z; at lateral boundaries,
which makes possible an employment of the FF'T in horizontal coordinates. Therefore, it
is not absolutely necessary to use the described homogenisation at the top and bottom.

Miranda (1990) employs homogenisation at all boundary. This is straightforward, if the
right side of (40) does not depend on 2’ (and in Miranda model this condition holds).
In short, the Miranda algorithm is in our notation as follows.

X0 =z, 2O =D 4 o4 (> 0): (45a)
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0z B 0zp B % B
<%>J:1 — F1 9 <an>2L — FL 9 <30_>J:0 — FO 9 (45b)

(T'y does not depend on z’'-st in this case)

8,2,(;) 8,2,(;) 8,2,(;)
(80) =0, <8n =0, 90 =0, (45¢)
o=1 X o=0

L2 = A — Lz — M0V (45d)

Iteration starts with an initial approximation (see(45a)) z,(LO) = 0,20 = ZISO).

A simple elegant numerical algorithm can be obtained, if the iteration correction func-
tion

o = 0 — 7Y (46)
is used instead of z,(j):
A0 =y 0 Z D 40 (s ) (17a)
82() 82[) 82()
<aa>021 b <8n>2L b <aa>0:0 0 (476)
o) o) O
<"0> ~ 0, ("0> =0, (“0> =0, (47c)
do ) _, on )y, do ) . _,
Lo® = A — (L + M), (47d)
Tteration process begins with 20 = z,. At every successive step the correction ¢(*) will

be find solving elliptical equation (47d) and the result will be added to the previous
value z(—1 to get the new one, 2",

The described original algorithm of Miranda can be successfully applied in the rigid-lid
model, though in the lower boundary condition I'y is dependent on 2’. This is achieved
in this way that after each iteration the iterated solution is extrapolated from internal
point to the boundary according to the rule

(i) — ,® + pl(z(i—l)) Ao . (47¢)

zBoundary Boundary—1

In the case of the free boundary model it is possible to develop an algorithm, which is
very close to the Miranda algorithm, just described. For that it is necessary to take for
zp a function which satisfies on lateral boundary nonhomogeneous boundary condition,
but at the bottom and at the top — homogeneous one. Consequently, for z; an opposite
boundary condition holds. The whole algorithm reads as

20 =z, 20 =D 4o (> 1) (48a)
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3zb . 321) B B
(%)JZl - 07 (an>2L = FL7 (Zb)o'zo = 07 (48b)

921" iy (92 PO _ o (-1)
(80)_1_F1(z ), Wz =0, Lz, = GA - Mz ) (48¢)

L2 = A — Lz — M1 (48d)

Note that in this model z; is in discrete case zero everywhere except the lateral boundary
(i.e., it is zero in addition to the internal points, at the bottom and top).

The used initialization z(®) = z, does not satisfy boundary conditions at the top and
bottom, still boundary conditions will be satisfied completely beginning with ¢ = 1. The
advantage of the proposed initial approximation is similarity of the iteration process for
all steps beginning with ¢ = 1.

For the iteration correction function (46) algorithm (48) becomes

20 =z, 2D =04 0> 1) (49a)
0z 0z
il _ 0zp _ T _ ,
(80- )a:l 0 ’ (871, >2L L, (Zb)o.:() 0 ) ( 9b)
dp®) B (i-1) (i-2) 9@ B
< do >a:1 = I'i(z ) — I'i(z ) on . =0, (49c¢)
Lot = G[A = (£ + M), (49d)
E(p(i) = A —(L + M)Z(i—l). (49¢)

The boundary condition at the top, (49d), has been taken in accordance with the right
side of (49e). A direct deduction from (48c) yields the upper boundary condition in the
form

go(i)|[,:0 - _ @M(p(i—l) )

It is easy to prove that this condition is equivalent to (49d). In addition, it is possible
to change the quite inconvenient lower boundary condition (49c) to a more simple one,

D™ B
( a >U:1 _ (197)

if one uses the extrapolation algorithm (47e) at the lower boundary.
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CHAPTER SIX

Numerical Scheme NHAD

In this chapter a short description of the numerical algorithm NHAD is presented, which
realizes ideas of previous sections. Discussion is illustrated with modeling examples.

Model NHAD (= NonHydrostatic Adjusted Dynamics) is a modification and gener-
alization of the model NH3D of Miranda (1990). It includes the NH3D as a sub-case,
which can be switched on with a logical key ADJUST. With ADJUST=.F. the algorithm
works as the NH3D, with ADJUST=.T. the modified version is launched.

6.1. General characteristics
NHAD is a sigma coordinate model.

Integration (modeling) domain is a rectangular area in the sigma-space with dimensions
Ny Az x Ny - Ay x N, - Ao.

The grid used is a staggered grid (Winninghoff, 1968, Williams, 1969), known in atmo-
spheric dynamics as the Arakawa C-grid (Arakawa and Lamb, 1977, Cullen, 1991), see
Fig. 6.1. At this grid the rectangle domain is divided into small cubes. Scalar fields,
like z, ®, T', V-v, are given at central points of each cube and represent the mean value
of any field inside that cube. Components of vector fields, like v, Vi etc, are treated as
normal flux components at cube boundary, and are given at central points of cube sides,
as shown in Fig. 6.1c. Central points of cubes are treated as the primary grid, and
scalar fields are defined on the primary grid. Central points of cube sides represent the
grid-points of secondary grid. Components of vector fields are defined on the secondary
grid. The specific feature of the staggered grid is, that different components of a vector
are determined at different grid-points.

The main advantage of the staggered grid is mutual symmetry of gradient and divergence
operations. Any gradient, defined with the help of difference formula
~ Pit+1jk — Pijk ~ Pij+1k — Pijk ~ Pijk+1 — Pijk

Vehae = 072G T3 TV gy

in an object of secondary grid. Vice versa, the finite-difference divergence

a., —a? .. a*., — a®. a?.. —a¥.
ijk 1—1j5k ijk 1j—1k ijk ijk—1
(V . a)ijk = + +

N Ao Ax Ay

is a scalar field on primary grid. This symmetry allows to maintain almost automatically
the basic conservation laws, supposing the equations of motion are written in divergent
form before discretization (Haltiner and Williams 1980, Cullen 1991).
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Equations used are those of Miranda, ie. model equations (5.127).

Time integration scheme is an explicit leap-frog algorithm. Differently from hydrostatic
models, where intensive buoyancy wave generation (by an explicit scheme) determines
the need in quite sophisticated semi-implicit leapfrog schemes (Hoskins and Simmons,
1975), the NH models are stable with the simple explicit one. For temporal smooth-
ing and for suppressing of the decoupling tendency, inherent to leapfrog schemes, an
Asselin filtering technique (Robert, 1966, Asselin, 1972) is applied with the smoothing
parameter Yasserin = 0.05.
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Spatial filtering. Two spacial filtering mechanisms are employed. The fourth oder filter
is used to suppress short-scale instabilities with wavelengths < two grid-length. This is
the one used initially by Durran and Klemp (1983) and generalized by Miranda (1990)
to the 3D case.

Another filtering (optional) is the Rayleigh filtering at the top of the atmosphere. Its aim
is to avoid instabilities due to excessively large amplitudes of gravity waves. In the orig-
inal NH3D version Miranda employs the Rayleigh filtering to suppress the gravity-wave
reflection at the top (the sponge-layer idea). In models with an free upper boundary
there is no wave-reflection and the only aim of Rayleigh filtering is stability maintenance.

6.2. Geometry of the domain of integration in the p—space

The domain is fixed in the pressure space, and the effective ground surface pressure
px 1s treated in accordance with (5.18) time-independent. As it was pointed in Section
5.3, this assumption is self-concordant in the framework of MPM with mean H, in the
sense that replacements of air particles at lower boundary are allays parallel to lower
boundary the in p-space and thus, do not change the configuration of the domain. This
quality is mathematically expressed as

Ops _ Opx
ot Ot

=0,

and corresponds in the NH case to the usual vertically integrated mass balance condition
of hydrostatic models (see (5.8))

1
V(p_*/ vda) = 0.
0

In our NH model the last condition is satisfied automatically, if it is fulfilled at initial
moment (see (5.18b) an discussion to it). The ground surface pressure fluctuations are
nevertheless different from zero. Like in the hydrostatic models they can be evaluated
from z fluctuations at o = 1 (See appendix 1)

P

v (m) ®

6.3. Numerical solution of the z’—equation

Central task at every time-step is solution of the diagnostical equation for z’. This
is done as described in section 5.6, with discrete versions of operators £ and M and
source A. The model supports two kinds of boundary conditions for z’: the rigid lid
upper boundary condition (starts with logical parameter RIGLID=.T.) and the free
upper boundary condition (RIGLID=.F.). The consequent problem formulations are
given by formulae (5.47) and (5.49). Equations (5.47d) and (5.49¢), which are of the
same form and differ in essence by the upper boundary condition only, are solved in ¢(*)
with the help of fast cosinus-Fourier transform (FCFT). The FCFT is suitable because
functions (" have zero normal gradients at lateral boundaries. The solution algorithm
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is different from that of Miranda. Equations (5.47d) and (5.49e) take after application
of the FCFT at every horizontal wave vector k; ; form (subscripts 7, j are omitted)

A1(Dpi—1 + As(D)wr + As(l)pry1 = By, (2)

where indices [ correspond to discrete o-levels and B; represents the FCF-transformed
right hand side of equations. Equation (2) represents the finite-difference analogue of
equation (compare with (5.39b))

% <§2%> ~ K% = Blo). (2')

Difference equation (2) is treated as ordinary recurrence formula enabling to determine
@11 for known ¢; and ¢;41. The recursion is started at the lower boundary [ = Nj.
For initialization of the recurrence values of pns and ¢ns_1 are needed. In both cases
(rigid lid and free upper boundary) we are interested in solutions which satisfy the
homogeneous Neumann condition at the bottom, which in finite-difference formulation
reads as

YNs = PNs—1 - (3)

There exist two special solutions, which are independent and satisfy the homogeneous
Neumann condition at the lower boundary, which we denote as ¢! and ¢!!:

o't Bl # 0, ¢, = dne_1 = 0, (4a)

¢ B =0, ¢N, = N,1 = 1. (4b)

The first special solution is calculated for actual source, B, and it is zero along with the
first derivative at the lower boundary. The second solution is calculated for homogeneous
recurrence (ie. B = 0), and it has the unit value and zero first derivative at the lower
boundary.

Any solution
o = ¢' + o' (5)

will satisfy the nonhomogeneous recursion (2) with boundary condition (3). Parameter
[ can be used for satisfaction of the remaining boundary condition. Here is difference
for k = 0 and k # 0. Let us consider at first k # 0. In the case the upper boundary
condition can be used for 4 determination. For the rigid lid model this condition is the
homogeneous Neumann at the top:

and it yields

I I
B:_qsl_qso . (6(1)

ool
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In the case of the free-boundary condition (5.49d) should be used for the determination
of #. In explicit representation for ¢ (superscript (i) is omitted for simplicity) it reads

(see (5.36¢”)
- (dflfj))o = (- Do) = A0 (7)

p2 + 17

where A(0) represents the right side of (5.49d) for current iteration. As o = 0 represents
in staggered grid the half-(or ”gradient”-)level, ¢(0) and A(0) must be interpolated
from levels [ = 0 and [ = 1. The choice of A(0) is (for the real atmosphere conditions)
determined with sub-grid processes in the upper stratosphere and thus, represents a
subject for physical parametrization rather than of mathematical extrapolation from
the lower atmosphere. The right hand term in (7) corresponds to the situation, where
source A decays linearly from level ¢ = 0 to zero at the infinity. As a result, its
interpolated value in discrete model is (Ag + A1)/2 = A;/2 and the finite-difference
analogue of (7) reads

bowo + bipr = b, (8a)

where
b() = /L2—1+20'0/A0', b1 = [1,2—1—20'0/A0', (Sb)
be = Ar/(p2+1) . (8¢)

With the help of this boundary condition we get for (3

_ bodt + bigl + b
bodp! + bigpf!

6 =

Another possibility is to choose A zero at the level ¢ = 0 already, which yields
b, = 0. (8¢)

As numeric modeling demonstrates, approximations (8c) and (8¢’) yield very close re-
sults in real conditions.

Thus, (5) and (6a) determine the solution of rigid-lid problem, (5.47), and (5) and (9)
determine the solution of free-boundary problem, (5.49), in the Fourier-space. Still, they
do this with one exception: k must differ from zero. For zero wave-number, k = 0,
described solutions does not exist. The reason for such peculiarity is that for special
case k = 0 values of the first derivative d¢p/do are not independent at the ends of
integration domain. This is easy verify, integrating (2’) once at k = 0:

dp 1 1 ,
3_0'_5_2(0_/UBd0->7

where C' is the constant of integration. This constant determines the first derivative
of ¢ everywhere uniquely. Choosing (0¢/do); = 0, i.e. C = 0, we cannot insist
on the predetermined value of vertical derivative at the upper boundary anymore. At
the same time both models, if applied at k = 0, would require predetermined value for
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the first derivative at the upper boundary: dp/do = 0 for the rigid-lid and dp/do =
A(0)/oo/(p2 + 1) (because p2 —1 = 0 in (7) for k = 0) for the free-boundary model.

For this reason in the zero wave-vector case the homogeneous Dirichlet condition at the
bottom is taken for the remaining boundary condition:

Dy
el ’ <80>1 7

which for discrete solution (5) implies

k=0: B8=0. (10)

6.4. Initialization

At the initial moment ¢ = 0 the rigid lid condition (5.30c) is assumed for horizontal
velocity v in both upper boundary models. This condition is not absolutely necessary
for the free upper boundary, but even quite moderate deviation from the exact balance
can cause violent buoyancy oscillations of the model atmosphere.

If an optional initial field v;, does not satisfy (5.30c), it is projected into the linear
space of vertically non-divergent vectors:

1
Vin = Vj§ V-(p*/ vfda> = 0,
0

by making a simplest assumption

1
Vin = Vv + p—V@,

where ® = &(x,y) is a height-independent potential which can be determined from

equation
1
Vi = V- (p*/ vmda> :
0

The same projection procedure is used in the rigid-lid model periodically at every nth
time step.

6.5. Diagnostical evaluation of vertical velocity.

If initial vertical velocity fields satisfy conditions (5.18a), (5.18b) and (5.17a), the same
relations will hold (due to the choice of 2’) for all successive moments. That means,
instead of the use of the evolutionary equation for w, (5.17b), one can use successively
relations (5.18a) and (5.17a). Of course, do to the small computational errors the ver-
tical sigma-velocity at the ground, 1, can become different from zero, and a correction
is needed. In NHAD the correction algorithm, employed at every step, is as follows

. . . . [ /

Ofin = Oin — 0-(Oin)1, Oin = — p_ . V- (p«v)do’ .
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6.6. Numerical tests with the rigid-lid model

In Fig. 6.2 results of mountain wave simulations with the rigid-lid version of the NHAD
are presented. Modelling is performed for an isolated bell-shape mountain with hg = 1
km and [/, = 30 km, [, = co. Upstream incident flow is an uniform wind with U = 25
m/s,and N = 1072 s~ Grid-size is Az = Ay = 10 km and time step is 10 s. The rigid
lid is replaced at the level p;,, = 50 mb. Model includes a Rayleigh absorption layer
between 12 km and top levels with maximum characteristic e-fold relaxation period 7.,
= 300 s at the top. Figures represent isolines of the total potential temperature with
the interval A© = 1K.

10.0 E
Fig. 6.2a

7.5 Comparison of mod-

els NH3D and NHAD.

Z, km

5.0 F——

Potential temper-
ature isolines with
interval 1 K.
Integration period:
5000 s.

2.5

Because the flow is slipping, non-viscous and effectively two-dimensional (though the
integration domain is three-dimensional with the ground area 320x160 km), the isolines
of potential temperature coincide in this particular situation with streamlines.

Integration is started with an initial flow, which is obtained from the uniform flow
(u, v, w) = (U, 0, 0) with the help of the initialization procedure, described in section
6.4, and it is carried on until the approximate stationary state is established.

In Fig. 6.2a model calculation results for original version by Miranda, NH3D, and
the rigid-lid version of NHAD are compared for identical conditions. As this figure
demonstrates, the NH3D is effectively a rigid-lid model.
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10.0

Fig. 6.2b

75 E Comparison of the
: linear stationary
exact model and
NHAD.

Potential temper-
ature isolines as
in Fig. 6.1a
Integration period
for NHAD: 5000

S.

Z, km

50 £

25—

— Linear EXM NHAD |

As demonstrates Fig. 6.2b, the rigid-lid model is quite different from the exact linear
stationary solution, especially in the upper atmosphere, where the rigid-lid constriction
suppresses vertical wave-replacements very effectively. Because for the given parame-
ters the linear stationary solution is very close to the nonlinear exact solution, we can
conclude, that the rigid-lid approximation is applicable, if the modelling of lower tro-
posphere is only required and even in this case the upper boundary should be lifted to
high elevations.

The rigid-lid model represents a quite stable integration scheme and allows relatively
large time steps. In Fig. 6.1c the results for model with time step 50 s are compared to
a model with time-step 10 s. (the same as in Fig. 6.1a and b). In addition the Rayleigh
dumping is switched out for the model with large time-step. This causes slightly larger
waves in the upper atmosphere, but does not involve numerical instability.

It should be pointed also, that the relaxation period, during which the initial flow
transforms to the stationary, is at the rigid-lid case approximately twice shorter as for
the free-boundary model.
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At the same time, the stability of a stationary flow over an isolated mountain depends
(even for exact solutions) on the upper boundary condition. There can exist flows,
which are stable (at the same background conditions) for free upper boundary but
become unstable for the rigid-lid one. An example represents flow with parameters U
=20 m/s, N = 1072 s7% hg = 1 km, I, = 10 km. This model is known as a stable
(Baines, 1995) for free-boundary condition but it makes turbulent after approximately
on hour evolution, if the rigid-lid condition is applied.

6.7. Numerical tests with the free-boundary model

Computation results with free-boundary models are represented in Fig. 6.3. Model
parameters are the same as in Fig. 6.2a, except the integration time step, which is 60
s, and the Rayleigh top relaxation time, 7., = 500 s.

In Fig. 6.3a the potential temperature isolines for the free-boundary NHAD model and
for the linear ExM are presented. As seen, the coincidence of models is good in the
lower and medium-level atmosphere, up to height 8 — 10 km. Deviations above that
level are caused by nonlinear effects, which become significant, if the wave amplitude
increases, and which are omitted by the linear model. Thus, the free-boundary NHAD
model is here the most representative one.
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Potential temper-
ature isolines of
the free-boundary
NHAD. Compar-
ison with the ex-
act linear station-
ary solution.

Integration period
is 12 000 s .

7.5 E

Z, km

50 F—

25— —

,,,,,,,,,,, Linear ExM
NHAD, Free boundary

The presented in Fig. 6.3a NHAD solution corresponds to upper boundary condition
(8a) with the ”exact” right hand term, (8c). Effect on this term in the upper boundary
condition on the solution is demonstrated in the next Figure, where modeling results
for (8c) and (8¢’) are compared for the same model conditions as in Fig. 6.3a.

10.0 Fig. 6.3b
Free-boundary NHAD.
A comparison of

the effect of term

be, in (8a), on

the solution.

Integration period:
12 000 s .

75 &

Z, km

5.0

2.5

[——  ExactRHS. RH.S=0]

The conclusion from this example is, that the nonhomogeneous (5.36¢’) can be replaced
without any loss of precision with the homogeneous one.
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In Fig. 6.4a and 6.4b modeling results with shorter orography, [,, = 10 km, are presented.
The incident wind speed is U = 25 m/s in Fig. 6.4a, and 10 m/s in Fig. 6.4b. Other
parameters are:

ho =1km,l, =00, N = 1072 57!, Az = Ay = 5 km, and time step is 30 s. Upper
boundary is at the level p;,, = 25 mb. Model includes a Rayleigh absorption layer
between 12 km and top level, 7,, = 500 s.

10.0 N\\ Fig. 6.4a
W’\ﬁ Potential temper-
75 W ature waves for
' ﬂﬁ/ﬁ— U =25m/s over
£ W a mountain with
S W l, = 10 km.
. W Integration period:
0 m
-50 -25 0 25 50
1 ——— T — T T
s
-
/—//\/\k
100 % Fig. 6.4b
—/W
% Potential temper-
75 % ature waves for
e — ————— ———— U=wnps
_NY- W Other parameters
5.0 W as in Fig. 6.4a.
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Conclusions from the modeling are:

Free-boundary NHAD yields results, which are in good accordance with exact analytical
solutions in situations where the last ones are available.

Free-boundary model is more stable (in comparison with the rigid lid model) numerically
and permits slightly (up to 20 %) larger time steps.

Transition from initial profile to the stationary regime is not so rapid as for the rigid-lid
model and is, obviously, in a better agreement with the reality.

The general conclusion is that the free-boundary variant of the NHAD is most relevant
for modeling of slow dynamical processes in mesoscale and shorter synoptic scale and it
can be used, after updating with necessary physical paramterizations, for modeling of
real processes in the atmosphere.
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APPENDIX 1
Expansion of the geopotential height in c—coordinate framework

Geopotential height (1.1) can be presented as
1 /
H t
Ax, 0, 1) = h(x) + / Mda' 4 oan(x, o, t)
- o

where the last term represents the non-static correction, which corresponds to density
fluctuation n’, and the remaining terms correspond to static contribution. From this
expansion a lower boundary condition follows

Zn|1 =0.

Presenting the temperature as a sum of the background value and fluctuative contribu-
tion,
T(x, o, ) = Tylosps(x, ] + T'(x, 0, t)

where background temperature Tp(p) generates the corresponding height-scale
H(x, o, t) = Hplo*po(x, t)] + H'(x, o, t)
we obtain without any approximation
z(x, 0, t) = z(x, 0, t) + 2'(x, 7, t) (A.1la)
where z, represents the background height, which can be expressed as a function of zy:
ze(x, 0, t) = Zolo *Po(x, t)] . (A.1b)

z0(p) depends on the mean temperature Tp(p) (assuming that py corresponds to the
same mean temperature distribution):

Do (x) Ho(p’)dp’ B /a Ho(p')dp'
P’ » P

mm=mm+L

Z' presents as

1 s
H t
Z(x, o, t) = zp(x, t) + / %da' + za(x, o, t), (A.1c)
and zp is the baric component, independent of o:
po(x,t) H
2(x, t) = / 0(p)dp (A.1d)
Po(x) p
Following fundamental features hold:
o 0z
: po 0o bo (4.20)
Z/|0':1 = Zb, Z*|o‘:1 = h — Zb (A2b)
H, H, H,
Vz, = (—0> Vpo — (—0> Vo =~ <—0> Vpj (A.2¢)
P/ pg P /5 P /5
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