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ABSTRACT

Nonhydrostatic� acoustically �ltered model of atmospheric dynamics in pressure coordi�

nates is derived using a special �ltering technique� The initial complete nonhydrostatic

equations in pressure space are linearized� The linearized system is divided into two

subsystems 	 to independent equation for potential vorticity� which determines the qua�

sisolenoidal horizontal 
ow and is a local invariant in the absence of heat sources� and

the fourth order wave system describing acoustical and buoyancy waves� A Lagrangian

function� corresponding to the wave equations� is derived� The acoustic �ltering is

carried out in the Lagrangian� The approximated Lagrangian generates �ltered wave

equations and the linear �ltered equations of motion� As a �nal step� the linear model

is extended to a nonlinear nonhydrostatic acoustically �ltered model by inclusion of ad�

vection terms in vorticity equation and by nonlinear generalization of the Hamiltonian

principle for the wave system� Thus� variational principles are employed for both the

acoustical �ltration and nonlinear extension of the �ltered approximation� which guar�

antees the maintenance of conservational qualities of initial model in the �nal �ltered

version� The deduced dynamical model has no previous analogues�

�� Introduction

A continuous medium that lacks acoustic disturbances can be characterised as an acous�

tically adjusted or acoustically relaxed one� In slow atmospheric processes the acoustic

modes are not signi�cantly activated� and the atmosphere is usually acoustically re�

laxed� Meanwhile� acoustic modes are potentially present �they can be activated� and�

as a consequence� the complete hydrodynamic equations� which are capable of describing

motions in an extremely broad domain of spatial and temporal scales� support beside

slow motions also fast acoustic solutions�

As is well�known� the potential existence of acoustic waves and perturbations among

solutions of hydrodynamic equations is a source of problems in numerical integration�

Because acoustic disturbances propagate in the atmosphere with the sound speed �� 
��
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m�s�� their explicit modeling requires small time steps in accordance with the Courant	

Friedrichs	Lewy stability requirement� The time	steps in explicit algorithms must be

two or three orders of magnitude smaller than it would be necessary for the adequate

resolution of the slow processes�

There are two general methods in use for dealing with this acoustic instability problem�

Following the terminology of Tanguay� Robert and Laprise ������ they may be called

the numerical relaxation and the physical �ltering methods�

The numerical relaxation technique is the younger one� see� for example� Tapp and

White ����� Klemp and Wilhelmson ����� Cotton and Tripoli ����� Durran and Klemp

���
� Klemp and Wilhelmson ���� use the time�splitting method for the acoustic

component� in equations responsible for acoustic evolution a shorter time step is used

than in equations describing the slow development� This allows relaxation of acoustic

modes to a quasi�equilibrium state within every larger time�step� Tapp and White ����

make use of a semi	implicit scheme to control acoustic oscillations� Terms involving

propagation of sound waves are treated implicitly� while other terms are represented

explicitly� The method assumes that the initial state of the atmosphere is acoustically

relaxed �if there is no special interest in the investigation of acoustic modes� of course��

It has been developed further in an investigation by Tanguay� Robert and Laprise �����

who apply the implicit acoustic	component integration scheme of Tapp and White in

combination with the semi	Lagrangian algorithm� This results in a conditionally stable

integration scheme with large time steps� Though phase speeds of acoustic modes

are distorted for time steps which do not satisfy Courant	Friedrichs	Lewy stability

requirement� that has little in
uence on the slow dynamics� if the initial conditions are

acoustically relaxed�

The other method� the physical �ltering method� is the older one� The hydrodynamic

equations are simpli�ed or approximated in such a way that they do not include acoustic

solutions anymore� A severe restriction� which makes physical �ltering a nontrivial

task� is the requirement that the slow dynamics should be maintained undistorted or

almost undistorted in the �ltered model� Classical representatives of this family are the

anelastic equations �Ogura and Charney ����� and the hydrostatic primitive equations

�HPE� in pressure coordinates �Eliassen ������






The family of di�erent models based on the anelastic approximation is quite numerous

and includes besides the classical incompressible Navier	Stokes model and Boussinesq�

equations the shallow	 and deep	convection models �Ogura and Phillips ������ which

employ the �shallow� and �deep� continuity equations �Dutton and Fichtl ����� Pielke

������ The most recent addition to the anelastic family is the �super�deep convection

model� �our terminology� of Durran ����� in which the anelastic continuity equation is

replaced by a more general pseudo�incompressible condition of thermodynamical origin�

The development of anelastic models has proceeded from small to larger spatial scales i�e�

from models designed for small�scale processes �incompressible Navier�Stokes� shallow

convection models� to models which are capable of describing beside small processes also

medium �deep convection model� and large �super�deep convection model� scale events�

An analogous development but in the opposite direction 	 from large to smaller scales

	 has gone on in the p	space model family� The main motivation for such development

has been the wish to generalize initially hydrostatic pressure�space models so that they

will describe nonhydrostatic e�ects� without abandoning p�coordinates� In contrast to

their hydrostatic counterparts� the existing nonhydrostatic �NH� pressure	coordinate

models are not always acoustically �ltered� so it is essential to distinguish acoustically

�ltered and complete NH models in p	space�

The �rst and probably best known NH model in pressure space is the Miller	Pearce

model� hereafter the MPM �Miller ����� Miller and Pearce ������ This model abandons

the hydrostatic relationship in favour of the nonhydrostatic vertical momentum equa�

tion� but it postulates the incompressibility of motion in pressure	space and in this way

it �lters the acoustic modes� A generalization of the MPM is presented by White �����

In the White model �WM� the horizontally homogeneous background temperature of

the original MPM is replaced by the actual temperature �eld� The MPM was originally

designed in p	coordinates� Sigma	coordinate versions were developed by Miller and

White ���� and used in numerical modeling by Xue and Thorpe ���� and Miranda

and James ����� The most general representation for nonhydrostatic non�ltered hy�

drodynamic equations in pressure coordinates is presented by R�o�om ����� ����� This

model� hereafter referred to as the RR� may be deduced with the help of the direct

transformation of complete non�ltered equations� using the curvilinear coordinate co�
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variant di�erencing formalism� from ordinary space to the p	space� It does not assume

any preliminary simpli�cation �including the preservation of the full Coriolis force�� In�

variant de�nitions of energy density and potential �Ertel� vorticity and the consequent

conservation laws are presented in R�o�om ����� As will be demonstrated later in this

paper� the WM and the MPM are �ltered approximations to these equations�

All the p	coordinate models so far cited� beginning with the Eliassen model and �nishing

with the RR� employ for their vertical coordinate the actual pressure� However� there

exist models which employ di�erent pressure coordinates� The �rst one� developed by

Laprise ������� employs the hydrostatic pressure rather than the full thermodynamic

pressure� Another such model is the nonhydrostatic extension of the Penn State 	

NCAR model �Dudhia ���
�� in which the mean background pressure is the vertical

coordinate� while the pressure 
uctuation is treated as a dependent dynamic variable�

which is a function of p	coordinates along with other dependent �elds�

In the present paper our aim is to deduce acoustically �ltered nonhydrostatic equations

from the general RR equations� As was pointed above� �ltered approximations to the

RR are the the MPM and the WM� but 	 as we shall show 	 deduction of �ltered

equations from the RR in linear case reveals that these models are not the only possi�

ble models� As it turns out� the general initial model yields a diagnostic relationship

between the velocity components� which can not hold simultaneously with the incom�

pressibility condition used in the WM and MPM� Thus� there exist di�erent models

and the problem is� which of them to prefer and in which circumstances� This may

be called an �optimal �ltering� problem� and a key question is which should be the

criteria for optimality� The answer depends to some degree on the tasks for which the

�ltered model is designed� but there exist some general points which are common for

all models� First� the �ltered model should maintain main conservation laws� second�

it should not distort the slow dynamics� including buoyancy waves� The �rst criterion

can be accepted without any restriction� At the same time the second criterion can be

satis�ed only approximately� because the �ltered model represents an approximation

and it has a residual error �in comparison with the exact model�� which becomes larger

the faster and more energetic is the modelled process� Therefore it is reasonable to

specify the second criterion as a requirement of maximum accuracy for processes with
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small amplitudes �or� in other words� for linear processes��

Summarising� the primary criteria for optimum �ltering are�

	 the �ltered model must possess the same conservation characteristics as does its non�

�ltered counterpart�

	 the �ltered model must guarantee maximum accuracy for linear processes�

In such a speci�cation the problem can be managed with the help of the least action

principle and Hamiltonian principle� The development of a �ltering technique which

uses the variational principles of mathematical physics is the main topic of the present

study�

Application of variational principles in the mechanics of continuous media has a long

lasting history� There exist two di�erent treatments of the Least action and Hamiltonian

principles 	 the mechanical one and the �eld�theoretic one� The mechanical approach

treats the continuous medium as a system of material particles� to which all mechanical

principles can be applied� This trend begins with the investigations by Clebsch �����

����� and it is essentially developed by Herivel ���� and Lin �unpublished paper��

Progress to the end of the ����s is summarised in the fundamental monograph by

Serrin ���� �the unpublished paper of Lin is cited in this monograph�� Important

results obtained thereafter in atmospheric dynamics include the development of the

Hamiltonian formalism for the shallow water model by Salmon ���
� for the HPE by

Shutts ����� and for the quasi�hydrostatic equations by Roulstone and Brice ����� the

deduction of the MPM from the least action principle by Salmon and Smith ����� an

application of the Poisson brackets formalism by Salmon �����

The �eld�theoretic interpretation of the variational principles is more common in other

branches of theoretical physics and especially in linear �eld theory �see Landau and

Lifchitz ������ In this method the �eld is treated at every point as an independent

oscillator and its magnitude is varied rather than the trajectories of material particles�

It is common in this treatment to deduce the Lagrangian function from known �eld

equations to get conservative characteristics of the �eld with the help of the Noether

theorem�

In this paper we use variational methods which are more close to the �eld	theoretic

�



view	point� Variational technique is employed in respect to the subsystem which is

responsible for wave processes in the continuous medium� Such a selective use of vari�

ational principles is the main explanation why the �eld	theoretic approach does the

work� Both the least action principle which employs the Lagrangian formalism� and

the Hamiltonian principle along with Hamiltonian formalism are used� The least ac�

tion principle is used to get �ltered linear equations� while the Hamiltonian principle is

employed for nonlinear extension of the obtained model�

In short� the �ltering of acoustic modes with the help of the least action principle is

carried out as follows� The nonlinear RR are linearized� divided into a quasisolenoidal

independently developing component and to the fourth order wave�system� The La�

grangian function is constructed for the wave	component� The �ltering approximation

is introduced immediately into the Lagrangian� Due to the simple structure of the

Lagrangian� possible approximations that yield wave	�ltration are not numerous and

they are easily recognizable as they are associated with time	order lowering� In turn�

the �ltered Lagrangian generates the �ltered linear dynamics� if one moves from the

Lagrangian back to the equations with the help of the least action principle� The use of

this principle guarantees in accordance with the Noether theorem maintenance of the

conservation laws of the initial linearized model �assuming� of course� that the �ltered

Lagrangian has the same temporal and spatial symmetry as the original� non�ltered

Lagrangian��

As a �nal step� the linear �ltered equations are extended to nonlinear forms� For that

the Hamiltonian variational formulation of wave equations is used� The Hamiltonian

formulation is more preferable in this case because it operates with the �rst order equa�

tions in time� which are closer to the initial non�ltered system by appearance� The

nonlinear extension consists in essence of the introduction of the density into Hamilto�

nian variational integral and complementing of local tendencies in the potential vorticity

equation and in the variational integral�

Though the variational approach is general and its applicability does not depend on the

choice of initial model or geometrical representation� in this investigation the �ltering

technique is designed keeping in mind the nonhydrostatic equations in the p	space� The

general method is developed and realized on this speci�c example� As an applicable
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output� two �ltered sets of equations are proposed which are closely related and di�er

only in the treatment of nonlinear advection� In one scheme the medium is compressible

in pressure coordinates �but still lacks acoustic disturbances�� and the omega	velocity

is determined in �approximate� accordance with its thermodynamical nature� In the

second scheme the slow 
ow of the medium is approximated as incompressible and the

omega	velocity is evaluated via the continuity equation of the incompressible medium�

The relative accuracy of the two models and their domains of practical application will

not be studied in this paper and serve as subjects for future investigation�
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� The complete set of NH equations in pressure coordinates


��� Height of the isobaric surface� The pressure �eld p�x� y� z� t� consists of a

hydrostatic main component� ps� and an NH correction� pn� p � ps � pn� Correspond�

ingly� in pressure coordinates �x� p�� x � �x� y�� the height of an isobaric surface

z�x� p� t� presents in a similar way �Fig� ���

z�x� p� t� � zs�x� p� t� � zn�x� p� t� � ��a�

zs�x� p� t� � h�x� �
R

g

Z p��x� t�

p

T �x� p�� t�

p�
dp� � ��b�

Here h�x� p� t� is the height of the ground above sea	level� p��x� t� represents the

atmospheric pressure �eld at the ground and T �x� p� t� is the temperature� The hydro�

static height component zs corresponds to the height which the air	particle would have

if the pressure of that particle were entirely determined by the hydrostatic e�ect� i�e��

by the weight of the atmospheric column above the particle� The remaining part of the

height� zn� is de�ned as the di�erence of actual and hydrostatic heights of the particle�

The independent height	coordinate� p� corresponds to the actual pressure�

The correction term zn is entirely caused by the nonhydrostatic pressure deviation pn�

Because jznj �� zs and jpnj �� p in the atmosphere� the nonhydrostatic pressure

and height corrections are related as �Fig� ��

zn
H

� pn
p

���

where H � RT�g is a �variable� atmospheric height scale� For processes with in�nites�

imal amplitudes �which can be described in the framework of linearized models� this

approximate equality may be replaced by the exact equality

zn
H

�
pn
p

� ����

These formulae are useful for comparison of di�erent pressure	 and height	coordinate

models� as they allow pressure gradient forces to be expressed as gradients of the geopo�

tential height and vice versa�


�
� General NH equations in p�coordinates� If the pressure �eld is a monotone

function of height�
�p

�z
� � �
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then it is possible to transform the dynamic equations of the atmosphere from Carte�

sian coordinates fx� y� z� tg to pressure coordinates fx� y� p� tg� disregarding the
hydrostatic assumption �see RR�� The resulting complete� non�ltered� nonhydrostatic

p	coordinate equations can be presented after minor simpli�cation of the Coriolis force

in the form�

dz

dt
� w �
a�

n
dw

dt
� g�� � n� � �
b�

n
dv

dt
� � gr z � nfk� v � �
c�

dT

dt
�

RT�

cpp
� Q � �
d�

dn

dt
� � n�r � v � ����p� � �
e�

n � � p

H

�z

�p
� �
f�

Here v � �u� v� and w are horizontal wind vector and vertical wind respectively�

� � dp�dt presents the omega	velocity of an air particle� n is a normalized� nondi�

mensional density in pressure coordinates� which is related to the ordinary air density

as�

n�p � g��z �

where �p� �z represent vertical extents of a small �in�nitesimal� air	particle in the

pressure	 and ordinary space� Q is the thermal forcing �heat source divided by cp�� k

represents the vertical unit vector� and the total �or Lagrangian� derivative is de�ned

as
d

dt
�

�

�t
� v � r � �

�

�p

with time and horizontal derivatives taken at constant pressure�


��� Boundary conditions� Conditions at lateral boundaries are the same as in

Cartesian coordinate models and so are not of special interest in the present study� The
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main di�erences with the usual model occur in the �horizontal� conditions at the top

and at the bottom� The domain occupied by the atmosphere is

� � p � p��x� t� ��a�

where the lower boundary p� is not �xed� but evolves in accordance with the equation

dp�
dt

� �jp� � ��b�

which expresses the condition that the lower boundary consists all the time of the same

air particles��� Thus� the domain is varying in time and ��b� presents an additional

evolutional �prognostic� equation which must be integrated along with the system �
��

Boundary conditions at p � p��x� t� and p � � are

zjp� � h�x� � ��a�

�j� � � � ��b�

The �rst assumes the existence of a rigid underlying surface in ordinary physical space�

it yields �for slipping boundary� kinematical condition for vertical velocity at the surface

wjp� �
dh

dt
� vp� � rh � ��a��

The second de�nes a �xed boundary in the p	space at the level p � �� this boundary

condition forbids mass out
ow to the cosmos in physical space�


��� Diagnostic equation for �� Model �
� presents a system consisting of seven

equations for seven �elds z� u� v� w� T � n and �� To close this system� the �two	

dimensional� prognostic �eld p� must be included and the evolution equation ��b� added�

All quantities of the model are prognostic �elds except �� and system �
�� ��b� includes

a single diagnostic equation �
f�� This equation must be used for the determination of

�� If a continuous medium has a bounding surface� which moves in accordance with a

di�erential equation governed by the state of that medium� this surface is called free�

In this respect p��x� t� describes a free boundary and in the p	space the atmosphere is

a continuous medium with free surface�
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the diagnostic �eld � ��� As �
f� does not include � explicitly� the way to proceed is to

di�erentiate �
f� by t and eliminate time derivatives by the help of other equations in

system �
�� The result is an explicit equation for �

�
�

p
� Q

T
�

p

nH

�
�w

�p
� �v

�p
� r z

�
� r � v � � D � ���

where

� �
cv
cp

�

In equation ��� the quantity on the right hand side� denoted as D� is the divergence of

the three	dimensional velocity fu� v� wg in common Cartesian space�

D �

�
�u

�x

�
y�z

�

�
�v

�y

�
x�z

�

�
�w

�z

�
x�y

�

Indeed� ��� is the general tendency equation for the thermodynamic pressure �eld� ap�

pearing in isobaric coordinate space as a diagnostic relationship� It is a standard form

of the thermodynamic equation� written in terms of dp�dt upon application of the con�

tinuity equation and the perfect gas law� As the pressure plays the key role in acoustic

adjustment� ��� will be an equation of primary signi�cance for further treatment�

Now� after the diagnostic equation for � has been derived� the initial relationship for

its derivation� equation �
f�� has played its role� and it may be dropped from further

treatment� Still� there exist other possibilities 	 we can employ diagnostic equation

�
f� for the elimination of one of the three dependent variables �z� n� T �� and drop the

evolution equation for that variable �ie� �
a�� �
e� or �
d�� from consideration� This

means we can go ahead with three di�erent sets of equations� which di�er in appearance

but are all equivalent to each other� and are by one equation and one dependent variable

less than the initial system� We shall use such a reduced model in section 
���


��� The hydrostatic primitive�equation limit� For motions with small vertical

accelerations� dw�dt � ��

z � zs � n � � � ���

�� This diagnostic equation represents a constraint that reduces the time�order of the model

by one� Due to the �
f�� only two of z� T � n can be initialized independently� Thus� the

time�order of �
�� ��b� is not seven �� number of time	derivatives� but six�
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where zs satis�es the hydrostatic condition �equivalent to de�nition ��b��

�zs
�p

� �H

p
� ���

Equations �
� transform at this limit to the ordinary HPE model� Formally the HPE

can be reached� substituting everywhere in �
� n by � and z by zs� The continuity

equation �
e� transforms at the HPE	limit to the condition of incompressibility�

r � v � ����p � � � ���

The hydrostatic analogue for ��� is

�
�

p
� Q

T
�

p

H

�
�ws

�p
� �v

�p
r � zs

�
� r � v � ����

It can be deduced from the HPE in the same way which was used for the deduction of

���� if the de�nition

ws � dzs�dt ����

is assumed for the vertical velocity at hydrostatic limit� Note that ���� is very close

in appearance to the original nonhydrostatic version ��� and can be deduced from ����

using limit ���� Though the HPE model does not need equation ����� this diagnostic

relation may be used for the determination of the hydrostatic vertical velocity� de�ned

by �����

Due to the assumption of the incompressibility ��� the HPE model �lters acoustic waves�

An exception is presented by the external� or surface waves� which are supported when

the pressure at the lower boundary evolves according to nonbalanced equation ��b��


��� The White and Miller�Pearce models� Other models which �lter sound

waves are the WM and MPM� The WM was alternatively derived from the Hamilton

principle by Salmon and Smith ����� Here we will outline the deduction of the WM

from the general NH model �
��

The WM rests on two fundamental approximations� which are introduced into the initial

model �
�� The �rst one is the incompressibility approximation� n � � � which is used

everywhere� except the right side of equation �
b�� Due to this approximation� equation

�
e� transforms to the continuity relation for incompressible 
uid� ��� �which �lters
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vertically propagating acoustic waves�� The other approximation is the representation

of the total derivative for z in �
a� as

dz

dt
� �

�zs
�p

� � H
�

p
�

This reduces the initial evolution equation �
� to the diagnostic relationship

�w � �H�

p
� ���a�

where �w stands for for the approximate value of vertical velocity� which obviously di�ers

�for given � � dp�dt� from both the exact de�nition �
a�� w� and the quasi�static

de�nition ����� ws� In the momentum equations the density n is approximated by the

unit value except the right side of �
b�� where it is expressed using �
f��

d �w

dt
� g

�
� �

p

H

�z

�p

�
� ���b�

dv

dt
� � gr z � fk� v � ���c�

Finally� the thermodynamic equation maintains its initial appearance

dT

dt
�

RT�

cpp
� Q � ���d�

Equations ���� ���� represent the WM �White ������

In contrast to the HPE model� which has an adjusted analogue ���� for equation ����

the WM lacks such an analogue� This occurs due to the use of the �more restrictive�

approximation ���a� instead of the �natural� assumption ������� This di�erence is the

main motivation to look further� in section 
� for acoustically �ltered models which�

di�erently from the WM� preserve the diagnostic relationship ����

The MPM follows from the WM after presentation T � T��p� � T �� z � z��p� � z� and

linearization of ���� in temperature and geopotential height 
uctuations�

�w � �H�
�

p
� ��
a�

�� The di�erence in ���� and ���a� exhibits also that the WM is generally not physically

identical to the HPE at the long	wave limit�
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d �w

dt
� g

�
T �

T�
�

p

H�

�z�

�p

�
� ��
b�

dv

dt
� � gr z� � fk� v � ��
c�

dT �

dt
�

Ti�

p
� Q � � T�

N�

g
�� � Q � ��
d�

Here

H� � RT��g � Ti �
R

cp
T� � p

�T�
�p

� N �
p
RTi�H� ����

represent the height scale� the stability parameter� and the V�ais�al�a frequency of the

background state�

The original MPM �Miller and Pearce ����� employs� di�erently from the presented

version ���� ��
�� the mean potential temperature �� and its 
uctuation �
� rather than

T�� T
�� Still� due to the relationship ����� � T ��T�� di�erences in these two versions

are not essential�

Additional approximation� which is characteristic to both the WM and MPM� and has

been overlooked in former investigations� concerns the lower boundary dynamics� Due

to the diagnostic relationship ���a� or ��
a�� equation ��b� is replaced by

WM �
dp�
dt

� �p�
�
�w

H

�
p�

� ���a�

MPM �
dp�
dt

� �p�
�
�w

H�

�
p�

� ���b�

These equations exhibit that in the WM and MPM the lower boundary dynamics in

the p	space is mainly dependent on the vertical velocity on the ground and thus� it is

determined by mechanical rather than by thermodynamical processes� Particularly� in

the MPM it follows from ���b� that the lower boundary is �xed in p	space and coincides

with the barometric mean value of surface pressure p��

p��x� � a exp

�
� g

R

Z h�x�

�

dz

T��z�

�
���c�

supposing the evolution equation for �w is ��a��� Any departure of p� from p� at initial

instant yields controversy with ��
a� at the lower boundary� Thus� the MPM �lters

surface pressure waves completely� In the WM some weak lower boundary evolution is

��



possible due to the departure of H at right side of ���a� from the mean H�� Still� it is a

good idea to choose p� at initialization equal to it mean value ���c�� The complete elimi�

nation of lower boundary motion in p	space by the MPM and reduction of its amplitude

by the WM does not mean the elimination of dynamic 
uctuations of surface pressure�

As it follows from ���� ground pressure 
uctuations can be evaluated via geopotential

height 
uctuations at the mean surface pressure level p�� p
�
� � p�z

�jp��H��p���


��� Energy conservation� The energy conservation law can be presented for �
� in

the form

n
d

dt
e � r � �vgz� � �

�p
��gz� � ncpQ

where the energy density is

e �
v�

�
�

w�

�
� cpT �

�
� � �

n

�
gz �

The last term here represents energy which the atmosphere has due to its �unrestricted�

compressibility� In both the HPE and the WM this term is absent� In the WM the

energy density takes the form

e �
v�

�
�

�w�

�
� cpT �

and the HPE lacks the vertical kinetic energy too�

e �
v�

�
� cpT �

In the MPM the energy density takes a form� more close to the wave energy de�nitions

of linear models�

e �
v�

�
�

�w�

�
�

�

�

�
gT �

NT�

��

�

It must be pointed out that energy conservation in the MPM is not a general character�

istic of the model� but �as �rst demonstrated by R�o�om� ����� it is restricted to model

situations in which term N�p�T��p� is a conservative characteristic of material particle�

i�e�
d

dt
�NT�� � �

�if the potential temperature is employed instead of T � like in the original MPM �Miller

and Pearce ������ then N�p����p� should be conservative�� Three model situations

��



when this condition holds� are� a�Np� is independent �beside the common independence

of t and x� of vertical coordinate p� b� model is fully linearized� d�dt � ���t� c�

Lagrangian time derivative includes the mean� background horizontal advection only�

d�dt � ���t � U�p����x�

�� Linear model

���� Linearization of equations �
� according to the hydrostatic equilibrium state�

characterised by the mean temperature� T��p�� yields equations

�z�

�t
� w � H�

�

p
� ���a�

�w

�t
� �g n� � ���b�

�v

�t
� � gr z� � fk� v � ���c�

�T �

�t
�

Ti�

p
� Q � ���d�

�n�

�t
� � �r � v � ����p� � ���e�

n� � �
�

p

H�

�z�

�p
�

T �

T�

�
� ���f�

Here z� and T � and n� represent isobaric height� temperature and density 
uctuations�

H� and Ti are de�ned by �����

The domain occupied by the atmosphere in the p	space is �xed in linear case�

� � p � p��x� � � � � x� y � � �

where p� is de�ned by ���c�� Boundary conditions at the bottom and top are

wjp
�
�

dh

dt
� vjp

�
� rh � �j� � � �

The �rst one represents an extrapolation to the mean lower boundary p� of the exact

relation wjp� � dh�dt� which follows from �
a� and ��a�� the second coincides with ��b��

��



Pressure 
uctuations on the ground� p��� can be evaluated via height 
uctuations �see

������

p�� � p�

�
z�

H�

�
p�

� ���a�

There exists another relationship for the pressure 
uctuation� which represents the

linearized version of ��b� and which may be presented with the help of ���c� as

�p��
�t

�

�
� �

pw

H�

�
p
�

� ���b�

Still� ���b� can be deduced from ���a� with the help of ���a� and thus� it does not

represent an independent evolution equation�

��
� Separation of the linear model to the wave system and potential vorticity

equation� Diagnostic equation for � can be deduced in the same way as for the

nonlinear case and the resulting expression coincides with the linearized version of the

equation ����

�
�

p
�

p

H�

�w

�p
� r � v �

Q

T�
� ����

This equation along with ���f� enable us to get from ���� a reduced set of equations �

�fth order in time� and divide this reduced model into two subsystems� One subsystem

represents horizontal 
ow governed by the independent potential vorticity equation�

Another is a fourth order subsystem� which describes wave processes �the wave system��

We introduce nondimensional �elds 	 and 
 in place of z� and T ��

	 �
z�

H�
� 
 �

T �

T�
� Tiz

�

T�H�
� ����

	 presents a relative height 
uctuation� scaled in H�� 
 can be identi�ed as the relative


uctuation of the entropy� Namely� let us de�ne the nondimensional entropy as the

function of the nondimensional potential temperature� ��

S��� � ln� � � �
T

Ta

�
a

p

�R�cp

�

where Ta and a are constants �the mean temperature and pressure at the sea	level�� and

let S��z� present the background hydrostatic value of S as a function of the geometric

height�

S��z� � S����z�� �

��



We de�ne the relative entropy as a di�erence in its actual and background values at the

same pressure level�

s�x� p� t� � S���x� p� t�� � S��z�x� p� t�� � ����x� p� t�� z�x� p� t�� � ����

De�ned in this way� s is a known functional ���� z� of the potential temperature and

height of the particle� This relative entropy is zero for background conditions�

s��p� � sj���p��z��p� � �����p�� z��p�� � � �

and for small temperature and height perturbations it coincides with the �eld 
 de�ned

by �����

s� �

�
��

��

�
���z�

�� �

�
��

�z

�
���z�

z� �

�
��

��
�

dS�
dz�

z� �
T �

T�
� Ti

T�H�
z� �

because dS��dz� � Ti��T�H���

Thus� 
 represents in linearized model� like s in the nonlinear case� the di�erence between

actual entropy of an air particle and the value which the air particle would have at the

same height in the background atmosphere�

Using the new �eld variables� equations ���a�� ���b� and ���d� can be presented as

�
�	

�t
�

�

H�

�P� w � b �
Q

T�
� ���a�

�


�t
� � N�w

g
�

Q

T�
� ���b�

�w

�t
� g

�
�P�	 � 


�
� ���c�

where

b � r � v

and short notations are introduced for operators

�P� � p
�

�p
� � � �P� �

�

�p
p � � �

Supplemented with equation ���c�� ���a� 	 ���c� give a closed reduced system for 
� 	�

w� and v� This represents a straightforward way for Lagrangian representation of the

��



linear dynamics� if the Coriolis force is absent� f � �� and this is the way which was

used in R�o�om and �Ulej�oe� ���� �see R�o�om ���� as well�� Still� in the presence of the

Coriolis force the problem is a little bit more sophisticated� and the proceeding requires

a transformation of ���c� to two scalar equations for the horizontal wind divergence

�b

�t
� �gH�r�	 � f

�
� q � �f	 � f

�
�

�p
p
T�
Ti

� �

�



�
� ���d�

and for the potential vorticity q�

�q

�t
� f

�

�p

�
p

Ti
Q

�
� ���a�

where

q � � k � �r� v� � �f	 �
fg

H�

�P�



N�
� ���b�

Equations ���d� and ���a� follow from ���c�� ���a� 	 ���c� at the additional assumption

f � const� The de�ned potential vorticity q represents the linearized version of the Ertel

potential vorticity �which is presented for complete p	space dynamics in RR�� It is an

essential quality of the system that q evolves independently of other �elds in accordance

with ���a� and is uniquely determined by the heat sources Q� For an adiabatic process

it does not change in time at all and represents a locally invariant �eld� Consequently�

in wave processes participate only remaining four �elds� governed by wave system �����

The wave system is tuned by the potential vorticity� which acts in equation ���d� as

external forcing� In short	scale region� where f becomes e�ectively zero� the tuning of

the wave system by the potential vorticity disappears and two subsystems become fully

independent �in linear approximation��

If equations ���� and ���� are solved� horizontal velocity can be �nd via the stream

function � and potential � using wellknown representation

v � k�r� � r� � ��
a�

At that for � and � equations follow from the de�nitions of b and q

r�� � � q � �f	 �
fg

H�

�P�



N�
� ��
b�

r�� � �P�w �
Q

T�
� ��
c�

��



���� Second oder wave equations� It is easy to get two second order equations for

	 and 
� by di�erentiating ���a� and ���b� w�r�t� time and eliminating the �rst order

time derivatives with the help of ���c� and ���d��

�
H�
�

�
r� �

�
�

ca

�

�t

��

� f�

c�a

�
� �P� �P�

	
	 � �P�

�
�� f�

N�

�

 � � Q� � ���a�

��
�

N

�

�t

��

� �

�

 � �P�	 � Q� � ���b�

where

Q� �
R

g�
�Q

�t
�

H�f

g
q � Q� �

�

N�

�

�t

Q

T�
�

and ca �
p
RT��� is the sound speed��� Equations ���� are wave equations for 


and 	� These equations can be employed for the modeling of linear wave processes in

p	coordinate representation in a general� non�ltered case�

Because parameter f��N� in ���a� is very small� the approximation � � f��N� � �

looks natural� Though this approximation is reasonable at scales � ��� km� it is not

a good idea to apply it in the synoptic domain� as this may cause serious distortion of

orographic	wave spectrum at scales 
 ���� km�

���� The Lagrangian function and energy� The signi�cance of second order equa�

tions ���� for the present study is that they have a Lagrangian function L and can be
deduced with the help of the least action principle

�S � �

Z t�

t�

dt

Z
�

dxdydp L � � �

�� Following the tradition of wave	equation representations we have chosen the sound

speed ca for the prime acoustic characteristic of the atmosphere and the V�ais�al�a fre�

quency N for the prime characteristic of the buoyancy� Though perhaps the most

relevant in physical terms� such a choice is not the best from the point of view of the

symmetry �which is always important in Lagrangian formalism�� For the maximum

symmetry either the characteristic frequency Na � ca�H� instead of ca� or the charac�

teristic buoyancy	wave phase	speed ci �
p
RTi � NH� instead of N � should be used�

��



as extremes of the Lagrangian action S� The Lagrangian L is supposed to be a function
of �eld variables 	� 
 and their derivatives�

L � L�	 � 	t� 	x� 	y� 	p� 
 � 
t� 
x� 
y� 
p� �

where 	t � �	��t� 	x � �	��x� etc� are short notations for partial derivatives�

Action S is varied in variations �	�x� p� t�� �
�x� p� t�� which vanish at the boundaries

of the domain  and at the initial and �nal moments� t� and t�� The condition of

extremity �S � � for arbitrary �	 and �
 yields Lagrangian equations

�L
�	

� �

�t

�L
�	t

� �

�x

�L
�	x

� �

�y

�L
�	y

� �

�p

�L
�	p

� � �

�L
�


� �

�t

�L
�
t

� �

�x

�L
�
x

� �

�y

�L
�
y

� �

�p

�L
�
p

� � �

which must coincide with the wave equations ����� To ensure this� it is su!cient to

choose the Lagrangian function L in the form

L � T � V � ���a�

where the generalized kinetic and potential energy densities� T and V� are

T �
�

�

�
H�

ca
	t

��

�
�

�

�
� � f�

N�

�� 
t
N

��
� ���b�

V �
�

�

��
fH�	

ca

��

� �H�r	�� �
�
�P�	 �

�
� � f�

N�

�



��
�

�
� � f�

N�

�
f�

N�

�


� 	 Q� �

�
� � f�

N�

�

 Q� ���c�

The purpose of our Lagrangian formalism is to provide us with the necessary tools for

optimal acoustic �ltering� On the one hand� the existence of the Lagrangian guarantees

energy conservation for the linearized system� On the other hand� with the help of

the Lagrangian formalism it is easy to get �ltered versions of the model which are still

energy	conserving� System ���� possesses �according to the Noether theorem� wave

energy

EL �

Z
V

H dxdydp �

��



with the density

H � 	t
�L
�	t

� 
t
�L
�	t

� L � T � V� ����

EL is conservative� if the system is isolated from external forcing� i�e�� if Q � � and q

� ��

The least action principle uses the Lagrangian function� L� as the prime �eld and results
in two Lagrangian equations ����� which are both second order in time� Alternatively�

there exists �see Salmon ���
� for example� another� Hamiltonian formulation of the

problem� which in that formulation is called the Hamiltonian principle� The Hamiltonian

formulation uses H as the prime function and results in four �rst order equations�

which are related to the fourth order wave system ����� In this paper the Hamiltonian

equations are required at �nal extension of �ltered model to the nonlinear case� For

that reason they are presented for the resting background conditions in the Appendix

A and generalized to the mowing medium in the Appendix B�

�� Acoustic 
ltering

For slow atmospheric movements with small Mach number�

F � U��c�a �� � �

where U is the characteristic amplitude of velocity� it is reasonable to �lter the model

acoustically� i�e� to simplify the equations so that they do not include acoustic	wave

solutions anymore� though maintaining other waves and slow movements� Essentially

the �ltering consists of lowering the time order of the system by two� The �ltering task

can be solved in a most straightforward manner using the Lagrangian formalism� The

main idea is that �ltering �ie� time	order reduction� should be carried out in the La�

grangian function� which must be approximated so that the resulting wave equations do

not include acoustic	wave solutions� As the approximate model has still the Lagrangian

function� it supports the energy conservation law and other conservative qualities� The

�ltered wave equations with the conserving wave energy are the main output of the

�ltered Lagrangian function�

���� Filtered Lagrangian and wave equations� The most straightforward �ltering

approximation is ca � � in the kinetic energy de�nition ���b�� This model has been

�




introduced by R�o�om and �Ulej�oe ������� here it will be presented in an extended version�

Though most simple and transparent� this �ltering approximation is still not the only

possible �ltering approximation in the Lagrangian� In �R�o�om ����� an alternative case

is studied in which the approximation of time derivatives 	t� 
t in ���b� with their

hydrostatic values is used� and which results in the MPM�

If the Mach number is small� then the �rst term in T is small in comparison with

two �rst terms in V in all spatial scales and� thus� in the �rst approximation it can be
neglected� The resulting expression for the Lagrangian function is ���a� with the kinetic

energy density

T �
�

�

�
� � f�

N�

�� 
t
N

��
�

and potential energy density ���c��

Filtered wave equations� corresponding to this Lagrangian� can be deduced directly from

���� with the help of the formal limit ca � � in equation ���a���
H�
�

�
r� � f�

c�a

�
� �P� �P�



	 � � �P�

�
�� f�

N�

�

 � Q� � ���a�

��
�

N

�

�t

��

� �

�

 � �P�	 � Q� � ���b�

As a result� the time order of the system is reduced by two and two solutions of the four

of the initial model are �ltered� The solutions eliminated in this way are acoustic modes�

At the same time� buoyancy waves are maintained� as the wave equation� �responsible�

for their existence� ���b�� maintains its initial appearance and still includes the V�ais�al�a

frequency N �

The main consequence of the �ltering is that the wave equation ���a� is replaced by

the Poisson equation in 	� ���a�� This equation de�nes 	 as a quasi�static �eld which is

determined by the forcing on the right side of the equation� The name �quasi�static� is

justi�ed� because the solution 	 of equation ���a� coincides for stationary forcing with

the exact static �time	independent� solution of the exact non�ltered equations ���� in

stationary conditions� For nonstationary conditions the quasi�static 	 depends on time

parametrically� via Q and 
 �and� perhaps� via nonstationary boundary conditions��

In general� the quasi�static 	 is di�erent from the hydrostatic height 
uctuation 	s�

which corresponds to the 
uctuative part of the hydrostatic height� ��b�� and which

��



represents a solution of the hydrostatic equation� The hydrostatic equation reads in

terms of 
� 	 �instead of T �� z���

�P� 	s � � 
 �

As it can be seen� the solution �	s� 
� of this equation is a solution of system ���� at

the limit of in�nitely slow processes ���
��t� � �� �Q��t � �� with su!ciently large

horizontal scales �r�	 � ���

The described �ltering scheme is optimal in the sense it gives exact solutions for in�

�nitely slow processes� For �nite speed processes the �ltered model yields approximate

solutions� of course� Meanwhile� these solutions can be further improved� if needed� and

the �ltering scheme shows a natural way for the improvement� Let us write ���a� as a

linear operator equation for 	

�P	 � � A �

where the source term A is a known function of 
 and Q� � Then the non�ltered equation

���a� can be represented as

�P	 � � A � �
��	

�t�
�

The last term on the right hand side can be treated for slow processes as a perturbation

with the small perturbation parameter � � H�
��c

�
a� and the solution of this equation

can be presented as a series

	 � 	� � 	� � 	� � ���

where 	i � �i� The �rst term 	� represents a solution of the �ltered equation ���a��

Other members of the series are successive correction terms� which can be calculated

from equations

�P	i � �
��	i��
�t�

� i � �� �� ��� �

Most meaningful is the �rst correction term� 	�� which can be interpreted as an acoustic

component of the motion� generated by slow dynamics�

��
� The linear 
ltered dynamics� The linear model� corresponding to the �ltered

wave equations ����� can be derived from ���� by substituting equation ���a� with the

balance condition

�P� w � b �
Q

T�
� � � ����

��



This relation presents a diagnostic equation for 	� The explicit equation for 	 can be

obtained by di�erentiating ���� by t� the result is the Poisson equation ���a�� After

this equation for 	 is employed� relation ���� can be used instead of ���c� for the

determination of the vertical wind w�

As ���� is deduced from the initial linearized system in the limit �	��t � �� it can be

treated as a consequence of the equation ���� and

w

H�
� � �

p
� ����

Thus� the used �ltration scheme employs the same relationship between w and � as

do the WM and MPM� and as a consequence� like these models it eliminates surface

pressure waves �in accordance with the detailed balance on the right side of ���b�� there

is no lower boundary evolution in the �ltered model�� Equations ���b� 	 ���d� along

with diagnostic relations ���� and ���� represent the closed linear acoustically �ltered

system of equations which is most close to initial non�ltered linear model and which

yields �ltered wave	equations ����� Therefore� this set of equations will be a basis for

nonlinear generalization�

The energy density of the �ltered model ���b� 	 ���d�� ����� ���� is

el �
�

�

�
g�

N�

� � v� � w�

�
�

���� Compressibility in 
ltered model� Relation ���� presents the adjusted version

of equation ���a� and coincides with the WM equation ���a�� That means� the vertical

velocity w is� as in the WM and MPM� an approximated �eld� Still� di�erently from

the anelastic models WM and MPM� the present model preserves the thermodynamic

relationship for �� ����� This is achieved due to the maintenance of the compressibility�

For the three	dimensional divergence of velocity in pressure	space�

Dp � b �
��

�p
� �
��

from ���� and ���� a diagnostic equation follows

Dp � � N�

g
w �

Q

T�
� �
��

��



The right hand term is in general di�erent from zero and the medium is compressible

in p	space�

Comparison of equation ���b� with �
��� �
�� exhibits that 
 satis�es equation

�


�t
� b � ��

�p
� � �

Because the density 
uctuation� n�� satis�es the continuity equation ���e� �this is a

matter of the de�nition of continuous medium�� the sum 
� � n� � 
 presents a local

invariant� which is constant in time at every point of the medium� This detailed balance

of entropy and density 
uctuations is the mechanism that eliminates the acoustic waves�

�� Nonlinear extensions of the 
ltered model

One possibility for nonlinear generalization is proposed by R�o�om and �Ulej�oe ������� It

consists of straightforward complementation of the system with the nonlinear continuity

equation along with the substitution of local time derivative ���t by the construct nd�dt

everywhere� Unfortunately� the energy conservation of the deduced in this way �ltered

nonlinear model is similarly to the MPM restricted to the case of conservative N � In

nonlinear case this means simply that N is a constant� In addition� it is not clear

whether the model supports the potential vorticity conservation or not�

To avoid these shortcomings� we propose an alternative way for nonlinear extension�

Though not so �straightforward�� it is quite general along with ideological transparency

and simplicity� and it supports further generalizations �to the latitude	dependent f �

spherical geometry� etc��� The method consists in nonlinear extension of the Hamilto�

nian principle�� for the wave	subsystem rather than the direct generalization of wave

equations� The main idea of the method is that in the slow	moving medium with given

velocity �eld fv� �g the wave equations are in the coordinate system which is bound

to an individual air particle of the same form� as they would have at the resting back�

ground �ie�� in the linear case� in the �xed coordinate system� It doesn�t matter whether

�� The method can be equally formulated in terms of the least action principle� which

would lead to nonlinear Lagrangian equations� second order in time� Still� the Hamil�

tonian principle is more preferable in nonlinear case as it gives �rst order equations�

��



the velocity �eld is independent or depends in turn on �eld variables� In other words�

as �rst approximation we assume that in a slow 
ow the wave disturbances are carried

along with the medium� The formal consequence of this assumption is that the local

derivative ���t is replaced everywhere by the material derivative� Still� this is not made

directly in wave equations but in the variational integral� In addition� H is treated as

the mass	density of energy �the wave energy of the unit mass�� which permits to take

the compressibility of the medium into account�

In detail the nonlinear version of the Hamiltonian principle for the non�ltered wave

system is discussed in Appendix B� and nonlinear� non�ltered Hamiltonian wave equa�

tions are �B�
�� To get the �ltered version� the �rst equation �B�
a� must be omitted

and the left hand term of �B�
b� must equal a zero� If we return in addition from the

generalized momentum �� back to the vertical velocity w with the help of �A��b�� the

nonlinear� sound	relaxed wave equations are

d


dt
� � N�

g
w �

Q

T�
� �
�a�

dw

dt
� g

�
�P�	 � 


�
�

�
w � gQ

N�T�

�
d

dt
ln
�
�� f��N�



� �
�b�

H�
�

�r � nr � nf��c�a


	 � �P�

n
n
h
�P�	 � ��� f��N��


io
� � nQ� � �
�c�

Remaining equations are the nonlinear potential vorticity equation

dq

dt
� f

�

�p

�
p

Ti
Q

�
� �
�d�

the continuity equation �
e�� equation ���� for � and diagnostical equations ���b�� ����

and �����

The energy of the model�

E �

Z
V

nHdxdydp �

is conserved for H � T � V� where V is de�ned by formula ���c� and

T �
�

�

N����
�� f��N�

�
�

�

�
N� � f�


�w
g
� Q

N�T�

��

�

The main di�erences of wave equations �
�a� 	 �
�c� in comparison with the linear

case are �besides the substitution of the local time derivative by the material one� the

��



presence of the density n in the 		equation �
�c� and the additional term in �
�b�� This

term is required for energy conservation� In practice it is always small� because f��N�

�� �� and it turns to exact zero for f � � and for constant f�N �

An interesting �and probably useful for practical applications� alternative to the derived

system is the model with incompressible velocity �eld �with �incompressible advection���

Such a model can be developed� because the nonlinear Hamiltonian principle �B��� does

not depend explicitly on velocity �eld and supports models with incompressible material


ow� The desired model follows from the previous� if n is put equal to unit in �
�c��

equation �
e� is replaced by the incompressibility condition ��� and equation ���� is

left out� Relations �
�a�� �
�b� and �
�d� remain as they are� Equation ���� for ��

which is �thermodynamic� by its nature as the consequence of exact linear relation ����

is neglected in favour of the continuity condition ���� Supposedly equation ��� yields

less accurate � than ����� Still� the accuracy of the omega�velocity is not so crucial

in the present approach� as it a�ects advective terms only and maintains linear terms

untouched� Note also that although the material 
ow is incompressible� the model still

represents a variety of elastic �ltered models� because� ��� di�erently from the WM and

MPM� equation ��� is not used for acoustic �ltration� ��� the discussed model transforms

at linearization back to the linear model �����

�� Conclusions

The main aim of the present paper was to describe a general method for deriving �ltered

models of atmospheric dynamics� The method has the following advantages�

	 The use of the Lagrangian formalism overcomes problems with energy conservation

and concentrates attention on getting the best �ltered models�

	 As �ltering is located in one scalar function 	 the Lagrangian 	 the possible �ltering

approximations are easy to control and classify� Consequently� the likelihood that some

essential �ltering scheme will be overlooked is small�

	 The main attention is concentrated on the linear dynamics of the model� As the linear

subsystem presents the backbone of every dynamic model of the continuous medium� it

is most important to approximate the linear part of the model in an optimum way�

��



	 The use of nonlinear extension of the Hamiltonian variational integral instead of the

direct extension of wave equations is simultaneously simple and general ideologically

and guarantees maintenance of symmetries of initial model in the �nal �ltered version�

Though the developed �ltering technique was realized on the example of pressure	space

dynamics� it should work in common coordinates as well�

The practical output of the method is a �ltered model� which has no previous analogues

and which may be called with reference to the method of its derivation as the �optimum

�ltered� model� This optimality in �ltering does not automatically guarantee its quality�

of course� Further investigation and comparison with other models and experiment are

required for that�

This investigation has been supported by the Estonian Science Foundation under Grant

No� ����

Appendix A	 Hamiltonian equations for linear model

Generalized momenta for the Lagrangian ���� are

�� �
�L
�	t

�
�T
�	t

�
H�
�

c�a
	t � �� �

�L
�
t

�
�T
�
t

�

�
� � f�

N�

�
�

N�

t � �A���

Using these de�nitions� kinetic energy ���b� can be presented as a function of �� � ��

T �
�

�

�
ca��
H�

��

�
�

�

N����
�� f��N�

and the Hamiltonian ���� becomes a function of 	� 
� �� � ���

The Hamiltonian principle is a variational extremum condition in the form

�

Z t�

t�

dt

Z
V

dxdydp �	t�� � 
t�� � H� � � � � �	� �
� ��� � ��� � �A���

where variations of all �elds must be zero at the initial and �nal moments and variations

of 	� 
 must be zero at the boundary of the domain V � Solutions of this extremum

problem are the Hamiltonian equations

�	

�t
�

�H
���

�
�


�t
�

�H
���

�


�



���
�t

� � �H
�	

�
�

�x

�H
�	x

�
�

�y

�H
�	y

�
�

�p

�H
�	p

� � �H
�	

�

���
�t

� � �H
�


�
�

�x

�H
�
x

�
�

�y

�H
�
y

�
�

�p

�H
�
p

� � �H
�


�

Because
�H
���

�
�T
���

�
c�a
H�
�

�� �
�H
���

�
�T
���

�
N���

�� f��N�
�

�H
�	

�
�V
�	

�

�
fH�

ca

��

	 � H�
�r�	 � �P�

h
�P�	 �

�
�� f��N�





i
� Q� �

�H
�


�
�V
�


�
�
�� f��N�


 �
�P�	 � 
 � Q�

�
�

an explicit form of Hamiltonian equations is

�	

�t
�

c�a
H�
�

�� �
�


�t
�

N���
�� f��N�

� �A�
a�

���
�t

� H�
�

�r� � f��c�a


	 � �P�

h
�P�	 � ��� f��N��


i
� Q� � �A�
b�

���
�t

� � �
�� f��N�


 �
�P�	 � 
 � Q�

�
� �A�
c�

Elimination of the generalized momenta from these equations gives the Lagrangian wave

equations ����� An acoustically �ltered variant follows� if �	��t and �� are put to zero�

A comparison of �A�
a� with ���a� and ���b� yields relationships between generalized

momenta and common �eld variables�

�� �
H�
�

�c�a

�
�

H�

�P�w � b �
Q

T�

�
� �A��a�

�� �
�
� � f��N�


�� w

g
�

Q

N�T�

�
� �A��b�

These equations enable to �nd �elds b and w after the Hamiltonian system �A�
� is inte�

grated� Left side of �A��a� makes zero for adjusted model and this equation transforms

to �����


�



Appendix B	 Nonlinear Hamiltonian equations for the wave�subsystem

Here we generalize the Hamiltonian formalism of Appendix A to the moving continuous

medium with given slow velocity �eld v�x� p� t�� �� i�e� for a given trajectory ensemble

of in�nitesimal 
uid particles� Though this generalization is required for acoustically

relaxed dynamics� we deduce Hamiltonian equations for general non��ltered wave system

as the method works equally correctly for the non�ltered model as well�

The generalization rests on the following assumptions�

�� The density n follows for given v the continuity equation

�n

�t
� r � �nv� � �n�

�p
� � � �B���

Density n is here entirely determined by the given 
ow pattern� A special case is the

volume	preserving 
ow �eld�

r � v �
��

�p
� � � �B����

at which n � ��


� The wave energy density H is the mass density� nHdxdydp represents the energy of
an individual 
uid particle�

�� The trajectories and locations of particles are given and not subjected to variation�

The independent variable �elds are� as in linear wave�subsystem� 
� 	� ��� �� � but their

independent variations are carried out in individual� moving 
uid particles rather than

in �xed p	space points� Consequently� the time derivatives of �eld variables correspond

to the 
uid particles rather than to �xed points� which means that the partial derivative

���t is replaced by material derivative d�dt in the Hamiltonian principle formulation�

At made assumptions the generalization of the Hamiltonian principle �A��� reads

�

Z t�

t�

dt

Z
V

dxdydp n

�
��
d	

dt
� ��

d


dt
� H

�
� � � � �	� �
� ��� � ��� � �B���

where variations of all �elds must be zero at the initial and �nal moments and variations

of 	� 
 must be zero at the boundary of the domain V �

Due to the continuity equation we haveZ t�

t�

dt

Z
V

dxdydp n
d���
dt

�� � �
Z t�

t�

dt

Z
V

dxdydp n
d��
dt

���


�



for every ���� ��� if ��� is zero at the boundaries of the domain V � Keeping this in

mind� we get from �B��� the explicit Hamiltonian equations

d	

dt
�

c�a
H�
�

�� �
d


dt
�

N���
�� f��N�

� �B�
a�

n
d��
dt

� H�
�

�r � nr � nf��c�a


	 � �P�

n
n
h
�P�	 � ��� f��N��


io
� nQ� �

�B�
b�
d��
dt

� � �
�� f��N�


 �
�P�	 � 
 � Q�

�
� �B�
c�

In comparison with the resting	mediummodel discussed in Appendix A� the time deriva�

tives here are the Lagrangian derivatives and equation �B�
b� includes density n� Rela�

tionships �A�� remain unchangeable�
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