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INTRODUCTION

The aim of this investigation is to present a comprehensive introduction to nonhydro�
static atmospheric dynamics in the uni�ed pressure�coordinate framework�

The pressure �or isobaric� coordinates �further �p�coordinates� as well as the �p�space�
will be often used� were introduced by Eliassen ��	�	�� their adaptation to the non�
uniform ground conditions was developed by Phillips ��	���� Representation of the
hydrostatic �HS� dynamics� which was �and still is� prevailing in climate modeling and
weather forecast problems� in pressure�coordinates became instantly popular and is
dominating in large�scale atmospheric dynamics up to date� One reason for such pop�
ularity is that the p�coordinates are the ones in which the real atmospheric sounding
results are recorded� The balloon�borne radio�sounds present temperature� humidity
and wind component as functions of pressure p �besides horizontal coordinates� x� y�
and time� t� rather than the balloon height� z� Another reason for the popularity of
pressure�coordinates� more fundamental for theoretical investigations� is that the atmo�
sphere is incompressible and its dynamics represents circulation of an incompressible
liquid in p�space� supposing the governing equations are HS equations� This is un�
derstandable because incompressible �ows have many advantages in comparison with
compressible models� the number of independent functions is less by one
 fast acoustic
disturbances are removed
 mathematical formulation and interpretation of the results
is simpler
 there exist several nonlinear� nonstationary problems with known exact an�
alytical solutions� These multiple advantages make pressure�space very attractive for
theoreticians and fully compensate the only disadvantage� the p�space is a little bit
more abstract and it takes some additional e�orts to become familiar with it�

The growing resolution of both numerical forecast and climate models as well as the
growing requirements to the model precision has brought the transition from hydrostatic
dynamics to nonhydrostatic �NH� models into limelight� The development of nonhydro�
static models has been going on for about three decades� it started with the development
of NH models for mesoscale�investigations �Ogura and Charney �	��� Dutton and Fichtl
�	�	� Miller and Pearce �	��� Tapp and White �	��� Klemp and Wilhelmson �	��� Re�
delsberger and Sommeria �	��� Pielke �	���� The present state of a�airs in use of NH
models in operational forecast is that they are as a rule high�resolution meso�models
and are treated as supporting tools in addition to the main HS forecast models� In the
next �ve to ten year period all HS models are likely to be replaced or updated to NH
versions�

For general circulation and local�area forecast models the NH�updating process must
go on in the way that the connections with existing models� computing environment
and pre� and post�processing utilities were not lost� In such a situation dynamic models
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gain primary signi�cance which enable employment of NH dynamics without departure
with pressure related coordinate�spaces� Three main trends can be recognized�

i� Models which employ actual pressure of an air�particle for its vertical coordinate
�Miller �	��� Miller and Pearce �	��� Miller and White �	��� White �	�	� R�o�om �		���
This trend has a longer history�
ii� Models which employ the hydrostatic component of pressure �eld as a vertical
coordinate �Laprise �		��� this coordinate system is used for instance in the Meteo�
France model Aladin�
iii� Models which use the hydrostatic mean background pressure �eld in the role of a
vertical coordinate� This coordinate frame is employed in the NH�extension of the Penn
State � NCAR model �Dudhia �		���

The �rst and probably best known NH model in pressure space is the Miller�Pearce
model� hereafter the MPM �Miller �	��� Miller and Pearce �	���� This model abandons
the hydrostatic equilibrium assumption in favour of the full vertical momentum equation
but postulates the incompressibility of motion in pressure�space and in this way �lters
the acoustic mode�� In a most general form the MPM is presented by White� �	�	� Ma�
jority of numerical relaxation and physical �ltering schemes employ partial linearization
with separation of the background and perturbation states� This is needed for explicit
revealing of acoustic subsystem of the model� The MPM is not an exclusion in this
respect� The White generalization represents an exception in this respect� because it
substitutes the horizontally homogeneous background temperature of the original MPM
by an optional background temperature �eld which can represent some real synoptical
situation� This generality makes the White version quite valuable� The MPM was orig�
inally designed in p�coordinates� sigma�coordinate versions were developed by Miller
and White� �	��� and used in numerical modeling by Xue and Thorpe� �		�� and Mi�
randa and James� �		�� Still� there existed many unresolved or theoretically poorly
founded aspects of the model� owing their origin to the phenomenological rather than
theoretical foundation� like problems with changing geometry and boundary values of
di�erent �eld on these replacing boundaries� and the question of scales of application
�is there a limiting scale� below of which the Miller�Pearce model cannot be applied�
or is it valid until the laboratory scale��� Therefore� further theoretical investigation in
the �eld of NH p�space dynamics is actual and necessary�

The present technical report makes an attempt to �ll some existing gaps in the theory
of nonhydrostatic pressure�space dynamics� General nonhydrostatic non�ltered hydro�
dynamic equations in pressure coordinates �R�o�om �	�	� �		�� yield a ground for such
theoretical task� This model� hereafter referred to as the ExM �the Exact Model� is de�
duced with the help of the direct transformation of complete non�ltered equations� using
the curvilinear coordinate covariant di�erencing formalism� from the ordinary space to
the p�space� It does not assume any preliminary simpli�cation �including the preser�
vation of the full Coriolis force�� Using these equations as a starting point� it makes
possible a systematic treatment of acoustic relaxation process and rise of incompressible
motion in pressure space� as well as reexamination of the boundary value problem� As

� In this respect the MPM represents a version of anelastic models�

�



a result� our understanding of the NH dynamics in p�space should improve� which will
result in better numerical forecast and circulation models�

The main objectives of the present technical report are�

� to establish a systematic way of deduction of �ltered models in pressure space


� to estimate quality and domains of applications of di�erent �ltered models


� to examine quality of nonlinear �ltered models� especially the geopotential height
equation and its boundary value problem


� give recommendations for creation of numerical algorithms


� elaborate an example numerical algorithm to prove these recommendations�

The content of the report is as follows�

In Chapter One the basic equations �the ExM� are presented and discussed and the
formal transition to the MPM is described�

In Chapters Two to Four the main topics are the �ltering problems and the quality es�
timation of �ltered models� In these chapters the treatment is mainly engaged in linear
models� In Chapter Two a systematical way of acoustic �ltering of the initial com�
plete linear ExM is proposed and elaborated� which bases on the use of the Lagrangian
formulation of linear hydrodynamics along with the least action �Hamiltonian� princi�
ple� The output of the �ltering is a model called the �Elastic �ltered model� �EFM�
which is di�erent from the common MPM� The most fundamental quality of the EFM
is that it supports �weakly� compressible dynamics in pressure�space �this justi�es its
name�� Chapter Three has the assisting nature� its aim is to generalize linear models
of the previous chapter �both the complete and �ltered versions�� designed for resting
background� to more general shear��ow background conditions in the presence of the
Coriolis force� The aim of this generalization is to get p�space models which are simple
and allow analytical solutions and at the same time are close enought to real atmo�
spheric conditions� The corresponding linear equation for the MPM and hydrostatic
primitive�equation model �HSM� are deduced as well� All developed models are subject
to numerical modeling and mutual comparison in Chapter Four� General conclusions
from modeling with linear equations is that �I� the EFM can be employed without
spacial�scale restrictions� i�e� it is an all�scale model� valid from micro�turbulence �l �
�� cm� till planetary scale �l � �� ��� km� dynamics
 �II� the MPM is applicable in
scales l � ��� m� The conclusion that the domain of the MPM is restricted from short�
scale side is certainly unexpected� Still� the MPM includes all the planetary� synoptic
and meso�scale domains� leaving out the small�scale convection and turbulent mixing
processes only� Along with the incompressibility of the MPM this means that the MPM
claims to be a most useful �ltered model�

The general topic of Chapters Five and Six is the numerical modeling of the nonlinear
atmospheric dynamics in a limited area with typical dimensions in horizontal directions
������� km�� In Chapter Five the nonlinear equations �both ExM and �ltered models�
are transformed into the ��space� which presents a convenient way for the introduction
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of orography� Still� the main objective of the chapter is the study of the diagnosti�
cal equation for the nonhydrostatic geopotential height distribution� This is a Poisson
equation and it represents a most fundamental relationship in all acoustically adjusted
�relaxed� nonhydrostatic models� as �the gradient of� its solution determines the main
actual force acting on an air�particle in the atmosphere� Much attention is paid to the
boundary conditions of this equation� The double character of model geometry � atmo�
sphere is a compressible gas in ordinary physical space with �rm lower and free upper
boundary� whereas in the p�space it represents an incompressible liquid with �xed upper
and free lower boundary � is a potential source for misinterpretations� The main idea
used in the present investigation to clear the situation is that the lower boundary �and
lateral boundaries� if the model has ones� is treated as an ideal constraint� This leads
to the interpretation of normal gradient of the geopotential height at the boundary as
forces of constraint reaction� At the upper boundary both the rigid�lid and free�surface
conditions are applied in the physical space� which leads to two di�erent models� The
rigid�lid model is arti�cial and it is developed to demonstrate the role of upper boundary
condition� The main model is the �free upper boundary model� which assumes that
there is no upper boundary in the physical space at all� Corresponding free boundary
condition is formulated in the p�space using a special solution�continuation technique�
The deduced condition is a generalization of the �radiative� boundary condition�

In Chapter Six ideas of previous Chapters are applied for the creation of a simple
adiabatic numerical model in pressure coordinates� As the departure point the numerical
model NH�D� elaborated by Miranda ��		��� is used� Besides the boundary condition
and initialization revision the main modi�cation is that the domain� occupied by the
atmosphere in the p�space� is the �xed one during integration� Numerical experiments
with the new version and comparison of results with analytical solutions exhibit its good
precision and numerical stability� Along with the results of previous chapters this leads
to the general conclusion� that the proposed pressure�space models are useful tools in
numerical applications and have good perspective to be employed in the future forecast
and general circulation models of the atmosphere�

As this investigation represents the �rst attempt to describe nonhydrostatic acoustically
�ltered dynamics in pressure�space in an uni�ed framework on the base of general non�
hydrostatic p�space equations� the presented material is original in major part and is
published �rst here�

An initial heading of the present investigation� which was carried out as the Grant
NO� ��� under the sponsorship of the Estonian Science Foundation� was �Dynamic
model of local atmospheric circulation for mesoscale processes and air pollution study��
The developed numerical model NHAD� described in the last Chapter� represents the
realization of this heading� Still� the actual main trend of the realized investigation
turned out to be in the area of pressure�space dynamic foundation rather than in the
�eld of elaboration of speci�c applications� therefore the �nal heading was corrected to
be more concordant with the actual content�
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CHAPTER ONE

Basic Equations in Pressure Coordinates

���� Height of the isobaric surface�

In general case the pressure �eld p�x� y� z� consists of hydrostatic main component� ps�
and a NH correction� pn� p � ps � pn� Correspondingly� in pressure coordinates �x� p��
x � �x� y�� the height of an isobaric surface z�x� p� t� presents in the similar way
�Fig� �����

z�x� p� t� � zs�x� p� t� � zn�x� p� t� � ��a�

zs�x� p� t� � h�x� �
R

g

Z p��x� t�

p

T �x� p�� t�
p�

dp� � ��b�

Here h�x� p� t� is the height of the ground above sea�level� p��x� t� represents the
atmospheric pressure �eld at the ground and T �x� p� t� is the temperature� The hy�
drostatic height component zs corresponds to the height� which the particle will have�
if the pressure inside that particle is entirely determined by hydrostatic e�ect� i�e�� by
the weight of the atmospheric column above that particle� The remaining part of the
height� zn� is de�ned as the di�erence of actual and hydrostatic heights of the parti�
cle� The independent height�coordinate� p� corresponds to the actual pressure in the
particle� Such pressure interpretation performs the most fundamental di�erence of this
model from models of Laprise �		�� with the hydrostatic pressure in the role of vertical
coordinate� and Dudhia �		�� with the undisturbed background pressure as the vertical
coordinate�

sea
level

z(x,p)
z (x,p)
z(p)

s

z(p)

x

z

z’ z n

z(x,p)

Fig� ���

Components of the isobaric
height in the NH atmosphere�

	



The correction term zn is entirely caused by the nonhydrostatic pressure deviation pn�
Because jznj �� zs and jpnj �� p in the atmosphere� the nonhydrostatic pressure
and height corrections are related as �Fig� ����

zn
H

� pn
p

���

where H � RT�g is the height scale of the atmosphere� For processes with in�nites�
imal amplitudes �which can be described in the framework of linearized models� this
approximate equality may be replaced by the exact one

zn
H

�
pn
p

� ����

These formulae are useful for comparison of di�erent pressure� and height�coordinate
models� as they permit to express pressure�forces via gradients of the geopotential height
and vice versa�

z

z(p)
z (p)

p

z

p

p(z)p (z)

s

s

n

n

s

ϕ
ϕ

(z,p)=0

(z,p)=0 Fig� ��	

Illustration of formula����
� and �s are the implicit
actual and hydrostatic re�
lationships between z and p
for �xed t and x�

��	� General NH equations in p�coordinates�

If the pressure �eld is a monotone function of height�

�p

�z
� � �

then it is possible to transform the dynamic equations of the atmosphere from Carte�
sian coordinates fx� y� z� tg to pressure coordinates fx� y� p� tg� disregarding the
hydrostatic assumption� Such transformation can be performed� using the curvilinear
coordinate transformation and covariant di�erencing technique �R�o�om �	�	� �		��� The

��



resulting complete� non�ltered� nonhydrostatic p�coordinate equations can be presented
after minor simpli�cation of the Coriolis force in the form�

dz

dt
� w ��a�

n
dw

dt
� g�� � n� � ��b�

n
dv

dt
� � gr z � nf�z� v � ��c�

dT

dt
�

RT�

cpp
� Q � ��d�

dn

dt
� � n�r � v � ����p� � ��e�

n � � p

H

�z

�p
� ��f�

Here v � �u� v� and w are horizontal wind vector and vertical wind respectively�
� � dp�dt presents the omega�velocity of an air particle� n is the normalized� nondi�
mensional density in pressure coordinates� which is related to the ordinary air density
as�

n	p � g
	z �

Q is the thermal forcing �heat source divided by cp�� p� presents the ground surface
pressure� �z represents the vertical unit vector� and the total �or Lagrangian� derivative
is de�ned as

d

dt
�

�

�t
� v � r � �

�

�p
�

���� Boundary conditions

Conditions at the lateral boundaries are the same as in Cartesian coordinate models and
do not present special interest in the context of the present study� The main di�erences
with the ordinary model occur in the �horizontal� conditions at the top and at the
bottom� The domain occupied by the atmosphere is

� � p � p��x� t� ��a�

where the lower boundary surface in the p�space� p�� is not �xed� but evolves in accor�
dance with the equation

dp�
dt

� �jp� � ��b�

which expresses the condition that the lower boundary consists all the time of the same
air particles� Thus� domain is varying in time and ��b� presents an additional evolutional
�prognostic� equation which must be integrated simultaneously with the system ����
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Boundary conditions at p � p��x� t� and p � � are

zjp� � h�x� � ��a�

�j� � � � ��b�

The �rst assumes the existence of rigid underlying surface in the ordinary physical space�
The second de�nes a �xed boundary in the p�space at the level p � �� this boundary
condition forbids the mass out�ow to the cosmos in the physical space�

Relations ��� and ��� de�ne the prime boundary conditions� Other conditions at bound�
aries which arise in the course of particular problem formulation� model simpli�cation
and discretization must be concordant with the primary one� The most common sec�
ondary condition� which will be employed further at mountain�wave simulation and in
numerical schemes� is the slipping condition at the lower boundary� which follows at the
di�erencing of ��a� in time�

wjp� � vp� � rh � ��a��

If a continuous medium has a bounding surface� which moves in accordance with a
di�erential equation governed by the state of that medium� this surface is called free�
In this respect p��x� t� describes a free boundary and in the p�space the atmosphere
is a continuous medium with free surface at p � p�� At the same time� at the level
p � � there exists a rigid lid in the p�space in accordance with ��b�� The situation
in the p�space is just opposite with conditions in the ordinary Cartesian space� where
atmosphere has the rigid boundary at the bottom �condition ��a��� but has no de�nite
boundary at the top�

��
� Diagnostic equation for �� Time�order lowering

Model ��� presents a closed system consisting of seven equations for seven �elds z� u�
v� w� T � n and �� All quantities here� except �� are prognostic �elds� and system
��� includes a single diagnostic equation ��f�� This equation must be used for the
determination of the diagnostic �eld �� As ��f� does not include � explicitly� the only
way to proceed is to di�erentiate ��f� by t and eliminate time derivatives by the help of
other equations in system ���� The result is an explicit equation for �

�
�

p
� Q

T
�

p

nH

�
�w

�p
� �v

�p
r z

�
� r � v � � D � ���

where

� �
cv
cp

�

In equation ��� the quantity on the right hand side� denoted as D� represents the diver�
gence of the three�dimensional velocity fu� v� wg in the common Cartesian space�

D �

�
�u

�x

�
y�z

�

�
�v

�y

�
x�z

�

�
�w

�z

�
x�y

�
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Thus� ��� is the general tendency equation for the thermodynamic pressure �eld� appear�
ing in the isobaric coordinate space as a diagnostic relationship� It is a thermodynamic
de�nition for � and presents a standard form of the thermodynamic equation� written
in terms of dp�dt upon application of the continuity equation and the perfect gas law�
As the pressure plays the key�role in acoustic adjustment� ��� will be an equation of
primary signi�cance for further treatment�

Now� after the diagnostic equation for � has been derived� the initial relationship for its
derivation� equation ��f�� has played its role� and� in principal plane� it may be dropped
from further treatment� But there exists an alternative possibility � we can employ
diagnostic equation ��f� for the determination of one of three dependent variables �z�
n� T �� and drop the evolutional equation for that variable �ie� ��a�� ��e� or ��d�� from
consideration� This means� we can go ahead with three di�erent sets of equations� which
di�er by appearance but are all equivalent to each other� As a result of modi�cation�
the time�order of the �nal model will be �ve� ie�� it will be by one step smaller than in
the initial equations ���� The reduced in this way model we shall use in point ����

���� The primitive�equation asymptotic

For movements with small vertical accelerations� dw�dt � ��

z � zs � n � � � ���

where zs satis�es the hydrostatic condition �equivalent to de�nition ��b��

�zs
�p

� �H
p
� ���

Equations ��� transform at this limit to the ordinary HS model� Formally the HS can
be reached� substituting everywhere in ��� n by � and z by zs� The continuity equation
��e� transforms at the hydrostatic limit to the condition of the incompressibility�

r � v � ����p � � � �	�

The hydrostatic analogue for ��� is

�
�

p
� Q

T
�

p

H

�
�ws

�p
� �v

�p
r zs

�
� r � v � ����

It can be deduced from the HSM in the same way which was used for the deduction of
���� if the de�nition

ws � dzs�dt ����

is assumed for the vertical velocity at hydrostatic limit� Note that ���� is very close
in appearance to the original nonhydrostatic version ��� and can be deduced from ����
using limit ���� Though the HSM does not need equation ����� this diagnostic relation
may be used for the determination of the hydrostatic vertical velocity� de�ned by �����
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Due to the assumption of the incompressibility the HSM �lters acoustic waves� An
exception is presented by the external� or surface waves� which are supported when the
pressure at the lower boundary evolves according to nonbalanced equation ��b��

���� The Miller�Pearce model

Another model� which �lters the sound waves� is the MPM� The MPM was alternatively
derived from the Hamilton principle by Salmon and Smith �		�� Here we will outline
the deduction of the MPM from the general NH model ����

The MPM grounds on two fundamental approximations� which are introduced into the
initial model ���� The �rst one is the incompressibility approximation� n � � � which
is used everywhere� except the right side of equation ��b�� Due to this approximation�
equation ��e� transforms to the continuity relation for incompressible �uid �

r � v � ����p � � ���a�

�which �lters acoustic waves by the way�� The another approximation stands in the
approximate presentation of the total derivative for z in ��a� as follows

dz

dt
� �

�zs
�p

� � H
�

p
�

This enables to reduce the initial evolutional equation ��� to the diagnostic relationship

�w � �H�

p
� ���b�

where �w stands for for the approximate value of vertical velocity� which is de�ned by
���b� and which obviously di�ers �for given � � dp�dt� from both the exact de�nition
��a�� w� and the quasi�static de�nition ����� ws� In momentum equations the density
n is approximated by the unit value except the right side of ��b�� where it is expressed
using ��f��

d �w

dt
� g

�
� �

p

H

�z

�p

�
� ���c�

dv

dt
� � gr z � f�z� v � ���d�

Finally� the thermodynamic equation takes with the help of ���b� the form

dT

dt
� � g

cp
�w � Q � ���e�

The obtained equations coincide with the MPM in its most general form �White �	�	��

Di�erently from HSM� which has an adjusted analogue ���� for equation ���� the MPM
lacks such analogue� This occurs due to the use of the �more restrictive� approximation
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���b� instead of the �natural� assumption ������� This di�erence is the main motivation
to look further� in point �� for acoustically �ltered models which� di�erently from the
MPM� support the diagnostical relationship ����

���� Energy conservation

The energy conservation law can be presented for ��� in the form

n
d

dt
e � r�vgz� �

�

�p
��gz� � ncpQ ����

where the energy density is

e �
v�

�
�

w�

�
� cpT �

�
� � �

n

�
gz � ����

The last term here presents additional energy� which atmosphere has due to its com�
pressibility� In both described incompressible models� the HSM and the MPM� this
term is absent� In the MPM the energy density turns to the form

e �
v�

�
�

�w�

�
� cpT � �����

the HSM lacks the vertical kinetic energy in addition�

e �
v�

�
� cpT � ������

�� By the way� di�erence in ���� and ���b� exhibits� that the MPM is not physically
identical to the HSM at the long�wave limit�
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CHAPTER TWO

Acoustic Filtering

In this Chapter the ExM is linearized and the acoustic �ltering is carried out with
the help of the least action �Hamiltonian� principle� The least action principle we
use represents the classical formulation of the mechanics of continuous medium in the
Lagrangian representation �Herivel �	��� Serrin �	�	�� which is in linear case close to the
variational formulation of the classical �eld theory �Landau and Lifchitz �	���� It should
be noted that there exists another way of variational formulation of the continuous
mechanics �which is not used in the present investigation�� the symplectic formalism
which employs the Eulerian representation rather than the Lagrangian one �Salmon
�	��� �	��a�b� Salmon and Smith �		�� Roulstone and Brice �		���

In short� the variational technique is used for �ltration task as follows� The nonlin�
ear ExM is linearized and the Lagrangian function is constructed for the linear model�
The �ltering approximations are introduced promptly into the Lagrangian� Possible
approximations� which yield wave��ltration� are not very numerous and they are eas�
ily recognizable as they all belong to the approximations� resulting in the time�order
lowering� In turn� the �ltered Lagrangian generates �ltered dynamics� if one moves in
opposite direction from the Lagrangian back to the equations with the help of the least
action principle� The use of this principle guarantees in accordance with the Noether
theorem maintenance of conservation laws of the initial linearized model �assuming� of
course� that the �ltered Lagrangian has the same temporal and spacial symmetry which
has the original� non�ltered Lagrangian�� As a �nal step� the linear �ltered equations
are supplemented to a nonlinear model� As it turns out� the Lagrangian function of
the initial non�ltered system is a most fundamental characteristic of the model and its
composing represents the central problem� After the Lagrangian is constructed� the
remaining part of solution represents a technical task�

In this chapter the Coriolis force will be neglected� This means� the treatment is re�
stricted to the mesoscale domain with horizontal scales lx � ��� km�

	��� Linear model

Linearization of equations ����� according to the hydrostatic equilibrium state� charac�
terised by the mean temperature� T��p�� yields equations

�z�

�t
� w � H�

�

p
� ��a�

��



�w

�t
� �g n� � ��b�

�v

�t
� � gr z� � ��c�

�T �

�t
�

Ti�

p
� Q � ��d�

�n�

�t
� � �r � v � ����p� � ��e�

n� � �
�

p

H�

�z�

�p
�

T �

T�

�
� ��f�

Here z� and T � and n� represent isobaric height� temperature and density �uctuations�
H� � RT��g� and
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is the stability parameter ��stability temperature�� of the background state�

	�	� �Horizontal� boundary conditions for linear model

The domain occupied by the atmosphere in the p�space is �xed in linear case�

� � p � p��x� � � � � x� y � � �

Boundary conditions at the bottom and top are
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The �rst one represents an extrapolation to the mean lower boundary p� of exact relation
wjp� � dh�dt� which follows from ����a� and ����a�� the second coincides with ����b��

The existence of free boundary in the p�space manifests itself in the bottom condition
for z� at the mean lower boundary
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where p�� represents the ground surface pressure �uctuation� For determination of p��
the linearized form of ����b� must be employed�
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As the mean ground surface pressure p� and the ground surface height h are related
with the barometric formula
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�where a represents the standard sea�level pressure� and� consequently�
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the tendency equation for the ground surface pressure �uctuation can be presented as
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Equations ��� govern the lower boundary evolution in linear case and are responsible
for ground surface pressure waves�

	��� The reduced linear system

Diagnostic equation for � can be deduced in the same way as for the nonlinear case and
the resulting expression coincides with the linearized version of the equation ����
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This equation along with ��f� enable us to get from ��� a reduced set of equations which
is closed according to z�� w� v� and T � and does not include n� and �� though equations
for these �elds� ��f� and ���� remain valid�

We introduce nondimensional �uctuative �elds in place of z� and T ��
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� presents a relative height �uctuation� scaled in H�� 
 can be identi�ed as the relative
�uctuation of the entropy� Namely� let us de�ne the nondimensional entropy as the
function of the potential temperature� ��
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where Ta and a are constants �the mean temperature and pressure at the sea�level�� and
let S��z� presents the background hydrostatic value of S as a function of the geometric
height�

S��z� � S����z�� �

We de�ne the relative entropy as a di�erence in its actual and background values at the
same pressure level�

s�x� p� t� � S���x� p� t�� � S��z�x� p� t�� � ����x� p� t�� z�x� p� t�� � ���

The de�ned in this way s is a known functional ���� z� of the potential temperature
and height of the particle� This relative entropy turns zero for background conditions�
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and for small temperature and height perturbations it coincides with the de�ned by ���
�eld 
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because dS��dz� � Ti��T�H���

Thus� 
 represents in linearized model� like s in the nonlinear case� the di�erence between
actual entropy of an air particle and the value which the air particle would have at the
same height in the background atmosphere�

Using new �eld variables� the reduced minimal linear model can be presented as
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Note that the exact nonlinear equation for the relative entropy is
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where S�� � dS��dz� Because this derivative can be approximated for small �uctuations
of z as
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equation ��b� represents the linearized version of equation ��b ��

	�
� Wave equations

It is easy to get two second order equations for � and 
� di�erentiating ��a� and ��b�
according to the time and eliminating the �rst order time derivatives with the help of
��c� and ��d��
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function� is the short notation for �
�p �p�� � ��� These equations can be employed

for the modeling of linear wave processes in p�coordinate presentation in a general�
non�ltered case�

	��� The Lagrangian function and energy

The signi�cance of wave equations for the present study is that they have a Lagrangian
function L and can be deduced with the help of the least action �or Hamiltonian�
principle
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as extremes of the Lagrangian action S� The Lagrangian L is supposed to be a function
of �eld variables �� 
 and their derivatives�
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where �t � ����t� �x � ����x� etc� are short notations for partial derivatives� Action
S is varied in variations 	��x� p� t�� 	
�x� p� t�� which turn zero at the boundaries of the
domain ! and at the initial and �nal moments� t� and t�� The condition of extremity
	S � � for optional 	� and 	
 yields Lagrangian equations
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which must coincide with the wave equations ���� For that it is su"cient to choose the
Lagrangian function L in the form

L � T � V � �	a�

�� Following the traditional way of wave�equation representations we have chosen the
sound speed ca for the prime acoustic characteristic of the atmosphere and the V
ais
al
a
frequency N for the prime characteristic of the buoyancy� Though most relevant in
physical context� such choice is not the best from the point of view of the symmetry
�which is always important in Lagrangian formalism�� For the maximum symmetry
either the characteristic frequency Na � ca�H� instead of ca� or the characteristic
buoyancy�wave phase�speed ci �

p
RTi � NH� instead of N � should be used�
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where the generalized kinetic and potential energy densities� T and V� are
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The purpose of the described Lagrangian formalism is to provide us with necessary tools
for the optimal acoustic �ltering� On the one hand� the existence of the Lagrangian
guarantees energy conservation for the linearized system� On the other hand� with the
help of the Lagrangian formalism it is easy to get �ltered versions of the model which are
still energy�conserving� The energy in linear system di�ers from the nonlinear model
energy� ������� For the linear equations of motion ��� the total energy is
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The �rst two terms present potential energy which air particle has due to the isobaric
height and temperature �uctuations� the remaining two terms are kinetic energy�

Alternatively� the induced by the linear model ��� wave system ��� possesses according
to the Noether theorem wave energy

EL �

Z
V

H dxdydp �

with the density

H � �t
�L
��t

� 
t
�L
��t

� L � T � V� �����

Both El and EL are conservative� if the system is isolated from external forcing� i�e�� if
Q � �� Introduced two kinds of energies El and EL are di�erent but still close related�
In conservative case� Q � �� consequent densities el and H are bound with the help of
the formula

g� � H � F ��t� 
t� vt� wt� �

where F is de�ned according to ����� This relationship is easy to check� expressing the
generalized potential energy density� V� with the help of equations ��c� and ��d� as the
function of v and w� As a consequence� and this presents a matter of primary importance
for the present study� the conservation of EL guarantees always the conservation of El�
too�
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The least action principle for wave equations is formulated here in its �rst� Lagrangian
form� It uses the Lagrangian function� L� as the prime �eld and results in two Lagrangian
equations ���� which are both second order in time� Alternatively� there exists �see
Salmon �	��� for example� another� Hamiltonian formulation of the problem� which in
that formulation is called the Hamiltonian principle� The Hamiltonian formulation uses
H as the prime function and results in four �rst order equations� The Hamiltonian
equations may turn useful for some applications� For that reason they are presented at
the end of this chapter� in section �����

	�� Acoustic 
ltering in Lagrangian

For slow atmospheric movements with small Mach number�

F � U��c�a �� � �

where U is the characteristic amplitude of velocity� it is reasonable to �lter the model
acoustically� i�e� to simplify equations in the way they do not include acoustic�wave so�
lutions anymore� though still maintain other waves and slow movements� Essentially the
�ltering consists of lowering the time order of the system by two� The �ltering task can
be solved in a most straightforward manner using the Lagrangian formalism� The main
idea is that �ltering �ie� time�order reduction� should be carried out in the Lagrangian
function� which must be approximated in the way the resulting wave equations do not
include acoustic�wave solutions� As the approximate model has still the Lagrangian
function� it supports the energy conservation law� The �ltered wave equations with the
conserving wave energy are the main output of the �ltered Lagrangian function� It is
easy �though not trivial� to establish simpli�cations which should be introduced into
the initial linear model ��� to get the �ltered linear system which originates these wave
equations� Finally� it is easy to generalize the linear �ltered model to the nonlinear one�

Approximation ca � �� This model has been introduced by R�o�om and 
Ulej�oe
��		��� here it will be presented in an extended version� As the main assumption it
employs the approximation that the sound speed can be treated as in�nitely large in
comparison with slow advective and convective �ows�

The physical basis for �ltering can be deduced from the scale analysis of the Lagrangian
�	a�� If the Mach number is small� then the �rst term in T is small in comparison with
two �rst terms in V in all spatial scales and� thus� in the �rst approximation it can be
neglected� The resulting expression for the Lagrangian function is�
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	��� Filtered wave equations

Filtered wave equations� corresponding to this Lagrangian� can be deduced directly from
��� with the help of the formal passage ca � � in equation ��a���
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As a result� the time order of the system reduces by two and two solutions of the four
of initial model are �ltered� The eliminated in this way solutions belong to acoustic
modes� as equations ���� do not include sound speed� ca� anymore� At the same time�
buoyancy waves are maintained� as the wave equation� �responsible� for their existence�
���b�� maintains its initial appearance and still includes the V
ais
al
a frequency N �

The main consequence of the �ltering is that the wave equation ��a� is replaced by the
Poisson equation in �� ���a�� This equation de�nes � as a quasi�static �eld which is
determined by the forcing on the right side of the equation� The name �quasi�static� is
justi�ed� because the solution � of equation ���a� coincides for stationary forcing with
the exact static �time�independent� solution of the exact non�ltered equations ��� in
stationary conditions� For nonstationary conditions the quasi�static � depends on time
parametrically� via Q and 
 �and� perhaps� via nonstationary boundary conditions�� In
general� the quasi�static � is di�erent from the hydrostatic height �uctuation �s� which
corresponds to the �uctuative part of the hydrostatic height� ��b�� and which represents
a solution of the hydrostatic equation� The hydrostatic equation reads in terms of 
� �
�instead of common T �� z��� �
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As it can be seen� the solution ��s� 
� of this equation is a solution of system ���� at
the limit of in�nitely slow processes ���
��t� � �� �Q��t � �� with su"ciently large
horizontal scales �r�� � ���

The described �ltering scheme is optimal in the sense it enables exact solutions for
in�nitely slow processes� For �nite speed processes the �ltered model yields approximate
solutions� of course� Meanwhile� these solutions can be further improved� if needed� and
the �ltering scheme shows a natural way for the improvement� Let us write ���a� as a
linear operator equation for �

�P� � � A �

where the source term A is known function of 
 and Q� � Then the non�ltered equation
��a� can be represented as
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The last term on the right hand side can be treated for slow processes as a perturbation
with the small perturbation parameter � � H�

��c
�
a� and the solution of this equation

can be presented as a series
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where �i � �i� The �rst term �� represents a solution of the �ltered equation ���a��
Other members of the series are successive correction terms� which can be calculated
from equations
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Most meaningful is the �rst correction term� ��� which can be interpreted as an acoustic
component of the motion� generated by slow dynamics�

	��� The linear 
ltered dynamics

The linear model� corresponding to the �ltered wave equations ����� can be derived from
��� substituting equation ��a� by the balance condition
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This relation presents a diagnostic equation for �� The explicit equation for � can be
obtained� di�erentiating ���� by t� This results in the Poisson equation ���a�� After this
equation for � is employed� relation ���� can be used instead of ��c� for the determination
of the vertical wind w�

As ���� is deduced from the initial linearized system with the help of the passage ����t
� �� it can be treated as a consequence of the equation ��� and
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Equations ��b� � ��d� along with diagnostic relations ���� and ���� represent the closed
linear acoustically �ltered system of equations� which is most close to initial non�l�
tered linear model and which yields �ltered wave�equations ����� Therefore� this set of
equations will be a basis for nonlinear generalization�

The energy density �ltered model ��b� � ��d�� ����� ���� is
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In comparison with the non�ltered version ���� it lacks the term� proportional to ���

	��� Compressibility in 
ltered model

Relation ���� presents the adjusted version of equation ��a� and coincides with the MPM
equation ���b�� That means� the vertical velocity w is� like in the MPM� an approxi�
mated �eld� Still� di�erently from the MPM� our model preserves the thermodynamic
relationship for �� ���� This is achieved due to the maintenance of the compressibility�
For the three�dimensional divergence of velocity in the p�space�
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from ��� and ���� a diagnostic equation follows
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The right hand term has the amplitude ���� � ���� s��� Thus� D is really a small
term� Nevertheless� it di�ers from the exact zero and the medium is compressible�
Thus� the developed model can be called as the �Elastic Filtered Model� �EFM�� As
we will be convinced in the section �� for many cases of importance this compressibility
is dynamically unsubstantial� and the medium can be treated with high e"ciency as
incompressible� Nevertheless� there exist situations �various short�scale �ows�� where
incompressibility assumption in the p�space yields distortions of modelled dynamics in
comparison with the reality�

Comparison of equation ��b� with ����� ���� exhibits that 
 satis�es equation
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Because the density �uctuation� n�� satis�es the continuity equation ��e� �this is a matter
of the de�nition of continuous medium�� the sum 
� � n� � 
 presents a local invariant�
which is constant in time at every point of the medium� This detailed balance of entropy
and density �uctuations is that mechanism� which eliminates the acoustic waves�

	���� Nonlinear 
ltered model

Because the linear �ltered model is compressible in the p�space� there is no deep sense
to try to build incompressible nonlinear extensions to it�

If the compressibility is supported� then the nonlinear generalization of the linear model
��b� � ��d�� ����� ���� can be obtained in straightforward manner� complementing the
system with the nonlinear continuity equation and substituting everywhere the local
time derivative ���t by the construct nd�dt� To maintain the conservation law for the
energy density in quadratic form ���� it is reasonable� before generalization of local
time derivative to the Lagrangian one� to rewrite the linear entropy�equation ��b� in
the more symmetric way�
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We have restored in the nonlinear version the Coriolis force and turned back to the
height �uctuation� z��

The entropy equation ��	a� includes in nonlinear case an additional term� which is
introduced especially for the energy conservation� To demonstrate that� one can rewrite
��	a� as

n
d
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Comparison of this equation with the exact one� ��b �� exhibits� that beside the lin�
earized de�nition for entropy �
 is used instead of s�� and the approximation ��e�� an
additional approximation is made by introduction of the second term onto the right
hand side of equation ��	a �� The only purpose of this term is to maintain the en�
ergy conservation law for the density ����� As it includes the product w � 
� this term
is second�order in dependent variables and thus� it is small in slow processes in com�
parison with the �rst term on right hand side� which is linear in perturbation terms�
Additionally� for many realistic situations the vertical derivative dN�dz� is small� and
the discussed correction term represents a third order small quantity �By the way� it
turns zero for models with constant N�� Another possibility to overcome di"culties
with energy�conservation is to maintain the �ltered entropy equation in its initial lin�
earized form ����� That variant was discussed in R�o�om and 
Ulej�oe� �		�� Because they
were aware of the exact equation for the relative entropy� ��b �� they lack a possibility
to estimate accuracy of di�erent approximations� The present model ��	� presents as a
more realistic version because it includes the entropy advection�

It is possible to substitute the horizontally homogeneous background temperature T��p�
by the nonhomogeneous� time�dependent �eld Ts�x� p� t� �corresponding to some re�
alistic synoptical situation� for instance� along with the simultaneous substitutions of
H��p�� N�p� by the nonhomogeneous parameters Hs�x� p� t� and Ns�x� p� t��

	���� Hamiltonian principle for linear model

Generalized momenta for Lagrangian �	� are
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The Hamiltonian principle is a variational extremum condition in the form
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where variations of all �elds must be zero at initial and �nal moments and variations
of �� 
 must be zero at the boundary of the domain V � Solutions of this extremum
problem are the Hamiltonian equations
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an explicit form of Hamiltonian equations is
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Elimination of generalized momenta from the obtained equations turns them to the
Lagrangian equations ���� An acoustically �ltered variant follows� if ����t and �� are
put to zero�
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	��	� Model with nonzero adjustment� It is possible to express z� as a sum of
hydrostatic �uctuation z�s and nonhydrostatic component zn �see ����a���

z� � z�s � zn � ���a�

where the hydrostatic component satis�es the quasi�static equation
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This expansion generates analogous representations for the �eld variables � and 
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Among the de�ned four �eld variables �s� �n� 
s and 
n� only two are functionally
independent� As independent variables �s and �n can be chosen� in which case
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n � � Ti
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	��	��� Basic approximations� For the long�wave domain� lx �� H�� the atmo�
sphere is with good accuracy in hydrostatic balance and �n � �� This means� � � �s�
and 
 � 
s� As a consequence� in this domain the tendencies �t and 
t are adjusted to
the hydrostatic values �st� 
st as well� We hypothesise that these adjustments of time
derivatives can be extended into the mesoscale domain�
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The �rst approximation� �t � �st� represents a modi�cation of the main �ltering as�
sumption of the previous model��� As the �rst term in the Lagrangian ���b� is always
small� this modi�cation does not cause a large variation in the �ltered model� The main
modi�cation is a consequence of the second approximation 
t � 
st� To justify this
approximation we note that in the short�scale limit the relative pressure �uctuations
are small in comparison with the relative temperature �uctuations� j	p�pj �� jT ��T�j�
Thus�

j
nj � �Ti�T��j�nj � �Ti�T��j	p�pj �� jT ��T�j � j
sj �
�� Because �s is in general di�erent from ��� the approximation presented here di�ers for

� from the solution �� � �� ����� discussed in section ����
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	��	�	� Lagrangian function and wave equations� The use of ���� in ���� yields
an approximate Lagrangian which can be expressed as a functional of �s and �n as
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The corresponding wave equations are
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In appearance these equations are quite di�erent from the exact ones� ����� and from
the wave equations ofthe previous model� ����� As will be demonstrated in the next
section� the dynamic model which corresponds to system ���� is the MPM�

	��	��� Filtered nonlinear hydrodynamics
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where � is any function� Equations ���� can be transformed with the help of these
relations to the equivalent system
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It is clear that the Poisson equation in zn� ���a �� is a consequence of the balance
condition
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supposing the linear momentum equations are
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The remaining equation� ���b �� is satis�ed if the temperature equation has the form
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w
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Finally� comparison of this equation and the exact linear temperature equation� ���d��
shows that w and � are related according to equation

w

H�
� � �

p
� ���e�

The received model ���� represents the linearized version of the MPM� Thus� the �ltered
Lagrangian ���� yields the nonlinear MPM� In turn� wave equations ���� along with the
Lagrangian ���� follow from the MPM at the linear limit�
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CHAPTER THREE

Linear Shear Flow

In previous chapter linearized models where treated� where linearization was performed
according to the resting background state without Coriolis force� For di�erent applica�
tions it is highly recommended to get linearizations according to some sounding pro�le
which represents a uniform �ow and include the Coriolis term into linear version� In
this chapter we will develop such linearizations� The material will represent a link be�
tween ideas of the previous chapter and the next one� where the obtained in this chapter
results will be used for numerical modeling and model evaluation�

In the �rst section general linear shear �ow model in pressure coordinate framework
is presented� This general treatment is useful� as all particular shear��ow models can
be easily derived from this one� Special e�orts are undertaken to get wave equations
which possess Lagrangian� The situation is a little complicated with the presence of the
Coriolis force� Due to this complication� the trivial local invariant of linear models in
Chapter �� the non�divergent horizontal �ow v� � r��� which enabled the time�order
reduction to the fourth order� must be replaced by the more general local invariant �
the linearized potential vorticity�

In Section ��� general model is simpli�ed to the inertial background �ow with a wind
pro�le� depending on the height only� These equations will present special interest for
stability problems of di�erent kind�

Finally� the maximum simpli�ed model equations with the uniform height�independent
background wind are described in ��� and ���� background �ow is presented

���� Linearization according to stationary shear �ow� General case

Up to now our treatment included the simplest resting background in full hydrostatic
equilibrium� Here we will study situations� where medium �ows� for instance� over
smooth low orography which causes small perturbations in that medium�

The sounding state of the atmosphere is as follows�
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This is a stationary regime� which satis�es exact equations� If there exist small ad�
ditional perturbations in the atmosphere �which will be denoted with the prime�� the
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complete �elds are
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Linearization of the complete equations ����� according to perturbations yields equations
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As we can see� equations include terms which describe advection of the perturbation
wields by the background �ow�

Material derivative d�
dt commutates with all background �elds U � T�� z�� f � but it is not

commutable with the di�erential operators �
�y

and �
�p

� except special cases where U is
not a function of the consequent coordinate y or p� This non�computability must be
taken into account at derivation of the diagnostical equation for ��
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Again� this equation� deduced from the linear system ���� coincides with the linearized
version of relation ������

The reduced linearized model for 
� �� v� w reads
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It is worth to underline onse more that derived linear equations represent the exact
adiabatic model in the p�space� which include all the spectrum of possible motions
of small amplitude in a uniform steady background �ow� They can be employed� for
instance� for the investigation of stability problems at all spatial and temporal scales�

Notable di�erence in comparison with the resting background model is the material
derivative d��dt on the left hand side in ��a�� This derivative may become large� if
the vertical gradient of U makes large� Other additional terms in 
 and � equations
which include derivatives of z� and T� in y are not so important� as usually horizontal
gradients are much smaller in the atmosphere than vertical gradients� An important
problem with these derivatives is that they are to be omitted� if one wants to introduce
the EFM� It is clear that this is justi�ed only� if all referred terms are moderate�

To get the corresponding to ��� wave equations� we deduce from ��d� equations for
divergence and vorticity
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The last equation coincides �without the last term on the right hand side� with the
linearized version of the shallow water model absolute vorticity equation
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as the independent dynamic �eld instead of relative vorticity !r� Equations ��� read in
terms of D� J as
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Now we are ready to perform the �nal step and to deduce wave equations for 
 and �
from ��a� � ��d�� For that we act on ��a� and ��b with d��dt and eliminate d�w�dt ja
d�D�dt using ��c� and ���a��
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The deduced wave system ���� is central in many di�erent ways� First� it represents
non��ltered dynamics and in this sense it is an exact linear model� Secondly� despite
the linearity it is quite representative in the sense it is capable of modeling di�erent
real situations like stationary �ows over complex orography� generation of instabilities
in shear �ows etc� Thirdly� it is convenient for the use in �ltration study� Particularly�
the EFM can be deduced from it with a minimum number of simpli�cations�

Model ���� includes all linear terms� In many cases horizontal shear of the background
�elds can be omitted� which yield simpli�cation� These will be treated in the next
section�
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��	� Linearization according to quasi�inertial shear �ow

The simplest model� which incorporates the Coriolis e�ect simultaneously with the lack
of horizontal shear of the background wind� can be presented as

f � const� � T� � T��p� � z��y� p� � � f

g
U�p� � y � ���a�

Nevertheless� in most cases the horizontal gradient �z���y is so small in comparison
with other competing terms that we can disregard it and introduce a quasi�inertial
background

f � const� � T� � T��p� � z� � z��p� � � U � U�p� � ���b�

This background model enables� for instance� investigation of baroclinic and symmetric
instabilities in the presence of acoustic e�ects� Its barotropic sub�case�

f � const� � T� � T��p� � z� � z��p� � U � const� ���c�

will be treated in the next sections� here we present the model ��� � ���� for background
���b��

The reduced linear system ��a�� ��b�� ���b�� ���a� simpli�es to
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The corresponding wave equations ���a� and ���b� have simpler right hand terms
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Equations ���� represent the ExM for background ���b�� The corresponding EFM can
be obtained� putting the left hand side of ���a� to zero� which in ���a� results with the
simpli�cation �L 	 �L��

�L� � H�
�

�
r� � f�

c�a

�
� ����

This approximation of �L �and consequently� the EFM� is valid� if
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For L � ��� m� U � �� m�s this estimate yields � � ���� Thus� for such a small spacial
scale of background �elds the EFM can cause notable errors�

If one wants to maintain the accuracy of the EFM� he �she� has to use a more complicated
operator �L� instead of �L�
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which corresponds to the approximation
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���� Wave equation for vertical velocity in simplest shear �ow model

In the special case of the barotropic background� ���c�� and adiabatic model� Q � �� J
turns to a local invariant
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Restricting the further treatment with

J � � �

���� turn to homogeneous closed wave equations for 
 and �� which are identical to
consequent equations of the model with the resting background� ������� except that
���t is changed by a more general material derivative d��dt��

�L � �P	 �P�
�
� � �P	

�
�� f�

N�

�

 � � � ���a�

��



��
�

N

d�
dt

��
� �

�

 � �P�� � � � ���b�

keeping in mind further numerical comparison of di�erent �ltered models in shear �ow
regime� it is advantageous to deduce a single fourth order in t scalar wave equation
for one dynamical �eld� Here we choose vertical wind speed w for that independent
dynamical variable� The equation for w can be deduced in two steps� First� action on
���a� with �P����H�

� �� and use of ���b� yields
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�it is assumed here at the de�nition of L� that d��dt � d��dt�� Action on equation ����
with d��dt �an essential attribute of the barotropic model is that d��dt commutates
with all operators in this equation� and use of ��b� yields�
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The presented equations ���� and ���� correspond to the ExM� The EFM can be ob�
tained� omitting the second term in the L de�nition� The error of this approximation�
�� does not exceed � � � # at the present case with constant U �

For some theoretical purpoces and practical applications it is convenient to have a equa�
tion for �� � �pw�H�� For �ltered models �� coinsides with the true omega�velocity� still�
for the exact model it represents an arti�cial construction� Using operator�identities
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� Linear MPM and HSM in simplest shear �ow model

Linearization of MPM in according to the background state ��� is

d�w

dt
� g

�
p

H�

�z�

�p
�

T �

T�

�
� ��	a�

��



d�T
�

dt
�

Ti�

p
� Q � ��	b�

D �
��

�p
� � � ��	c�

w

H�
� � �

p
� ��	d�

to which horizontal wind equations ��d� ja ��e� are to be added�

Potential vorticity is

J � f
�

�p
p
T �

Ti
� !r � ���a�

and it evolves according to the equation

d�J

dt
� f

�
�

�p
p
Q

Ti
� �U

�p

p

Ti

�T �

�x

�
� �

�y
�
�U

�p
� ���b�

The wave equations are

�
�

N�

d��
dt�

� �

�
T �

T�
�

p

H�

�z�

�p
�

�

N�

d�
dt

Q

T�
� ���a�

�
�

�p

p�

H�
�

�

�p
� r�

�
z� �

�

�p

�
p

H�

�
� � f�

N�

�
T �

T�

�
� � �

g

��

�x

�U

�p
� f

g
J � ���b�

Assuming that background is ���c�a� and Q � �� J � �� it is easy to deduce from these
equations a scalar wave equation for T ��T�� second oder in t�

r�

�
�

N�

d��
dt�

� �

�
T �

T�
� �M

�
�

N�

d��
dt�

�
f�

N�

�
T �

T�
� � � ����

where
�M �

p

H�

�

�p

�

�p

p

H�
�

Equation for w follows� after acting on ���� with d��dt� with the help of the relation

�

N�

d�
dt

T �

T�
� � w

g
�

The wanted equation is

�
d��
dt�

� N�

�
r�w �

�
d��
dt�

� f�
�

�Mw � � � ����

Obviously� ���� represents the analogue of ���� and ���� � the analogue of �����
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Analoque of ��� � for � �hat can be omitted in the case of the MPM� is

�
d��
dt�

� N�

�
r�� �

�
d��
dt�

� f�
�

p�

H�
�

��

�p�
� � � � �����

Wave equation in HSM� Because this is the very standard case which is presented
in di�erent copy�books� we reproduce the �nal equation for T ��T� only

�M
�

N�

d��
dt�

T �

T�
�

�
r� � �M

f�

N�

�
T �

T�
� � � ����

This equation is a long�wave asymptote of ����� Thus� in the linear case there is no
need to treat the HSM as an independent model but as the long�wave asymptote of the
MPM�

���� Boundary conditions for vertical velocity equation

The condition for w at the ground follows from ���a ��

wjp� �
d�h

dt
� U

�h

�x
� ����

where h is the ground height above the sea level�

On the top of the atmosphere� p � �� we employ the �radiation condition� for the sep�
aration among possible wave solutions physically relevant ones� This condition speci�es
that the waves radiate �out of the top� without re�ection and there is no downward prop�
agation of wave energy in the vicinity of the upper boundary� The radiation condition
can be quantitatively formulated in the spectral space� An comprehensive discussion of
the topic can be found in the monograph by P� Baines ��		��� For acoustically relaxed
models EFM and MPM the most general upper boundary condition for vertical velocity
can be deduced from the �regularity requirement�� that geopotential height �uctuation�
� lacks exponentially growing modes near p � �� The regularity requirement will be
discussed in detail in Chapter Five� Here we accept without detailed proof that in linear
models the radiation condition is an consequence of the regularity requirement�

At the lateral boundaries periodic conditions will be used�

�	



CHAPTER FOUR

Testing of Filtration Accuracy

In this chapter the model tests are carried out� For that wave solutions of equations
������ and ������ are compared� Equation ������ supplies us with exact solutions and
�for ca � �� with EFM�solutions� while ������ yields solutions for the MPM and �in
long�wave limit� � for the HSM�

We will study waves in the model atmosphere with homogeneous strati�cation�

H� � ��� m � N � ���� � � � ���� s�� � U � �� � �� m�s � ���

General solution of ������ and ������ can be presented as a sum of the stationary par�
ticular solution ws with nonhomogeneous lower boundary condition ������ and general
nonstationary solution wg with homogeneous lower condition �������

�x� p� t� � ws�x� p� � wg�x� p� t� � ���

In this representation the nonstationary general solution� which represents propagat�
ing wave component� is not a�ected by the orography� In following� stationary and
nonstationary solutions are treated separately�


��� Propagating waves in di�erent models

Wewill look for nonstationary waves wgin the form

w �
�
p

p�

�����
sin�� ln p��p� � exp��ikx � i�t� � ���

Substitution of this assumed solution into ������ or ������ yields dispersion relationships
between wave numbers �� k and frequency �� Solution of the dispersion relationship
with regard to � gives

� �
p
q ��a�

where q is for the ExM�

q � H�
�k

� �
�

� �
f�

c�ak
�
� ���

c�ak
�

�
� N

� � ���
��� � f�

� �� � ����� � ��b�

for the EFM�

q � H�
�k

� �
�

� �
f�

c�ak
�

�
� N

� � ���
��� � f�

� �� � ����� � ��c�

��



for the MPM�

q � H�
�k

� � N
� � ���

��� � f�
� ��� ��d�

and for the HSM�

q � H�
�k

� � N�

��� � f�
� ��� � ��e�

It is instructive to complement this series with consequent formulae for the anelastic
model without Coriolis force�

q � H�
�k

� � N
� � ���
���

� ��� � ��f�

for the Boussinesq �shallow convection model��

q � H�
�k

� � N
� � ���
���

��g�

and for the Euler linear model of incompressible laboratory �uid�

q � � H�
�k

� � ��h�

The intrinsic frequency �� in these formulae�

�� � � � Uk � ��g�

represents the frequency which is recorded by a observer moving along with the wind�

As it can be seen� all models are simpli�ed forms of the general model ��b��

Dimensionless vertical wave�number � determines the vertical wavelength of the wave�
Its di�erence from the exact one� ��a�� is a good indicator of the quality of approximate
model� Results of comparison of �� � q as function of �� for di�erent horizontal scales
lx � ��k are presented on Fig� ���a � �d for parameters H� � �� km� N � ���� s���
Because orography is for propagating waves irrelevant �in linear case� of course�� we
can take without loss of generality �� � �� As it may be concluded from these �gures�
all �ltered models have notable error for very long waves� ��k � �� ��� km� This
is the domain of planetary waves� where the used approximation of constant Coriolis
parameter f is not the very best choice� In more shorter scales up to ��k � �� km
�ltered models coincide with the exact one with a good accuracy�
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In Fig� ���a and ���b are presented relative absolute errors of q for the EFM and
MPM� The diagonally oriented ridge on both �gures corresponds to ultimate case of
two�dimensional waves with in�nite vertical wave�length� QExM � �� The error of any
approximation is large by the de�nition in this case� Two additional ridges parallel to
the k�axis correspond to frequencies �� � N and �� � f � The relative error of both
�ltered models is large in the vicinity of these ridges as well �still� on the frequency ��
� N the error of EFM turns to exact zero�� The plateau surrounded with this three
ridges corresponds to the domain kH � �� f �� �� �� N � Relative error of both
approximations are large at this plateau �� ��� The real domain of application of
�ltered models for transient waves lies to the right of the ridge� ie� to waves with lower
frequencies and shorter horizontal wave�lengths� This is the domain of gravity waves�
In addition� the MPM has large error� which was documented on Fig� �a already� for
kH � ��� at frequencies �� � f �


�	� Stationary orographic waves� Sinusoidal orography

Though the studied in the previous section transient free modes are interesting in the�
oretical aspect� in real atmosphere they are rarely exited to large amplitudes and thus
represent a relatively exotic phenomenon� In numerical models they arise more often
from nonbalanced initial conditions and should be eliminated at the initialization�

Much more essential for slow dynamics are �quasi��stationary orographic waves� which
are in real atmosphere permanently exited� interact �in nonlinear models� with the
large�scale wind �elds and cause the wave�drag�

Stationary orographic and mountain waves have elementary representation for one�
dimensional harmonical �sinusoidal� orography

h � hke�i kx ���

More complex �but still one�dimensional� orography can be presented as the sum of
elementary oscillations ���� Due to the linearity of wave equation the solution with
complex orography is a sum of elementary solutions corresponding to elementary modes
����

The elementary solution to ��� has the same structure for all models�

wk�x� p� �
d�a

dt
� �ikU ak�x� p� � ��a��

where

ak�x� p� � hk

�
p�
p

����
e�i�kx 	

p
q ln p��p� � ��b�

For q � � this solution satis�es the radiative boundary condition at the top� for q � �
it yields a trapped wave� if

p
q �

p
�jqj � �i

p
jqj ��c�
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�Baines� �		�
 Holton� �		��� Expression for q coincides with ��� for � � � and �� �
�Uk� For di�erent models it has the following representation
� the exact model�

q�k� �

��
� � U�

c�a

�
H�
�k

� �
c�f
c�a

�
� c

�
i �U

� � H�
�k

�

H�
�k

� � c�f�U
�
� �� � ����� � ��a�

� the EFM�

q�k� �

�
H�
�k

� �
c�f
c�a

�
� c

�
i �U

� � H�
�k

�

H�
�k

� � c�f�U
�
� �� � ����� � ��b�

� the MPM�

q�k� � H�
�k

� � c
�
i �U

� � H�
�k

�

H�
�k

� � c�f�U
�
� ��� � ��c�

� the HSM�

q�k� � H�
�k

� � c�i �U
�

H�
�k

� � c�f�U
�
� ��� � ��d�

� the anelastic model�

q�k� � c�i �U
� � H�

�k
� � ��� � ��e�

� the Boussinesq model�

q�k� � c�i �U
� � H�

�k
� � ��f�

Constant ci �
p
RTi � ��� m�s represents the characteristic phase speed of internal

buoyancy waves �real phase speed is proportional to it�� and cf � fH� � � m�s� The
anelastic and Boussinesq model q are presented for the check� no special modeling is
carried out with these two approximations� Note that for the Boussinesq model the
factor �p��p���� in ��b� must be left out�

Like in the nonstationary case� q plays again the central role� This function is presented
for di�erent U and N on Fig��� As it turns out� q of the EFM is very close to the
exact model in stationary case at all spatial scales so far as U��c�a �� �� Because
in the atmosphere this condition holds at all spatial scales with high accuracy� one
can conclude that for slow �stationary and quasi�stationary� �ows the EFM represents
the �ltered model of the global range� ie�� it is valid at all spatial scales from micro�
turbulence till planetary scale motions� The same is true for the MPM� except the
very long waves� H�k � �� where slight di�erence appear� For the ExM and EFM q
� ��c�i �c

�
a � �� � ������ � ������ whereas for the MPM q � ������ Still� as it will

be demonstrated in the next section� this di�erence is irrelevant because it causes very
small�really negligible� di�erence of wave pattern in comparison with the exact case�
Thus� so far as q is the only characteristic of the solutions� the EFM and MPM are not
distinguishable from the exact model and from each other�

��
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�� q�kH�� for stationary orographic waves� Curves correspond to the exact
model ��a�� Other two models� the EFM ��b�� and the MPM ��c�� are so close to the
ExM that their curves would coincide with the curves on the �gure�
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 � � N � ������ ��s�
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Summarising� we can conclude� that the �eld of vertical velocityw is in similar conditions
practically same for all compared models� ExM� EFM and MPM�

For other quantities the similarity is not so close anymore� as the algorithm of their
calculation from primary �eld w will depend on the model� Formula for 
 follows from
�����b� with Q � �� it is of the same appearance for ExM and EFM �the MPM does
not de�ne this �eld��


k�x� p� � �N
�

g
ak�x� p� � ��a�

Formula for � of the ExM and EFM results from �����c� with the help of ��a��

�k�x� p� �
N� � k�U�

g����� � � i
p
q�

ak�x� p� ��b�

and ����� yields for the relative temperature �uctuation

T �k�T� � � �� � dk�
N�

g
ak�x� p� � ��c�

��



where

dk �
Ti
T�

k�U��N� � �

���� � � i
p
q
� �	�

At the same time� from ����	b� and ����	d� with the help of ��a� it follows a formula
for the temperature �uctuation in MPM�

T �k�T� � � Ti
T�

ak�x� p�

H�
� �N

�

g
ak�x� p� � ����

Which is clearly di�erent from ��c�� The exact model and EFM have in comparison with
the MPM an additional term� proportional to the �correction factor� dk �	�� Temper�
ature �uctuations of the ExM and EFM� ��c�� and of the MPM� ����� are close� if this
correction factor is small� As it may be convinced from Fig� ���a� ���b� which represent
the real� and imaginary parts of dk respectively� dk is small everywhere except at very
short scales� The level jdkj � ��� is reached �depending upon background parameters�
at spatial scales lx � ��k � ��� �� ��� m� and it increases rapidly towards shorter
scales�
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Di�erently from the real part� the imaginary part of d �Fig� ���b� is zero for short waves
and restricted at long scales�
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Imaginary part of the cor�
rection factor d�
Notation is the same as on
Fig� �a�

The general conclusion from this treatment is that temperature �uctuations di�er de�
pending on the model choice� This is an example of the situation� where a particular
�eld � temperature in this example � is di�erently calculated and yields di�erent values
for di�erent models� Another example� which is just opposite to this� represents the
relative entropy �uctuation� For the EFM and ExM this is 
� de�ned as ����� and rep�
resented by formula ��a�� For the MPM the �relative� entropy �uctuation is de�ned as s�

� T ��T�� which is obviously quite di�erent from ������ At the same time� its particular
representation in the present model case is ����� ie�� numerically it coincides with 
$

With the help of formula

p

H�

�z�

�p
�

�
p
�

�p
� � � ��

�
� � �� � � � Ti�T� �

and treating �� at the integration as a constant� from ������ and ���� an expression for
� in MPM framework follows�

�k�x� p� �
N� � k�U�

g����� �� � i
p
q�

ak�x� p� � ����

The only di�erence of this approximate formula in comparison with the exact one� ��b�
is the use of �� instead �� This di�erence in value of � is not large� approximately ��
# � and has in�uence on the amplitude of �� if q � �� ie�� in the vicinity of the critical
wave�number kc� Critical wave�number kc is determined with the condition q�kc� � �
and it is approximately

kc � ci��UH�� �

which yields lc � ��kc � ��
 m� Thus� vertical accelerations in MPM have most
signi�cant deviations �about �� # � from exact value in the region lf � � km�

The hydrostatic�nonhydrostatic character of the dynamics depends much on the hori�
zontal scale of the orography lx �� ��k for sinusoidal surface�� For long waves atmo�
sphere is with good accuracy in hydrostatic balance� and � � �s �see �������� for short

�	



waves departure from hydrostatic state� determined with the amplitude of �n � � � �s�
should be comparable with �� The transition from hydrostatic state to nonhydrostatic
with the decrease of the characteristic scale is demonstrated for ExM��� on Fig� ���a�f�
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Fig� 
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Relative �uctuation of geopotential� �� and its hydrostatic and nonhydro�
static components� �s and �s� as functions of the geometrical height� Z�
a�� c�� e� � x corresponds to the valley
 b�� d�� f� � x corresponds to the hill�slope�

The departure from hydrostatic state is small but observable� if lx � H � �� km� and
it makes substantial for lx � � km and less� It is remarkable� that nonhydrostatic cor�
rection� �n� is oppositely signed to the hydrostatic component� �s and tries to cancel it�

��� Transition is not sensitive to the model choice�

��



As a result� the total deviation� �� is always smaller than it would be in the hydrostatic
approximation�


��� Stationary �ow over isolated mountain

Sinusoidal pro�le is an arti�cial idealization� More close to the reality is the case of
an isolated mountain� In the following we will represent results of the modeling of
the uniform �ow over the two�dimensional bell�shaped mountain� so called �Witch of
Agnesi��

h�x� �
h�

� � �x � x����l�
� ����

Parameter h� is the maximum height� l is the half�width and x� is the location of the
mountain top� Beginning with classical works by Queney� �	��� Scorer� �	�	 � �	���
Long� �	�� and Alaka� �	��� a vast amount of papers is published on the modeling of
two�dimensional �ows over isolated topography� both linear and nonlinear� analytical
and numerical content �see overviews by R� Smith �	�	� and P� Baines �		��� Our
examples do not represent in this respect nothing new and original� The only purpose
of following is a model comparison� The use of well�documented examples is justi�ed as
it increases authenticity of the results� Due to the known analytical solutions� mountain
waves are common popular objects for model tests �Laprise and Peltier �	�	� Lin and
Wang �		�� Hereil and Laprise �		���

Modeling is carried out with background parameters ��� and with l� h� in domain� l 

��� m� ���� km�� h� 
 ��� m� ��� km�� The modelled �eld is the total entropy� de�ned
as

� � ���p�

�
� �

T �

T�

�
� ���a�

where the background pro�le �� is a solution of the di�erential equation

g

��

d��

dz
� N� � ���b�

For constant N� and H� �as it is assumed everywhere in this Chapter��

ln����p��T��p��� �
N�

g
Z �

Ti
T�

ln�p��p� � ���c�

where Z � Z�p� represents isobaric height in the undisturbed atmosphere� Thus�

��x� p� � T��p��e
N�z�g�� � T ��x� p��T�� � ���d�

Results of the modelling are represented on Fig� ��� � ����� beginning with the longest
scale� l � ���� km� h� � � km �Fig� �a � �b�� and then continuing toward shorter scales�
until l � h� � �� m�
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Fig� 
��a� Very long trapped waves� l � ���� km� h� � � km� U � �� m�s� N � ����
��s� %� � ��� K� Di�erences are caused by di�erent asymptotes in q� MPM isolines
are slightly lower�
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Fig� 
��b� Same as Fig� ���a� except U � �� m�s�
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Fig� 
��a� All models coincide� l � ��� km� h� � � km� U � �� m�s� N � ���� ��s�
%� � ��� K�
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Fig� 
��b� Same as Fig� ���a� except U � �� m�s�

��



0

2.5

5.0

7.5

10.0

-800 0 800 1600

Z
, k

m

X, km

Fig� 
��a� All models coincide� l � ��� km� h� � � km� U � �� m�s� N � ���� ��s�
%� � ��� K�
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Fig� 
��b� Same as Fig� ���a� except U � �� m�s�
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Fig� 
��c� Same as Fig� ���a� except h� � ��� km�

Presented �gures demonstrate that there is no di�erence in compared models in domain
�� km � l � ���� km� Week di�erence is observable for longest waves �l � ���� km�
between the ExM and EFM from one side� and the MPM � HSM from the other� but
this di�erence� caused by di�erent asymptotes of q for di�erent two model groups� is
really very small �Fig� ���a and ���b� and can be disregarded for most applications�

The �rst real model�branching begins at l � �� km and this is the HSM which makes
di�erence� At �rst di�erences are recognizable for l � �� km and stronger winds �U �
�� m�s� as demonstrated on Fig� ��	a and ��	b� but they grow rapidly with decrease of
l and become signi�cant in the upper troposphere for l � �� km �Fig� ����a�� and for
the whole depth of the troposphere for l � � km �Fig� ����b and ����b�� The presented
examples demonstrate� that the HSM is not �even in the linear case� usable for l � ��
km�
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Fig� 
��a� Comparison of the ExM and HSM� l � �� km� h� � � km� U � �� m�s� N
� ���� ��s� %� � ��� K�
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Fig� 
��b� Di�erent NH models� Parameters are the same as in Fig� ��	a� except h�
� ��� km�
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Fig� 
��c� The same as Fig� ��	a� except U � �� m�s and %� � ��� K� All models
�incl� the HSM� coincide with high precision�

0

2.5

5.0

7.5

10.0

-200 -100 0 100 200

Z
, k

m

X, km

Fig� 
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Fig� 
���a� l � �� km� h� � � km� U � �� m�s� N � ���� ��s� %� � ��� K�
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Fig� 
���b� Exact model� EFM and MPM are very close� h� � ��� km� other
parameters as in Fig� ��a�

��



0

2.5

5.0

7.5

10.0

-50 0 50 100

Z
, k

m

X, km

Fig� 
���c� Exact model� EFM and MPM are very close� U � �� m�s� other
parameters as in Fig� ��a�
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���a� Model ExM� Other NH models EFM and MPM are very close to it�
l � � km� h� � � km� U � �� m�s� N � ���� ��s� %� � ��� K�

0

2

4

6

8

10

-20 0 20 40

Z
, k

m

X, km

Fig� 
���b�The model HSM in the same conditions as used in Fig� ����a�
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Fig� 
���c� The same situation as in Fig� ����a except that U � �� m�s�

In shorter mesoscale� l � � km� all NH models still remain close to each other �Fig�
����a� ��c� ��a� ��b� ��a�� until at l � ��� m the MPM becomes di�er from the ExM
and EFM �Fig� ����a and ��b�� This di�erence is larger for stronger wind �Fig� ����a�
and for shorter wave�lengths �Fig� ���� and ���� The lower limit� where the MPM can
be employed without restrictions is l � ��� � ��� m� At the half�width l � ��� m its
di�erence from the ExM is quite signi�cant� if the wind is strong �Fig� ����a�� but still
moderate for weaker wind �Fig� ����b��

Thus� the shorter orographic scale� where the MPM is still relevant� is � ��� m� Below
that ultimate limit only the EFM remains valid among �ltered pressure�space models�
In the atmosphere� this is the domain of micro�turbulence� To this domain belong�
besides the modelled orographic waves� �ows in vicinity of small obstacles like houses�
towers� trees� bridges etc�� and turbulent processes in the lower �� � ��� m part of the
planetary boundary layer�
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��	a� All NH models� l � � km� h� � ��� m� U � �� m�s� N � ���� ��s�
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��	b�The same as Fig� ����a� except that h� � � km�
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���a� NH models �EXM� EFM and MPM�� l � � km� h� � ��� m� U � �� m�s�
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���b� HSM for the same situation�
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b� The same as Fig� ����a� except U � �� m�s�
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CHAPTER FIV E

Nonlinear models in sigma�coordinates

The aim of this chapter is to represent the described in the Chapter � di�erent NH�
nonlinear� p�space equations in a form� convenient for numerical integration� For that
���� the equations are projected into sigma�coordinate frame �sections � � ��� and ���� the
Poisson equation for the nonhydrostatic geopotential is deduced �section �� along with
detailed analysis of boundary conditions �section �� and iterative schemes of solution
�section ���

���� General equations in ��coordinates

The general idea� on which all numerical algorithms ground in the pressure�space� is the
use of terrain�following sigma� �or generalized sigma�� coordinates� This representation
is used in di�erent forms in all hydrostatic general circulation models �for instance
the ECMWF model� see Simmons and Burridge �	���� and limited area models� like
the HIRLAM �HIRLAM Documentation Manual �		��� In nonhydrostatic version it
is described at �rst for the MPM by Miller and White� �	��� and used in numerical
realization of the MPM by Xue and Thorpe �		�� Miranda �		�� and Miranda and
James �		��

For the exact non�ltered model the sigma�representation is described �rst by R�o�om�
�	�	� In this section the ��coordinate representation for the general non��ltered model
�the ExM� ����� is developed� The representation includes the exact equation for the
lower boundary evolution in the p�space�

Let us de�ne the sigma�coordinate

� �
p

p�
� ���

which introduces the �non�dimensional for the convenience� density in the ��space

n� �
p�
a
n � ���

where a is the standard sea�level pressure�

Transformation from p� to � coordinates performs with the help of formulae �whish are
of the same shape disregarding whether the model is hydrostatic or non�hydrostatic
one�

�

�p
�

�

p�

�

��
� rp � r� � rp�

p�
�
�

��
� ��a�

��



For compactness of notation it is reasonable to introduce operators in the � coordinates

�S � s
�

��
� �S	 �

�

��
s � s � s�x� �� t� � ��H � ��b�

�G � r� � rp�
p�

�
�

��
� �G	 � r� � rp�

p�

�

��
� � ��c�

These operators will be used in full extent in �ltered models� here we make use of �G�
which coincides with rp in ��representation�

General equations ����� in ��coordinates are

dz

dt
� w ��a�

n
dw

dt
� g�� � n� � ��b�

n
dv

dt
� � g �Gz � nf�z� v � ��c�

dT

dt
�

RT

cp

�
&�

�
�

&p�
p�

�
� Q � ��d�

dn�
dt

� � n�

�
r� � v �

� &�

��

�
��e�

n � � �Sz � ��f�

We have maintained the pressure�space density n �which can be expressed at the need via
n�� as the primary measure of the compressibility of medium� The continuity equation
��e� is postulated� Sigma�velocity is de�ned as

&� �
d�

dt
� ��a�

and in accordance with this de�nition the Lagrangian derivative is

d

dt
�

�

�t
� vr� � &�

�

��
� ��b��

For the right side of temperature equation ��d� the formula

�

p
�

&�

�
�

&p�
p�

��c�

is used� &p� corresponds to level � in the sense it represents the rate of change of the
ground surface pressure in a point on the ground which moves in horizontal direction
with the same speed as the material particle at level ��

&p� �

�
dp�
dt

�
�

�
�p�
�t

� vj�rp� �

��



Though the continuity equation ��e� is postulated� it can be deduced from ����d� using
de�nition ���� formulae ��a�� ��� and identity

rp�
p�

� �v
��

�
�

p�

� &p�
��

�

For determination of &� and p� it is necessary to use the omega�equation ����� which in
sigma�coordinates reads as

�
�

p
� Q

T
�

�

H

�
�w

��
� �v

��
� �Gz

�
� �G � v � ���

After � is determined from this relation� ��c� yields with the help of condition

&�j� � � ��a�

a prognostic equation for p��
� &p��� � �j� � ��b�

Finally� &p� at level � can be determined using

&p� � � &p��� � �v� � v��rp� ��c�

and &� using ��c��

Equation ��b� along with relation ��� at the lower boundary p� is one of the basic
dynamical �evolutionary� equations� It rules the evolution of the lower free boundary
surface which atmosphere has in the p�space� Slow asymptotes of this equation should
be the hydrostatic ground surface pressure equation� postulated in the HSM�

�p�
�t

� r �
�
p�

Z �

�

vd�

�
� � � ��a�

and its acoustically �ltered analogue

r �
�
p�

Z �

�

vd�

�
� � � ��b�

The detailed and careful study whether and when ��b� transforms to equations ����
presents a special topic of investigation� which is of great interest for synoptic and
planetary scale dynamics� In shorter synoptical and mesoscale domains �uctuations of
p� are very small and have no relevance for dynamics� Thus� in forthcoming study we
will disregard p� �uctuations and assume that the domain in the p�space is the �xed
one�

��	� MPM in ��coordinates Most of the MPM equations in ��coordinates can be
deduced straight either from ��� or from ������� Combination of �����b� and ��c� yields

�w

H
� � &�

�
� &p�

p�
� �	a�

�	



Equations �����c� and �����d� transform to

d �w

dt
� g

�
� � �Sz

�
� �	b�

dv

dt
� � g �Gz � f�z� v � �	c�

temperature equation �����e� does not change at all�

dT

dt
� � g

cp
�w � Q � �	d�

Continuity equation �����a�� which represents diagnostical equation for z� reads as

�G	 � �p�v� � �S	�p� �w� � � � �	e�

Most notable changes take place with the ground surface pressure equation� Equation
�	a� along with condition ��a� yields

� &p��� � �
�p�
H

�w
�
�
� ���a�

it is reasonable to study separately the slipping and non�slipping ground surface� In the
case of non�slipping ground all components of velocity are zero at the surface and ���a�
yields

� &p��� �

�
�p�
�t

�
�

� � � ���b�

For slipping boundary only the component of the velocity� orthogonal to the surface� is
absent� which yields

�wj� �
dh

dt

and ���a� becomes

� &p��� � �
�p�
H

�
�

dh

dt
� �

�p�
H
v
�
�
� rh � ���c�

This is an exact relation� enabling the computation of the ground surface pressure
tendency at every instant

�p�
�t

� � v� � rp� �
�p�
H
v
�
�
� rh � ���c��

Because the ground surface pressure �uctuations and temperature �uctuations at the
ground are always small� H can be approximated in ���c� with high e"ciency with H��

H��x� �� � H��p��� � ����

��



where H��p� is a horizontally homogeneous background height�scale� Then

� &p��� � �
�
p�
H�

�
�

dh

dt
� ���a�

This equation has a solution

p� � ae
�
R
h

�

dz
H� � ���b�

Which means

p� � p� �
�p�
�t

� � � ���c�

This approximate de�nition for the slipping boundary p� agrees with the non�slipping
condition ���b�� It supports the supposition� formulated at the end of the previous
section that the domain can be �xed in the p�space for slow processes� We will assume
���c� everywhere except at the referencing of the model of Miranda ��		�� in the next
section� It does mean that pressure �uctuations at the ground are entirely absent in
our models� They are easily expressed via z �uctuations at the level p�� What is
expressed by ���c� is just the statement that changes in the geometry due to the small
replacements of the lower boundary in the p�space are inessential for dynamics�

Evaluation of &� grounds in general on equations �	a� and ���c�� An elimination of
pressure tendency from these relations yields

&� � �

��
�w

H

�
�

� �w

H
� �v� � v�� � rp�

p�

�
� ����

Assuming ���c� and H� � H��� ���� simpli�es to

&� � �

�
� �w

H�
� v� � rh

H��

�
� �����

If this approximation is valid� then continuity equation �	c� can be presented as

r� � �p�v� �
�p� &�

��
� � � ������

���� MPM with mean height�scale

It is possible to simplify the developed in previous section variant of MPM� using fur�
ther linearization in respect of temperature and geopotential �uctuations� Let the back�
ground geopotential

z��x� �� � z��p��� ���a�

is de�ned in accordance with the background height�scale H��

p

H�

�z�
�p

� � � � �

��



then �
r� � �

rp�
p�

�

��

�
z���p�� � rpz��p� � � �

Let equivalents of operators ��b� and ��c� in background conditions are

�S � s
�

��
� �S	 �

�

��
s � s � s�x� �� � ��H� � ���b�

�G � r� � rp�
p�

�
�

��
� �G	 � r� � rp�

p�

�

��
� � ���c�

then the last relations are

�Sz� � � � � �Gz� � � � ���d�

Let us de�ne analogically

N� � N���p��x�� � T� � T���p��x�� � ���e�

Presentation z � z� � z�� T � T� � T � and linearization of system �	� in z� and T � with
maintenance of advection terms yields

�w

H�
� � &�

�
�

&p�
p�

� ���a�

d �w

dt
� g

�
T �

T�
� �Sz�

�
� ���b�

dv

dt
� � g �Gz� � f�z� v � ���c�

dT �

dt
� �T�N

�
�
g

�w � Q � ���d�

�G	 � �p�v� � �S	�p� �w� � � � ���e�

At the derivation of temperature equation ���d�� it is useful to carry the T � separation
out in pressure coordinates and to transform the obtained equation into the sigma�space
after that� Like the nonlinear form of Chapter �� in partially linearized model ���� the
term T�N� should be constant for energy conservation�

In the present model it is postulated explicitly that the domain is �xed in the p�
space and the lower surface� p� is time independent� This is an internally concordant
assumption� if p� � p� at initial moment� then �p���t � � and p� � p� for all successive
moments� For the proof of the last statement it is su"cient to note that right side of
���c � turns zero for H � H� and p� � p�� In other words� in present model the �D
p�space velocity at the lower boundary� �v� ��� � �v��p�w�H���� is parallel to the
boundary� which is described with equation p��x� y� � p � ��

��



Model ���� is close to original MPM� which is at �rst described by Miller and Pearce
��	��� and used by Xue and Thorpe� �		�� and Miranda� �		�� Main di�erences still
are�

��� In those models the potential temperature� ��� and potential temperature �uctua�
tion� ��� are used instead of T� and T �


�	� The sigma coordinate is de�ned in a slab p� � p � ptop � � rather than in the
whole atmosphere�

� �
p � ptop
p� � ptop

� ���a�

which yields in equations of motion the e�ective ground surface pressure p� instead of
p��

p� � p� � ptop � ���b�

and replacement of s � ��H� in ���b� with

s �
p

p�H�
�

� � ptop�p�
H�

� ���c�

and ���b�� ���c� with

�S � s
�

��
� �S	 �

�

��
s � ���d�

�G � r� � rp�
p�

�
�

��
� �G	 � r� � rp�

p�

�

��
� � ���e�

���� In numerical models by Xue and Thorpe� �		�� and Miranda� �		�� the ground
surface pressure p� in de�nition ���b� is treated as dynamical parameter which evolves
in accordance with ��a��

Concisely the MPM� employed by Miranda� reads

s �w

�
� � &�

�
� &p�

p�
� ���a�

d �w

dt
� g

�
��

��
� �Sz�

�
� ���b�

dv

dt
� � g �G z� � f�z� v � ���c�

d��

dt
� ���

N�
�
g

�w � Q � ���d�

�G	 � �p�v� � �S	�p� �w� � � � ���e�

Though in the original model by Miranda ��		�� it is assumed that the lower boundary
surface p� evolves in accordance with equation ��a�� in reality� as it was discussed
above� in the partially linearized version of the MPM with linearization in z�� the p�

��



must be treated as the �xed surface� In this case &p� � v�rp� and last equation can
be alternatively presented with the help of ���a� as

r� � �p�v� �
�p� &�

��
� � � ���e��

This relation� as well as ������ represents a variant of the continuity equation� written
with use of &� �and valid for �xed p� only�� Its integrated form is

&� � � �

p�

Z �

�

r � �p�v�d�� � ���a�

At the lower boundary it yields

Z �

�

r � �p�v�d� � � � ���b�

Because the same equation follows from the vertically integrated version of equation
���e�� if at the lower boundary kinematical condition �sw�� � �� &p��p��� holds� ���b�is
satis�ed automatically and it does not represent an independent relation� which could
be used� for instance� for the determination of ground surface pressure �uctuations�

If one disregards with di�erences in sigma�coordinate de�nition �assuming for instance
ptop � � and p� � p��� then essential di�erence between models ���� and ���� is in
temperature equation� For �� from ���d� an equation follows

d��

dt
� �

�
��

N�
�
g

� R

cp
��
�

�w �

�
a

p��

�R�cp
Q �

which di�ers from ���d� with additional �second order� term on the right side� In other
respect both models are very similar�

Further we will use in nonlinear case model �	� and in partially linearized version � the
Miranda formulation ���a� � ���e�� whish includes �at least at formal substitution ���
�� � T�� T �� ���� as a special case� The only restriction is that p� will be treated as a
time�independent mean function�

p� � p� � ptop � ��	�

This enables in the most �exible way to treat the Miranda model and our model in the
same numerical algorithm in parallel�

For numerical applications it is useful present ���a� � ���e� in the divergent �mass�
conserving� form�

s �w

�
� � &�

�
� &p�

p�
� ���a�

�p� �w

�t
� �F �w � gp�

�
��

��
� �Sz�

�
� ���b�

��



�p�v
�t

� �Fv � � gp� �Gz� � fp��z� v � ���c�

�p���

�t
� �F�� � � p���

N�
�
g

�w � p�Q � ���d�

�G	 � �p�v� � �S	�p� �w� � � � ���e�

where notation is used

F� �
�

�x
�p�vx�� �

�

�y
�p�vy�� �

�

��
�p� &��� � ���f�

��
� Diagnostical equation for geopotential height

Let us deduce equation for z in system �	�� For that we represent equations �	b�� �	c�
and �	e� as

� �w

�t
� g �Sz � fz � �A �w � Fz � ���a�

�v

�t
� �g �Gz � fx � �Av � Fx � ���b�

�G	 � �p�v� � �S	�p� �w� � � � ���c�

Forces fz and fx are

fz � g � f�z � fx � f�z� v � f�x � ���d�

where f�z and �f�x are components of external force �and turbulent friction forces� per�
haps�� �A is ordinary advection operator

�A � v � r � &�
�

��
� ���f�

The wanted equation follows after di�erencing of ���c� in time and elimination of ve�
locity tendencies with the help of ���a� and ���b��

�G	 � p� �Gz � �S	p� �Sz � � �

g

�
�G	 � p�ax � �S	p�az �

� �S	

�t
p� �w

�
� ���a�

where
az � fz � �A �w � ax � fx � �Av � ���b�

The obtained relationship represents a Poisson equation for the total NH geopotential
height z� Analogical diagnostical equation in model ��	� for z� reads

�G	�p� �Gz� � �S	p� �Sz� � � �

g
�G	 �Fv � p�f�z� v� �

�

g
�S	
�
F �w � gp�

��

��

�
� ����

��



This equations transforms after use of formula �G	�p��� � �rp�� � � p� �G	� and after
multiplication with ��p� to the corresponding equation Miranda �Miranda� �		�� Eq�
��������

���� Boundary conditions for the z equation

As the determination of z �or z�� requires solution of an elliptic equation� it is necessary
to supply this equation with boundary conditions at all boundary surfaces� at the
bottom� at the top and at the lateral boundaries� Note that the boundary value problem
for z is speci�c for �ltered models� because it is created by the change of evolutionary
equation for z to an diagnostical elliptical equation ���a� or �����

General idea which enables to formulate required boundary conditions correctly at the
bottom and at the lateral boundary� is that these boundary surfaces represent ideal
constraints� which generate ideal forces of reaction� which coincide with the normal
components of geopotential gradients at boundary�

A similar treatment is applicable at the top� if the top surface is treated as a rigid lid�
Still� in reality the top of the atmosphere� p � �� is physically rather equivalent to
the free surface� This assumes special treatment� based on the regularity of solution at
p � � rather than the constraint�method�

������ Boundary condition at the bottom� Primary condition for z at the bottom
is

zj� � h �

This represents an ideal constraint� It generates for slipping boundary an kinematical
condition for velocity components

wj� � vj� � rh � � � ���a�

which is the orthogonality condition for �D�velocity �vx� vy� w� and normal vector of
the ground� which is represented by the equation ��x� z� � z � h�x� � ��

As we approximate the ground in pressurethe p�space by the mean surface p�� then
condition ���a� is for model �	� equivalent to

�
w

H�

�
�

�
vj�rp�
p�

� � � ���b�

and for model ���� to

�sw�� �
vj�rp�
p�

� � � ���c�

which both yield required condition for sigma�velocity at the bottom

&�j� � � � ���d�

At a very profound treatment the principle of virtual replacements should be applied
to get the required expression for the reaction force� We� still� simplify the problem

��



essentially� noting� that because the underlying surface is �xed� the real replacement
coincides with one of virtual replacements� Thus� it is su"cient to di�erentiate ���b�
or ���c� in time �it is indi�erent whether the local or material derivative is used � the
�nal result is the same� and eliminate time derivatives with the help of ���a� and ���b��

� �Sz�� � �
�
rh � �Gz

�
�
� fzj�

g
�

�

g
fxj� � rh �

�

g
�v�v���

��h

�x��x�
� ����

This is a Neumann boundary condition for z� with the left side in the role of the reaction
force� We note without detailed proof that the same boundary condition can be deduced
for the EFM �except that n� though adjusted� is not necessarily equal to � exactly��

Boundary condition ���� has the following interpretation� On the left side we have the
reaction force of the ground surface� divided by g� on the right hand stay terms� which
this force has to balance at every instant to maintain the replacement of air particle
parallel to the surface� First term on the right side represents an additional non�classical
contribution to the ordinary nonhomogeneous boundary condition� It depends on the
horizontal gradient of the unknown function� ie rz� and must be determined in the
course of solution� One way to do this is to take it into account iteratively� This
procedure will be discussed in detail later� Anyway� it is not a part of the ideal reaction
force� as it will be demonstrated later� Second and third terms together perform the
projection of external force onto the normal direction of ground surface� The last term
on the right side is the �divided by g� acceleration due to the curvature of the ground
surface� h��� is the curvature tensor of the orography� For a spherical surface� for
instance�

��h

�x��x�
� 	��

�

R
�

where R is the radius of curvature� which is negative for a hill�top and positive for a
hollow� Thus� the last term is in this special case v���gR�� It is negative near the hill�
top and causes negative contribution to vertical gradient of z� which is proportional to
negative pressure �uctuation �see Fig� ����� As a consequence� air��ow causes pressure
depression in vicinity of a convex � a fact� which is wellknown in hydrodynamics�

Lower boundary condition for model �	�� follows from ���c� analogically and
reads as��

� �

�rp�
sp�

��
�
�z�

��
� rp�rz�

s�p�

	
�

� �
�
Qw

gsp�
�

rp� �Qv

gs�p��

�
�

� ���a�

where Q�terms are

Qw � gp�
��

��
� Fw � Qv � � Fv � fp��z� v � ���b�

Equation ���a� looks very di�erent from ����� nevertheless they are quite close and ����
can be presented in the form� very similar to ���a�� after separation of z� and z�� Both
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forms have special advantages� ���� is better for theoretical discussion� while ���a� is
convenient for numerical applications�

Again on the left side an additional term arrived �beside the vertical gradient�� which
depends on the horizontal gradient of the geopotential �uctuation� rz��� From the
�boundary condition view�point� this term is an unknown quantity�

At the discussion of ���� we pointed without proof that the vertical gradient on the left
side of ���� is the force of reaction� Similar problem arrives with boundary condition
���a�� it is essential to know �for applications in other models� for energy conservation
consideration etc�� which term on the left side of ���a� represents precisely the reaction
force of the boundary� We prove now that the reaction force of the slipping lower
boundary is orthogonal to the boundary surface and its vertical component
is �in the case of model ��	� and boundary condition ���a��

rz � g

�
s
�z�

��

�
�

�

To prove the statement we treat the boundary equation in the form

'�x� z� � z � h�x� � � � ����

and assume

rh � � �

s�

rp�
p�

� K �

The normal vector to the surface is

N �
�z � Kp
� � K�

�

at that kinematical condition ��	� is an orthogonality condition

�v� w�� 
 N

The ideal reaction force R � �rx� rz� is a force� which is orthogonal to surface �and thus�
being orthogonal to the �D velocity� it does not carry out any work� and does not let a
particle to leave the surface� This yields

R � rz��z � K� �

Presenting equations ���b� and ���c� at the boundary in the form

�wj�
�t

� rz � F �z �
�vj�
�t

� � rzK � F�x �

we discover that rz coincides with the normal gradient of z�� Statement ���� is proved�

z�j� in ���a� is a non��xed dynamic �eld� At numerical modeling the second term on
the left side of ���a�� which is determined by z�j�� is treated as a perturbation and it
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is calculated iteratively� If z� is determined� the corresponding ground surface pressure
�uctuation can be estimated from the formula �see �������

p�

p�

�
�

�

�
z�

H�

�
�

�

For future applications it is convenient solve ���a� in ��z��������
�z�

��

�
���

� (� � ��	a�

where

(� �

��
�
�

� �

�rp�
sp�

��
��� �rp�rz�

s�p�
� Qw

gsp�
� rp� �Qv

gs�p��

���
�
���

� ��	b�

����	� Boundary condition at the top�

At �rst we consider in short the rigid lid boundary condition at the top� The rigid
lid yields kinematical conditions at the top

&�j� � � � ���a�

wj� � � � ���b�

Last condition at every instant is equivalent to

dw�

dt
�

�
dw

dt

�
�

� � �

which yields with the help of ���b��
��

��
� s

�z�

��

�
�

� � � ���c�

The last formula represents the upper boundary condition for z� in the rigid lid model�
It coincides with the one used by Miranda ��		���

For practical use in further application it is convenient present ���c� as�
�z�

��

�
�

� (� � �
�

��

s��

�
���

� ���d�

The free boundary condition at the top� There is no rigid lid at the top and the
only restriction to z� is that it must be �nite �or� if the �niteness is not supported� then
it should grow near in�nity with lowest possible speed�� To get the required boundary
condition� which is in addition applicable in discrete numerical modeling� we propose a

�	



special �top�shell� method� The essence of this method is the analytical continuation
of the solution above some certain level pm� into the domain � � p � pm�� which is the
top�shell� The lower boundary of the top�shell� pm� is not necessarily equal to ptop� The
problem is identical for equations ���a� and ����� but for the de�niteness we consider
equation �����

Because the top�shell is very thin� coe"cients of the equation ��� � in this domain�
H� � H��pm� � Hm and p� � p� can be treated as constants� As a result� equation
���� simpli�es essentially and takes the form

H�
mr�z� �

�

��

�
�� � ���

� �z
�

��

�
�

H�
�

p�
A � A� � ����

where A represents sources on the right side of ���� �Note that on the right side we have
maintained actual values of H� and p��� and

�� � ptop�p� � ptop�p� � ����

We apply to ���� the Fourier transform in horizontal coordinates� �x � k� and in
vertical employ an coordinate transformation

� � �m � � ln

�
� � ��
�m � ��

�
� ����

which yield �for the �xed k�

d�z�

d��
� dz�

d�
� H�

�k
�z� � A� � ����

This equation can be solved in easy way using the Laplace transform� The solution is

z� � z����� � z����� � ���a�

z�i��� �

�
�ai � bi� z

���m� � bi
dz���m�

d�

�
e	i����m� � bi

Z �

�m

e	i����
��A�� ��d� � � ���b�

a� �
��

�� � ��
� a� �

��
�� � ��

� b� � � b� �
�

�� � ��
� ���c�

�� � ��� �
q

��� � H�
�k

� � �� � ��� �
q

��� � H�
�k

� � ���d�

To avoid the exponential growth of this solution at ��� �the �regularity requirement��
we have to choose

�a� � b��z
���m� � b�

d��m�

d�
� b�

Z �

�m

e	���m���A���d� � � � ���a�
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The detailed behaviour of the solution in the top shell has no signi�cance for the further�
what we need� is an upper boundary �� � �m� condition for for z� in the lower domain�
which yields from ���a��

��m � ���
dz���m�

d�
� ��� � ��z���m� �

Z �m

���

�
� � ��
�m � ��

�	���
A���

d�

�m � ��
� ���b�

This is an exact upper boundary condition at level �m supposing the used preconditions
are exact� The speci�c feature of this boundary condition is that it can applied in the
Fourier�space only�

Assuming in the top�shell
A��� � A��m� � �� �

we get from ���b�

��m � ���
dz���m�

d�
� ��� � ��z���m� �

�

��

�
A��m� � �

�� � ���m
�� � �

�
� ���c�

In special case �m � � and Aj����� � ��

��

�
dz����

d�

�
�

� ��� � ��z���� �
A���

�� � �
� ���c��

For further discussion it is useful to represent ���b� and ���c � in a symbolic way

�Lz� � �GA � ���d�

where �L and �G projection operators de�ned via ���b� � ���c ��

If the described free boundary condition is applied� then there is no restriction for
vertical velocity w at the upper boundary�

������ Lateral boundary conditions�

If the momentum �ow through the lateral boundary is given at every instant� then the
momentum equations yield a condition for the normal derivative �z���n� at which this
�ow will be maintained�

�
�z�

�n

�
�

� (L � ���a�

This is a Neumann condition� derivative is evaluated along the external normal at every
point and ( is �for equation ��a �

(L � �
�

�

gp�
n �
�
�p�v
�t

� �Fv � grp���z
�

��
� fp��z� v

��
�

� ���b�

��



The velocity tendency is an external �given� �eld� The only restriction to �v��tj� is
that it must be mass�balanced� the total mass �ow through ) must be equal to zero�
This condition� representing a consequence of the incompressibility of medium in the
p�space� is absolute for the rigid lid upper boundary condition� For the free upper
boundary model this condition is not so absolute in kinematical sense� but in reality it
is valid high precision�

Boundary condition is� analogically to the rigid lid condition� an absolute rigid lateral
boundary condition �condition ���� corresponds to a rigid lateral boundary� which re�
places at every instant in its normal direction with the �xed speed�� This rigidness is
a potential source of nonphysical phenomena� like re�ection on ) of wave�like distur�
bances� which move with the speed� di�erent from v� In reality� where there is no rigid
lateral surface� these waves leave �or enter� the integration domain without re�ections�

There exist two wellknown methods to turn the lateral boundary transparent not alter�
ing at that boundary condition ���a�� The �rst one� which is simpler but more time�
consuming at numerical realization� is the �sponge layer� method� In this approach an
absorbing layer is introduced near the lateral boundary� in which the horizontal velocity
evolution is ruled by the Rayleigh relaxation mechanism

�

�t
�v � vb� � � � �v � vb� � ����

vb represents the external velocity �eld which is determined in the whole sponge layer�
and � is the relaxation coe"cient �Rayleigh friction coe"cient�� with smooth monotone
grow from zero at the internal boundary of the sponge layer to its maximum value at )�
The sponge layer model is used� for instance� in the HIRLAM �HIRLAM Doc Manual�
�		���

Other method is known as the �radiative� boundary condition� In this method� the
lateral boundary is turned transparent to quick waves with the special choice of �v��t
in ���b�� This method is proposed by Orlanski ��	��� extended by Raymond and Kuo
��	��� and modi�ed and in detail discussed by Miranda ��		��� Further� in numerical
realization we will use Miranda algorithm without modi�cations�

Summarising� we have �and will use in numerical model� two kind of boundary conditions
for elliptic equations ���a�� �����

� the rigid lid model� Neumann boundary condition is applied at all boundary�

� the free surface model�where the Neumann boundary condition is applied at the bot�
tom and at the lateral boundary� but at the top the mixed Neumann�Dirichlet boundary
condition ���� is used�

���� Solution of the elliptic equation for z�

In this section the iterative solution procedure for ���� will be discussed in details�
Equation ���a� can be solved in the same way� In general lines� the solution algorithm
follows the Miranda scheme ��		��� the detailed revision is needed because both the
geometry and boundary conditions are di�erent from those applied in the Miranda
scheme�

��



The Miranda method consists of division of the elliptical operator on the left side of ����
to the main� horizontally homogeneous component� and horizontally inhomogeneous
perturbation operator� An additional speci�c and very powerful method employed by
Miranda is the use of the Williams transformation �Williams� �	�	�� which transforms
the initial nonhomogeneous boundary value problem to the homogeneous one and makes
applicable the fast Fourier transform �FFT�� The speci�c method� which we add to the
scheme of Miranda� is the iterative approximation of boundary condition at the lower
boundary ��rst terms on the right side of ���� and ��	b� are estimated from previous
iteration� and in the free boundary model at the top �source function A in ���� is
calculated from previous iteration��

For expansion of the elliptical operator in ���� we present

s � s��� � s��x� �� � s� � � �

where overline means horizontal mean� With the help of this expansion equation ����
can be presented �after some �algebra� and division by p�� as

Lz� � Mz� � A � ��	a�

where L and M are the horizontally homogeneous main operator and the nonhomoge�
neous perturbation operator consequently�

L � r� �
�

��
s�

�

��
��	b�

M �
�

��

�
��
�rp�

p�

��

� s��
�
�

��
� r�p�

p�
�
�

��
� �

rp�
p�

� r� �

��
� ��	c�

and A is the divided by p� right side term of ����� Operator r represents the gradient
on the constant sigma surface�

Perturbation operator M depends on the surface orography only and makes zero for the
�at underlying surface� As orography �except very arti�cal model situations� is allays
low and in most cases smooth� the perturbation term is small in comparison with the
main operator L� which justi�es the iteration technique�

It is convenient at qualitative discussion to present the boundary condition as a linear
projector P� R
 � )�

Pz� � (�z�� � ����

In the rigid lid model

Pz� �

�
�z�

�n

�
�

at all boundary� and ���� is explicitly as�
�z�

��

�
���

� (��z
�� �

�
�z�

�n

�
�L

� (L �

�
�z�

��

�
���

� (� � ����

��



where (�� de�ned by ��	b�� includes z� as perturbation� (L is de�ned by ���b� and (�
is de�ned by ���d��

For the free boundary model the conditions are the same at the bottom and lateral
boundary� but at the top� according to ���d�� we have a di�erent situation�

�
�z�

��

�
���

� (��z
�� �

�
�z�

�n

�
�L

� (L � �Lz� � �G�A � Mz�� � ����

It is an essential feature of the algorithm� that the projective operator �G corresponds
to the undisturbed main elliptical operator L� therefore in ���� operator �G acts both
on the source function and perturbation operator�

The solution is looked for iteratively� for which equation ��	a� is presented as

Lz�i� � A � Mz�i��� � ���a�

Here z�i� represents the ith iterative �approximate� solution of the problem� Conse�
quently� boundary conditions for ���a� are

Pz�i� � (�z�i���� � ���b�

The required solution will be presented as a sum of two functions�

z� � z�h � z�b � ���a�

and consequently� iterative approximations as

z�i� � z
�i�
h � z

�i�
b � ���b�

where z�b �or z
�i�
b � is a known function� which satis�es the nonhomogeneous boundary

condition on the �part of� boundary� and z�h �z
�i�
h � is the new unknown function� which

obviously satis�es on the consequent part of the boundary the homogeneous boundary
condition� The choice of zb is in certain degree arbitrary� In the discrete model it is
straightforward to choice this reference function equal to zero at internal points and
non�zero at the consequent boundary points� The main purpose of the expansion ���� is
to get homogeneous boundary condition for the new unknown zh at lateral boundaries�
which makes possible an employment of the FFT in horizontal coordinates� Therefore� it
is not absolutely necessary to use the described homogenisation at the top and bottom�

Miranda ��		�� employs homogenisation at all boundary� This is straightforward� if the
right side of ���� does not depend on z� �and in Miranda model this condition holds��
In short� the Miranda algorithm is in our notation as follows�

z��� � zb � z�i� � z
�i�
h � zb �i � �� � ���a�
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�(� does not depend on z��st in this case�
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Lz�i�h � A � Lzb � Mz�i��� � ���d�

Iteration starts with an initial approximation �see���a�� z
���
h � � � z��� � z

���
b �

A simple elegant numerical algorithm can be obtained� if the iteration correction func�
tion

��i� � z
�i�
h � z

�i���
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L��i� � A � �L � M� z�i��� � ���d�

Iteration process begins with z� � zb� At every successive step the correction ��i� will
be �nd solving elliptical equation ���d� and the result will be added to the previous
value z�i��� to get the new one� z�i��

The described original algorithm of Miranda can be successfully applied in the rigid�lid
model� though in the lower boundary condition (� is dependent on z�� This is achieved
in this way that after each iteration the iterated solution is extrapolated from internal
point to the boundary according to the rule

z
�i�
Boundary � z

�i�
Boundary�� � (��z

�i���� �%� � ���e�

In the case of the free boundary model it is possible to develop an algorithm� which is
very close to the Miranda algorithm� just described� For that it is necessary to take for
zb a function which satis�es on lateral boundary nonhomogeneous boundary condition�
but at the bottom and at the top � homogeneous one� Consequently� for zh an opposite
boundary condition holds� The whole algorithm reads as

z��� � zb � z�i� � z
�i�
h � zb �i � �� � ���a�
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Note that in this model zb is in discrete case zero everywhere except the lateral boundary
�i�e�� it is zero in addition to the internal points� at the bottom and top��

The used initialization z��� � zb does not satisfy boundary conditions at the top and
bottom� still boundary conditions will be satis�ed completely beginning with i � �� The
advantage of the proposed initial approximation is similarity of the iteration process for
all steps beginning with i � ��

For the iteration correction function ���� algorithm ���� becomes

z��� � zb � z�i� � z�i��� � ��i�� �i � �� � ��	a�
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L��i� � A � �L � M� z�i��� � ��	e�

The boundary condition at the top� ��	d�� has been taken in accordance with the right
side of ��	e�� A direct deduction from ���c� yields the upper boundary condition in the
form

��i�j��� � � �GM��i��� �

It is easy to prove that this condition is equivalent to ��	d�� In addition� it is possible
to change the quite inconvenient lower boundary condition ��	c� to a more simple one�

�
���i�

��

�
���

� � � ��	f�

if one uses the extrapolation algorithm ���e� at the lower boundary�
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CHAPTER SIX

Numerical Scheme NHAD

In this chapter a short description of the numerical algorithm NHAD is presented� which
realizes ideas of previous sections� Discussion is illustrated with modeling examples�

Model NHAD �� NonHydrostatic Adjusted Dynamics� is a modi�cation and gener�
alization of the model NH�D of Miranda ��		��� It includes the NH�D as a sub�case�
which can be switched on with a logical key ADJUST� With ADJUST��F� the algorithm
works as the NH�D� with ADJUST��T� the modi�ed version is launched�

���� General characteristics

NHAD is a sigma coordinate model�

Integration �modeling� domain is a rectangular area in the sigma�space with dimensions
Nx �%x�Ny �%y �N� �%��

The grid used is a staggered grid �Winningho�� �	��� Williams� �	�	�� known in atmo�
spheric dynamics as the Arakawa C�grid �Arakawa and Lamb� �	��� Cullen� �		��� see
Fig� ���� At this grid the rectangle domain is divided into small cubes� Scalar �elds�
like z� '� T � r�v� are given at central points of each cube and represent the mean value
of any �eld inside that cube� Components of vector �elds� like v� r� etc� are treated as
normal �ux components at cube boundary� and are given at central points of cube sides�
as shown in Fig� ���c� Central points of cubes are treated as the primary grid� and
scalar �elds are de�ned on the primary grid� Central points of cube sides represent the
grid�points of secondary grid� Components of vector �elds are de�ned on the secondary
grid� The speci�c feature of the staggered grid is� that di�erent components of a vector
are determined at di�erent grid�points�

The main advantage of the staggered grid is mutual symmetry of gradient and divergence
operations� Any gradient� de�ned with the help of di�erence formula

�r��ijk � ��
�i	�jk � �ijk

%�
� �x

�ij	�k � �ijk
%x

� �y
�ijk	� � �ijk

%y

in an object of secondary grid� Vice versa� the �nite�di�erence divergence

�r � a�ijk �
a�ijk � a�i��jk

%�
�

axijk � axij��k
%x

�
ayijk � ayijk��

%y

is a scalar �eld on primary grid� This symmetry allows to maintain almost automatically
the basic conservation laws� supposing the equations of motion are written in divergent
form before discretization �Haltiner and Williams �	��� Cullen �		���
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Fig� ���

Staggered grid�
A� Look in the plain y � yk
B� Look in the plain � � �i
C� Elementary grid�cell fijkg
with scalar �eld at center
and velocity components at
sides�

Equations used are those of Miranda� ie� model equations ��������

Time integration scheme is an explicit leap�frog algorithm� Di�erently from hydrostatic
models� where intensive buoyancy wave generation �by an explicit scheme� determines
the need in quite sophisticated semi�implicit leapfrog schemes �Hoskins and Simmons�
�	���� the NH models are stable with the simple explicit one� For temporal smooth�
ing and for suppressing of the decoupling tendency� inherent to leapfrog schemes� an
Asselin �ltering technique �Robert� �	��� Asselin� �	��� is applied with the smoothing
parameter �Asselin � �����
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Spatial �ltering� Two spacial �ltering mechanisms are employed� The fourth oder �lter
is used to suppress short�scale instabilities with wavelengths � two grid�length� This is
the one used initially by Durran and Klemp ��	��� and generalized by Miranda ��		��
to the �D case�

Another �ltering �optional� is the Rayleigh �ltering at the top of the atmosphere� Its aim
is to avoid instabilities due to excessively large amplitudes of gravity waves� In the orig�
inal NH�D version Miranda employs the Rayleigh �ltering to suppress the gravity�wave
re�ection at the top �the sponge�layer idea�� In models with an free upper boundary
there is no wave�re�ection and the only aim of Rayleigh �ltering is stability maintenance�

��	� Geometry of the domain of integration in the p�space

The domain is �xed in the pressure space� and the e�ective ground surface pressure
p� is treated in accordance with ������ time�independent� As it was pointed in Section
���� this assumption is self�concordant in the framework of MPM with mean H� in the
sense that replacements of air particles at lower boundary are allays parallel to lower
boundary the in p�space and thus� do not change the con�guration of the domain� This
quality is mathematically expressed as

�p�
�t

�
�p�
�t

� � �

and corresponds in the NH case to the usual vertically integrated mass balance condition
of hydrostatic models �see ������

r �
�
p�

Z �

�

vd�

�
� � �

In our NH model the last condition is satis�ed automatically� if it is ful�lled at initial
moment �see �����b� an discussion to it�� The ground surface pressure �uctuations are
nevertheless di�erent from zero� Like in the hydrostatic models they can be evaluated
from z �uctuations at � � � �See appendix ��

p��
p�

�

�
z�

H�

�
���

� ���

���� Numerical solution of the z��equation

Central task at every time�step is solution of the diagnostical equation for z�� This
is done as described in section ���� with discrete versions of operators L and M and
source A� The model supports two kinds of boundary conditions for z�� the rigid lid
upper boundary condition �starts with logical parameter RIGLID��T�� and the free
upper boundary condition �RIGLID��F��� The consequent problem formulations are
given by formulae ������ and ����	�� Equations �����d� and ����	e�� which are of the
same form and di�er in essence by the upper boundary condition only� are solved in ��i�

with the help of fast cosinus�Fourier transform �FCFT�� The FCFT is suitable because
functions ��i� have zero normal gradients at lateral boundaries� The solution algorithm

�	



is di�erent from that of Miranda� Equations �����d� and ����	e� take after application
of the FCFT at every horizontal wave vector ki�j form �subscripts i� j are omitted�

A��l��l�� � A��l��l � A
�l��l	� � Bk � ���

where indices l correspond to discrete ��levels and Bl represents the FCF�transformed
right hand side of equations� Equation ��� represents the �nite�di�erence analogue of
equation �compare with ����	b��

�

��

�
s�
��

��

�
� k�� � B��� � ����

Di�erence equation ��� is treated as ordinary recurrence formula enabling to determine
�l�� for known �l and �l	�� The recursion is started at the lower boundary l � Ns�
For initialization of the recurrence values of �Ns and �Ns�� are needed� In both cases
�rigid lid and free upper boundary� we are interested in solutions which satisfy the
homogeneous Neumann condition at the bottom� which in �nite�di�erence formulation
reads as

�Ns � �Ns�� � ���

There exist two special solutions� which are independent and satisfy the homogeneous
Neumann condition at the lower boundary� which we denote as �I and �II �

�I � Bl �� � � �INs � �INs�� � � � ��a�

�II � Bl � � � �IINs � �IINs�� � � � ��b�

The �rst special solution is calculated for actual source� B� and it is zero along with the
�rst derivative at the lower boundary� The second solution is calculated for homogeneous
recurrence �ie� B � ��� and it has the unit value and zero �rst derivative at the lower
boundary�

Any solution

� � �I � ��II ���

will satisfy the nonhomogeneous recursion ��� with boundary condition ���� Parameter
� can be used for satisfaction of the remaining boundary condition� Here is di�erence
for k � � and k �� �� Let us consider at �rst k �� �� In the case the upper boundary
condition can be used for � determination� For the rigid lid model this condition is the
homogeneous Neumann at the top�

�� � �� �

and it yields

� � � �I� � �I�
�II� � �II�

� ��a�
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In the case of the free�boundary condition ����	d� should be used for the determination
of �� In explicit representation for � �superscript �i� is omitted for simplicity� it reads
�see �����c �

��

�
d����

d�

�
�

� ��� � ������ �
A���

�� � �
� ���

where A��� represents the right side of ����	d� for current iteration� As � � � represents
in staggered grid the half��or �gradient���level� ���� and A��� must be interpolated
from levels l � � and l � �� The choice of A��� is �for the real atmosphere conditions�
determined with sub�grid processes in the upper stratosphere and thus� represents a
subject for physical parametrization rather than of mathematical extrapolation from
the lower atmosphere� The right hand term in ��� corresponds to the situation� where
source A decays linearly from level � � � to zero at the in�nity� As a result� its
interpolated value in discrete model is �A� � A���� � A��� and the �nite�di�erence
analogue of ��� reads

b��� � b��� � b� � ��a�

where
b� � �� � � � ����%� � b� � �� � �� ����%� � ��b�

b� � A����� � �� � ��c�

With the help of this boundary condition we get for �

� � � b��
I
� � b��

I
� � b�

b��II� � b��II�
� �	�

Another possibility is to choose A zero at the level � � � already� which yields

b� � � � ��c��

As numeric modeling demonstrates� approximations ��c� and ��c � yield very close re�
sults in real conditions�

Thus� ��� and ��a� determine the solution of rigid�lid problem� ������� and ��� and �	�
determine the solution of free�boundary problem� ����	�� in the Fourier�space� Still� they
do this with one exception� k must di�er from zero� For zero wave�number� k � ��
described solutions does not exist� The reason for such peculiarity is that for special
case k � � values of the �rst derivative ����� are not independent at the ends of
integration domain� This is easy verify� integrating �� � once at k � ��

��

��
�

�

s�

�
C �

Z �

�

B d��
�

�

where C is the constant of integration� This constant determines the �rst derivative
of � everywhere uniquely� Choosing �������� � �� i�e� C � �� we cannot insist
on the predetermined value of vertical derivative at the upper boundary anymore� At
the same time both models� if applied at k � �� would require predetermined value for
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the �rst derivative at the upper boundary� ����� � � for the rigid�lid and ����� �
A���������� � �� �because �� � � � � in ��� for k � �� for the free�boundary model�

For this reason in the zero wave�vector case the homogeneous Dirichlet condition at the
bottom is taken for the remaining boundary condition�

k � � � �j� � � �

�
��

��

�
�

� � �

which for discrete solution ��� implies

k � � � � � � � ����

��
� Initialization

At the initial moment t � � the rigid lid condition �����c� is assumed for horizontal
velocity v in both upper boundary models� This condition is not absolutely necessary
for the free upper boundary� but even quite moderate deviation from the exact balance
can cause violent buoyancy oscillations of the model atmosphere�

If an optional initial �eld vin does not satisfy �����c�� it is projected into the linear
space of vertically non�divergent vectors�

vin 	 vf � r �
�
p�

Z �

�

vfd�

�
� ��

by making a simplest assumption

vin � vf �
�

p�
r' �

where ' � '�x� y� is a height�independent potential which can be determined from
equation

r�' � r �
�
p�

Z �

�

vind�

�
�

The same projection procedure is used in the rigid�lid model periodically at every nth
time step�

���� Diagnostical evaluation of vertical velocity�

If initial vertical velocity �elds satisfy conditions �����a�� �����b� and �����a�� the same
relations will hold �due to the choice of z�� for all successive moments� That means�
instead of the use of the evolutionary equation for w� �����b�� one can use successively
relations �����a� and �����a�� Of course� do to the small computational errors the ver�
tical sigma�velocity at the ground� &��� can become di�erent from zero� and a correction
is needed� In NHAD the correction algorithm� employed at every step� is as follows

&�fin � &�in � � � � &�in�� � &�in � � �

p�

Z �

�

r � �p�v�d�� �
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���� Numerical tests with the rigid�lid model

In Fig� ��� results of mountain wave simulations with the rigid�lid version of the NHAD
are presented� Modelling is performed for an isolated bell�shape mountain with h� � �
km and lx � �� km� ly � �� Upstream incident �ow is an uniform wind with U � ��
m�s� and N � ���� s��� Grid�size is %x � %y � �� km and time step is �� s� The rigid
lid is replaced at the level ptop � �� mb� Model includes a Rayleigh absorption layer
between �� km and top levels with maximum characteristic e�fold relaxation period �top
� ��� s at the top� Figures represent isolines of the total potential temperature with
the interval %� � �K�
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Fig� ��	a

Comparison of mod�
els NH�D and NHAD�

Potential temper�
ature isolines with
interval � K�
Integration period�
���� s�

Because the �ow is slipping� non�viscous and e�ectively two�dimensional �though the
integration domain is three�dimensional with the ground area ������� km�� the isolines
of potential temperature coincide in this particular situation with streamlines�

Integration is started with an initial �ow� which is obtained from the uniform �ow
�u� v� w� � �U� �� �� with the help of the initialization procedure� described in section
���� and it is carried on until the approximate stationary state is established�

In Fig� ���a model calculation results for original version by Miranda� NH�D� and
the rigid�lid version of NHAD are compared for identical conditions� As this �gure
demonstrates� the NH�D is e�ectively a rigid�lid model�

	�



0

2.5

5.0

7.5

10.0

-50 0 50 100

Z
, k

m

X, km

Linear ExM NHAD

Fig� ��	b

Comparison of the
linear stationary
exact model and
NHAD�
Potential temper�
ature isolines as
in Fig� ���a
Integration period
for NHAD� ����
s�

As demonstrates Fig� ���b� the rigid�lid model is quite di�erent from the exact linear
stationary solution� especially in the upper atmosphere� where the rigid�lid constriction
suppresses vertical wave�replacements very e�ectively� Because for the given parame�
ters the linear stationary solution is very close to the nonlinear exact solution� we can
conclude� that the rigid�lid approximation is applicable� if the modelling of lower tro�
posphere is only required and even in this case the upper boundary should be lifted to
high elevations�

The rigid�lid model represents a quite stable integration scheme and allows relatively
large time steps� In Fig� ���c the results for model with time step �� s are compared to
a model with time�step �� s� �the same as in Fig� ���a and b�� In addition the Rayleigh
dumping is switched out for the model with large time�step� This causes slightly larger
waves in the upper atmosphere� but does not involve numerical instability�

It should be pointed also� that the relaxation period� during which the initial �ow
transforms to the stationary� is at the rigid�lid case approximately twice shorter as for
the free�boundary model�
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Fig� ��	c

NHAD� Rig�lid mod�
els with di�erent
time steps�
� isolines as in
Fig� ���b�
Integration period�
���� s �

At the same time� the stability of a stationary �ow over an isolated mountain depends
�even for exact solutions� on the upper boundary condition� There can exist �ows�
which are stable �at the same background conditions� for free upper boundary but
become unstable for the rigid�lid one� An example represents �ow with parameters U
� �� m�s� N � ���� s��� h� � � km� lx � �� km� This model is known as a stable
�Baines� �		�� for free�boundary condition but it makes turbulent after approximately
on hour evolution� if the rigid�lid condition is applied�

���� Numerical tests with the free�boundary model

Computation results with free�boundary models are represented in Fig� ���� Model
parameters are the same as in Fig� ���a� except the integration time step� which is ��
s� and the Rayleigh top relaxation time� �top � ��� s�

In Fig� ���a the potential temperature isolines for the free�boundary NHAD model and
for the linear ExM are presented� As seen� the coincidence of models is good in the
lower and medium�level atmosphere� up to height � � �� km� Deviations above that
level are caused by nonlinear e�ects� which become signi�cant� if the wave amplitude
increases� and which are omitted by the linear model� Thus� the free�boundary NHAD
model is here the most representative one�
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Potential temper�
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ary solution�
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The presented in Fig� ���a NHAD solution corresponds to upper boundary condition
��a� with the �exact� right hand term� ��c�� E�ect on this term in the upper boundary
condition on the solution is demonstrated in the next Figure� where modeling results
for ��c� and ��c � are compared for the same model conditions as in Fig� ���a�
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Free�boundary NHAD�
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The conclusion from this example is� that the nonhomogeneous �����c � can be replaced
without any loss of precision with the homogeneous one�
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In Fig� ���a and ���b modeling results with shorter orography� lx � �� km� are presented�
The incident wind speed is U � �� m�s in Fig� ���a� and �� m�s in Fig� ���b� Other
parameters are�
h� � � km� ly � �� N � ���� s��� %x � %y � � km� and time step is �� s� Upper
boundary is at the level ptop � �� mb� Model includes a Rayleigh absorption layer
between �� km and top level� �top � ��� s�
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Conclusions from the modeling are�

Free�boundary NHAD yields results� which are in good accordance with exact analytical
solutions in situations where the last ones are available�

Free�boundary model is more stable �in comparison with the rigid lid model� numerically
and permits slightly �up to �� #� larger time steps�

Transition from initial pro�le to the stationary regime is not so rapid as for the rigid�lid
model and is� obviously� in a better agreement with the reality�

The general conclusion is that the free�boundary variant of the NHAD is most relevant
for modeling of slow dynamical processes in mesoscale and shorter synoptic scale and it
can be used� after updating with necessary physical paramterizations� for modeling of
real processes in the atmosphere�
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APPENDIX �

Expansion of the geopotential height in ��coordinate framework

Geopotential height ����� can be presented as

z�x� �� t� � h�x� �

Z �

�

H�x� ��� t�
��

d�� � zn�x� �� t�

where the last term represents the non�static correction� which corresponds to density
�uctuation n�� and the remaining terms correspond to static contribution� From this
expansion a lower boundary condition follows

znj� � � �

Presenting the temperature as a sum of the background value and �uctuative contribu�
tion�

T �x� �� t� � T��� � pS�x� t�� � T ��x� �� t�

where background temperature T��p� generates the corresponding height�scale

H�x� �� t� � H��� � p��x� t�� � H ��x� �� t�

we obtain without any approximation

z�x� �� t� � z��x� �� t� � z��x� �� t� �A��a�

where z� represents the background height� which can be expressed as a function of z��

z��x� �� t� � z��� � p��x� t�� � �A��b�

z��p� depends on the mean temperature T��p� �assuming that p� corresponds to the
same mean temperature distribution��

z��p� � h�x� �

Z p��x�

p

H��p
��dp�

p�
�

Z a

p

H��p
��dp�

p�
�

z� presents as

z��x� �� t� � zb�x� t� �

Z �

�

H ��x� �� t�
��

d�� � zn�x� �� t� � �A��c�

and zb is the baric component� independent of ��

zb�x� t� �

Z p��x�t�

p��x�

H��p�

p
dp �A��d�
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