NONHYDROSTATIC ADIABATIC
KERNEL FOR HIRLAM
Part |
Fundamentals of nonhydrostatic dynamics in
pressure—-related coordinates

Rein Room
Tartu Observatory, Estonia
room@aai.ee

1 Introduction

We start with the description of a numerical model of atmospheric dynamics,
which is designed as the nonhydrostatic extension to the adiabatic kernel
of the present hydrostatic HIRLAM. For representation of nonhydrostatic
dynamics, the model makes use of a pressure coordinate framework, and
numerical codes are formulated, like in the hydrostatic parent-HIRLAM, in
pressure-based hybrid coordinates of ECMWF origin.

The pressure-coordinate approach to nonhydrostatic modeling has many ad-
vantages in comparison with other methods. Besides generality — pressure
coordinates support presentation of most general, non-simplified dynamics
— this approach does not require prior separation of the background state,
inherent in many nonhydrostatic models. Another advantage is simplicity —
in pressure coordinates any optional atmospheric motion with sophisticated
mass-distribution becomes an incompressible flow with constant density. A
practical advantage of pressure-coordinate approach in nonhydrostatic mod-
eling is that it supports immediate generalization of the existing hydrostatic
HIRLAM into the domain of nonhydrostatic spatial scales. Numerical pack-
ages, such as initialization tools, sub-grid physical parametrization libraries,
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and postprocessing facilities, can be maintained. Due to the enhanced resolu-
tion of nonhydrostatic dynamics, initialization and physical parametrization
must be revised, but there is no need to start from the beginning. Thus, the
overall development cost may be significantly reduced.

The first NH model in pressure coordinates was developed by Miller (1974),
and Miller and Pearce (1974). That was a pure pressure-coordinate model
with the background separation and accompanying linearization of energy
conversion term. The Miller-Pearce model is pseudo-anelastic ("partially
anelastic") — internal acoustic waves are filtered due to conservation of press-
ure-coordinate volume of air particles, yet the external acoustic mode (Lamb
wave) is maintained. A modification of the Miller-Pearce model to a sigma—
coordinate framework was given by Miller and White (1984). White (1989)
proved the existence of a more general model, which does not require back-
ground separation and linearization, and provided a sigma-coordinate repre-
sentation of that model. A variational formulation of the White model was
given by Salmon and Smith (1994). Ro6om (1997) developed a completely
anelastic sigma—coordinate model, in which surface pressure is adjusted and
the Lamb mode filtered. Numerical formulations of the pseudo-anelastic
model have been developed by Xue and Thorpe (1991), Miranda and James
(1992), and for the anelastic model by R6om (1997).

A different (parallel to the above—cited development) pressure-coordinate
representation theory of atmospheric dynamics was given by Room (1989,
1990, 1998), who showed that exact (acoustically non-filtered) dynamics can
be presented in pressure-related coordinates, if vertical accelerations do not
exceed gravitational acceleration. In that approach the main metrical re-
lations and continuity of the pressure-coordinate space are first explicitly
defined and the continuity equation for pressure-space density is introduced,
which closes the system of dynamic equations. The variational formulation
of general equations is given in (R66m 1999). An important quality of the
general approach is that it includes all simplified pressure-coordinate ap-
proaches, like hydrostatic, pseudo-anelastic, and anelastic models, as special
cases, which allows for a unified treatment of all pressure-coordinate dynam-
ics. This generality was employed by R66m and Ménnik (1999) at unified
testing of accuracy of different pressure-coordinate models.



The paper is designed and realized in two parts, each representing a separate
chapter:

e Part [. Fundamentals of nonhydrostatic atmospheric dynamics in press-
ure-related coordinates.

e Part II. Anelastic, hybrid-coordinate, Explicit-Eulerian model.

Part T presents the fundamentals of general atmospheric dynamics in pressure
coordinates. The problem is, that in spite of simplicity of pressure-coordinate
dynamics, its interpretation is not just as trivial as in the hydrostatic case and
can cause ambiguities, if not preliminarily separated into elementary pieces.
Though the numerous papers, cited above, deal with the main aspects of
the pressure-coordinate models in many details, we still lack an elementary
concise presentation of the basic postulates of the theory. It appears that a
paper like this, designed for wide use as an introductory documentation into
the numerical nonhydrostatic model based on a pressure coordinate presen-
tation, is just the right place for a careful description of the basics of the
approach. The discussion of the main facts is illuminating, helps to avoid
ambiguities, and makes further representation more simple, transparent and
concise. In this chapter, initial definitions are presented in the framework
of general pressure-coordinate dynamics, followed by tracing the changes,
which can appear when simplifications like anelasticity are introduced. For
instance, the pressure coordinate itself serves as an example: is that the
actual pressure, or just its hydrostatic component, and what happens to
the pressure when the anelastic approximation is applied? Those familiar
with nonhydrostatic dynamics in pressure-coordinates can easily omit this
chapter, and start from the second part, which introduces the final anelastic
hybrid-coordinate model.



2 Exact equations of adiabatic atmospheric dy-
namics in pressure coordinates

2.1 Pressure vertical coordinate

In pressure coordinates the pressure p of an air particle is treated as the
vertical coordinate of this particle and it determines along with horizontal
coordinates x, y the location (or p — coordinates) {z,y,p} of the particle
in the pressure coordinate system. Consequently, the components of the
velocity of the material particle in p-coordinates are {u, v, w}

dx dy dp
dt ’ dt ’ dt ’
and the material derivative of function A is

dA 0A N 0A N 0A N 0A (2.1.2)
— =— 4 u—+v—t+w—". 1.
dt ot ox dy op
Ordinary height becomes in the pressure coordinate system a function of
p-coordinates and time, z = z(x,y,p,t), and it is often called the isobaric

height.

In the moving atmosphere, the pressure consists of the hydrostatic component
p® and the nonhydrostatic contribution p"

(2.1.1)

u =

p=p°+p", (2.1.3a)

where p° is determined via the barometric relation for any given height 2

p’ = g/ pdz (2.1.3b)

p being the air density, and the nonhydrostatic part is defined as the difference
between pressure and hydrostatic pressure

pt=p—p°. (2.1.3¢)

When the atmosphere is in hydrostatic equilibrium, then p” = 0, and the
pressure coordinate coincides with the hydrostatic pressure of the particle,
but this is not the general case, and in the moving atmosphere p and p?
must be strictly distinguished. In the present study, the vertical coordinate
is always identified with the actual pressure p.



2.2 Continuity

The continuous quality of the medium is specified via the density n of the
matter in pressure coordinates and in the corresponding continuity equation.
We define nondimensional density via the mass dm of an elementary air
volume:

dm = pldxdydz| = n|dxdydpl|/g ,

where ¢ is the gravitational acceleration. Keeping in mind, that a negative
dp corresponds to the positive dz, and using the general gas law, we get

ndp = —gpdz = —(p/H)dz , (2.2.1)

where
H =p/(9p) = RT/g (2.2.2)

is the local scale height, T is the temperature and R is the gas constant of
the air. The differential equality (2.2.1) yields a metric equation

p 0z ,

—— =-n. 2.2.1

Hop (2.2.17)
For hydrostatic equilibrium conditions, p — p*, the density n becomes equal
to 1 and the metric equation simplifies to the ordinary hydrostatic equation.

The density n satisfies the continuity equation (representing the mass con-
servation law in pressure coordinate system)

68—?+v-(nv)+8"—w:0, (2.2.3)

or in an equivalent form

dn Ow
. i 2.2.3
dt—l—n(V v+8p> 0, ( 3')
where 5 5
v:ixa‘i‘iya—y, v=iu+i'u

are horizontal gradient in pressure coordinates and horizontal wind vector,
whereas 1*, i¥, i” are unit vectors along x, y, and vertical axes. The conti-
nuity equation (2.2.3) along with the metric equation (2.2.1°) determine the

quality of the curvilinear pressure-coordinate space.



The density n can be used for hydrostatic pressure diagnostics. From (2.1.3b)
and (2.2.1) a relationship follows:

P
p’ :/ ndp , (2.2.4)

or, in the differential form
op°*
op

=n. (2.2.4")

2.3 Equations of motion and thermodynamics

The equations of motion and thermodynamics in pressure coordinates, in
adiabatic and friction-free case, are as follows (Room 1989, 1998):
Isobaric height equation

dz
— = w; 2.3.1
a - (2:3.1)
Vertical momentum equation
dw
— = g(1 — ; 2.3.2
n = gl = ) (23.2)
Horizontal momentum equations
d
no o= — gVz — nf x v (2.3.3)
dt
Temperature equation
dT T
&~ =Y (2.3.4)
dt P

where w is vertical velocity, f = fi*, and f is the Coriolis parameter, >z = R/c,
and ¢, is isobaric specific heat. It is assumed that the atmosphere follows
the equation of the state of an ideal gas (this assumption was already used
at the definition of height scale H (2.2.2)).

Seven equations (2.2.17), (2.2.3), (2.3.1) - (2.3.4) present a closed system for
determination of seven fields n, z, u, v, w, T and w.



2.4 Domain and boundary conditions

The conditions at lateral boundaries are the same as in Cartesian coordinate
models (and are not treated here, though we will discuss them later while
specifying the elliptic equation’s boundary conditions). Differences occur
in the "horizontal" conditions at the top and at the bottom. The domain
occupied by the atmosphere is

0 < p <polz,y,t), (2.4.1)
where the lower boundary pg evolves in accordance with the equation
dpo
5 = Yo (2.4.2)

expressing the condition that the lower boundary consists of the same air
particles all the time. Thus, the domain is varying in time and (2.4.2) presents
an additional prognostic equation which must be integrated along with the
remaining system.

The boundary condition at p = 0 is
lim w = 0. (2.4.3)

p—0
and it forbids the outflow of mass into outer space.

The primary boundary condition at the underlying surface is
zlpe = M=z, y), (2.4.4)

where h(z,y) represents the surface elevation above sea-level.

Like p is not hydrostatic in the general model, the surface pressure pq is
different from the hydrostatic surface pressure component pj. A diagnostic
equation for p§ follows from (2.2.4):

po(xsyzt)
py(z,y,t) = p’le,y, po(z,y, 1), t] = / n(x,y,p,t)dp . (2.4.5)
0

Action on this relationship with /0t yields (with the help of (2.2.3), (2.4.2)
and (2.4.3))
Ipq
ot
This is the tendency equation for hydrostatic component of the surface pres-
sure in nonhydrostatic pressure-coordinate dynamics. It expresses the verti-
cally integrated mass conservation law.

Po
+V-/ nvdp = 0. (2.4.6)
0

7



2.5 [Isobaric height components

From (2.2.1’) and (2.4.4), an integral representation follows for isobaric height

Po d
z:h—l-/ nH—p.
p p

For applications it is practical to split z between a hydrostatic part z* and
another contribution 2

2=2"+7Z,
where z* is a solution of the hydrostatic equation

p 0z*

— =-1. 2.5.1
T o (2.5.1)
The general solution of this equation is
P H
2 = h(z,y) +/ —dp' (2.5.2)
p P

where p* stands for the constant of integration. Different choices of p* yield
different z* and Z. The most important choices of p* are the hydrostatic com-
ponent of surface pressure p§, actual surface pressure py, and mean surface
pressure p.

In the case p* = p{ we will have splitting of the isobaric height into the
hydrostatic and nonhydrostatic components

z2=2"42", (2.5.2a)
where
Py H
2° = h(z,y) +/ —dp', (2.5.2b)
p D
and
2N =z—2". (2.5.2¢)

Diagnostics of the hydrostatic component z* from (2.5.2b) is a relatively
sophisticated task, as it requires prior determination of p§ from (2.4.5).

More suitable for practical applications is the choice p* = pg , which leads
to a splitting of z into thermic and baric components

=2+, (2.5.3a)



2= h(x,y) —|—/ —dp’, (2.5.3b)
P

and
b

=22 (2.5.3¢)
The most evident difference of two modes of splitting, (2.5.2) and (2.5.3),
is that the thermic height equals the surface elevation height h at the low-
est pressure level of the model, pg, whereas the hydrostatic height becomes
equal to the surface elevation at the hydrostatic surface pressure level pj,
which is different from the surface pressure. A relationship between the two
representations is

d=2 40z, =20z, (2.5.4)

Po H , H .
0z :/ —dp’ ~ <—> (Po — po) (2.5.5)
py P P/

where
o
is a barotropic (ie., height-independent) height shift.
The splitting is analogical when the mean surface pressure p, is used instead

of the actual pressure
z=2" 42, (2.5.6a)

Thermic and baric geopotential (we will use the same names as in previous
case) are in this case

Po |
2t = h(x,y) +/ Edp' : (2.5.60)
P

and
L =22, (2.5.6¢)

The choice of 7, is not unique. One possibility is the initial (analyzed) surface
pressure distribution:

Do = po(,y,0) . (2.5.7a)

Another possibility is presented, specifying P, as a given (for instance, de-
termined from a larger dynamical model), externally driven, time-dependent
field:

Po = Po(, Y1) - (2.5.7b)



Finally, p, may be specified from the barometric formula

R hzy) g,
230 - pO(xa y) = Psea €XP | — / s (2576)
0

Hy(2")

where Hy(z) =RTy(z)/g is the horizontally averaged value of the scale height
at altitude z, and py,, is the mean sea-level pressure.

3 Anelastic pressure-coordinate model

The general pressure-coordinate dynamics presented in the previous chapter
is too general and allows in the case of slow, large-scale motion several simpli-
fications. The most straightforward simplified model — hydrostatic primitive-
equation model — follows, if one puts n =1 everywhere in the above-presented
equations. However, pressure coordinate dynamics supports much more flex-
ible approximations, which are almost as simple as the primitive equations,
but maintain the nonhydrostatic nature of the model. In the following we
will describe the anelastic p-coordinate model. This is a modification of the
pseudo-anelastic model (White, 1989) with additional filtering of external
mode sound waves (Lamb waves). The main attention will be paid to de-
scribing and commenting of simplifying assumptions.

3.1 Simplification of equations

i. The approximation n = 1 is applied everywhere, except for the metric
equation (2.2.17) and the right hand term in the vertical momentum equation
(2.3.2): n is equalized to the unit in the continuity equation (2.2.3) (or
(2.2.37)), on the left hand of the equation (2.3.2) and in the equation (2.3.3)
everywhere. In other words, approximation n = 1 is applied to the terms
for which the density fluctuation n’ = n - 1 presents a second order small
correction. As n’ << 1 for slow dynamics at all spatial scales (typically |n'| <
0.01), this approximation is justified and maintains precision as long as quick
processes (like explosions and shock wave propagation) are not involved.

ii. Equation (2.3.1) is approximated by the equation

w' = —HY (3.1.1)
p
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where w® is a "hydrostatic" approximation of vertical velocity w; equation
(3.1.1) is its definition. Consequent approximation of w by w?® is applied in
the equation (2.3.2), which becomes (along with the approximation n = 1 on
the left hand side)

dw?

dt
Beginning with this equation and in what follows we have restored the dia-
batic forcing in prognostic equations. A, represents here all terms omitted
in simplified adiabatic treatment of vertical momentum equation: turbulent
friction, spectral smoothing, etc.
An approximation for w similar to (3.1.1) was proposed already in the first
formulation of nonhydrostatic p-space model by Miller and Pearce (1974),
though they applied the linearized formulation with background scale height
instead of the actual local scale H. Formula (3.1.1) was first introduced, and
its harmony with energy conservation demonstrated, by White (1989). Ap-
proximation (3.1.1) can be justified by the following two-step simplification
procedure. First, equation (2.3.1) is approximated as

=g(1—n) + A, (3.1.2)

dz*
R = — 3.1.3
wria= (313)
where z® represents the hydrostatic isobaric height (2.5.2b). Secondly, on
the right hand side of (3.1.3), which is written with the help of the material
derivative definition (2.1.2) explicitly as

dz*  dh H\ dp; /PS OH dp' H
= - - .WWH | =2£X - ==
i dt+(p>p3 &t % + v,V PR

the last term, as the dominant one at short spatial scales, is maintained only.
At shorter spatial scales (L, < 10 -20 km), the first terms on the right hand
side compensate each other, while the integral term is much smaller than
the last one. These terms become comparable with the last term, (—Hw/p),
in the hydrostatic region, yet there the pseudo-anelastic model behaves like
an ordinary hydrostatic primitive equation model and does not depend on
vertical velocity, and consequently, on its approximations. It should be noted
that approximation (3.1.3) is also a valid one (see Room 1999), yet it does not
add much precision to the model performance in comparison with the (3.1.1),
but makes computations more sophisticated (and, consequently, more noisy).
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Another approximative definition for vertical velocity in the pseudo-anelastic
model is proposed by Salmon and Smith (1994)

1dH

~w = 4t 3.1.4

where H —=H(p, s) represents the enthalpy, a characteristic thermodynamic

function of pressure p and entropy density s . For a thermodynamically ideal

gas, where
O _ 1 _RT oM _

gt _ 2 T
dp p p  Os ’
definition (3.1.4) yields
Hw Tds
p=—————. 3.1.4
v p o gdt ( )

For adiabatic processes ds/dt = 0, and (3.1.4’) reduces to the original White
definition (3.1.1). For practical applications, the same criterion holds for
(3.1.47) as for (3.1.3): in the nonhydrostatic domain, where vertical velocity
becomes essential for dynamics, the second term in (3.1.47) is small in com-
parison with the first one, and (3.1.4’) reduces to (3.1.1). In the following,
we will keep to the approximation (3.1.1).

Thus, the dynamic equations of the pseudo-anelastic model are (2.2.1%),
(3.1.1), (3.1.2), the continuity equation for anelastic medium

Vevd—=0, (3.1.5)

the horizontal momentum equation (with diabatic forcing included)

((11—;[ = — gVz — fxv +A,, (3.1.6)

and the temperature equation (with diabatic forcing included)

dT »Tw

— = — + Arp. 3.1.7

" p T (3.1.7)
Due to maintenance of (approximate) vertical momentum equation (3.1.2),
this model is nonhydrostatic. At the same time, the anelastic approximation
(3.1.5) filters internally propagating sound waves, making the model more
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stable while also supporting larger time step at numerical integration. Phys-
ically, equation (3.1.5) is valid for processes for which characteristic time-scale
T >> 7, = L/c,, where L is the characteristic spatial scale of the process
and ¢, ~ 335 m/s is the speed of sound. This condition is valid almost at
all spatial scales, and approximation (3.1.5), overall accepted in the hydro-
static dynamics, is actually not less accurate in the nonhydrostatic mesoscale
domain.

3.2 The final form of pseudo-anelastic equations

We eliminate w® and n from further treatment, substituting w® in (3.1.2) with
the help of (3.1.1) and n with the help of (2.2.17). In addition, nonhydrostatic
geopotential ® — ¢z is used instead of isobaric height z, and its thermic and
baric components ¢ and ¢ are separated:

d=gz=¢p+¢, (3.2.1a)

=gz = gh R pozd' 3.2.1b

¢ = g2 = gh(z,y) + PR (3.2.1b)
P

p=glt=d—¢. (3.2.1¢)

Such separation is not obligatory, but it permits for explicit representation
of baric and thermic counterparts in the dynamic equations, which is advan-
tageous for nonhydrostatic modification of hydrostatic numerical schemes.

The equations then become

dw p? 0¢

— =———+4 A, , 2.2
dt H? 0p + (322)
dv

dT »Tw
— = — 4+ A 3.2.4
dt D + T, ( )

Ow
V- — =0 3.2.5

where p LR
p CyW T

A, =—=A, R 3.2.6
7ot (cpp T R dt) (3:2.6)



To emphasize that the gas constant R may have significant density effect in
the moist air, we have maintained the potential time-dependence of R in this
formula, though in the dry air dR/dt = 0.

Now we have to introduce the geopotential equation. System (3.2.2) - (3.2.5)
represents a closed set of five equations for determination of five unknown
fields w, u, v, T and ¢. The only diagnostical field here is the baric geopoten-
tial ¢ and the only diagnostical equation in this set, which can be employed
for its determination, is anelastic condition (3.2.5). Thus, the role of ¢ is to
keep the motion non-divergent in time. The explicit equation for ¢ follows
after applying the time derivative to (3.2.5):

g(V-V+a—w>:0,

dt dp
or
dv+8dw i 8viavj_0
dt  Op dt byt oxi Ozt
(¢ = z,2% = y,23 = p, v! = u,v? = v,v® = w). Elimination of time

derivatives with the help of momentum equations (3.2.2) - (3.2.3) yields the
Poisson equation for ¢

o ( p* 0¢
Lo =V — ==L =A4" 2.
¢ ng—i—ap <H26p> , (3.2.7a)
where the volume-distributed source function
3 . .
ov' o’ 0A
AV = — — V- k A, + —2 2.
2 507 D V- (Vo+ fkxv) +V + o (3.2.7b)

describes the internal sources for ¢ in the moving atmosphere, determined
by different forces trying to change the p-coordinate volume of air particles.
The change is prevented by the reaction of the field ¢. The first sum in
(3.2.7b) represents inertial effects. Individual air masses move with different
velocities and collide permanently, trying to change the volume of each other.
The ¢, generated by this term as solution of the elliptic equation (3.2.7a),
eliminates such volume change effects. Analogically, the second term in A, is
caused by the two-dimensional divergence of ageostrophic acceleration, and
the third — by three-dimensional divergence of diabatic forcing.
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Equation (3.2.7) is valid in the internal points of the domain. When con-
sidering it in the closed domain with boundary points included, the singular
sources A’ located on the boundary surface should be included, which would
describe the effect of boundary conditions, induced by the surrounding envi-
ronment

Lo=A"+ A", (3.2.7)
Inclusion of boundary sources is essential, when the elliptic equation is solved
using the orthogonal basis. Still, specification of A® requires the preliminary
specification of boundary conditions for ¢. We will return to this problem
later.

After the elliptic equation for ¢ is derived, one equation in set (3.2.2) —
(3.2.7) will be superfluous and can be left out. We will omit the vertical
momentum equation (3.2.2). Then the model to be integrated is represented
via equations (3.2.3) — (3.2.7). This is the final form, which will be the basic
system for further numerical scheme development. Prognostic equations in
this system are the same as in hydrostatic model, but a new scalar field, the
baric geopotential ¢ in the horizontal momentum equation (3.2.3), diagnosed
from the elliptic equation (3.2.7), is added.

3.3 Geometry of the domain and boundary conditions

The pseudo-anelastic approximation, introduced in sections (3.1) -(3.2) main-
tains the quality of pressure-space. The vertical coordinate p represents still
complete pressure, w is the true pressure change rate of the individual air par-
ticle, and diagnosis of hydrostatic and nonhydrostatic pressure components
can be performed using formulae (2.1.3c) and (2.2.4). The difference from
exact dynamics is only in the way of evaluation of the density distribution
n, required for integral (2.2.4). In exact dynamics it was prognosed from the
equation (2.2.3), whereas in the pseudo-anelastic model n is evaluated from
z distribution via (2.2.17).

The maintenance of the essence of pressure and pressure velocity involves
also maintenance of the geometric domain (2.4.1) and equation of the lower
boundary (2.4.2). At the upper boundary we assume condition (2.4.3) for
w. Integration of the continuity equation (3.2.5) yields then a diagnostic
expression for w, which is in common with the hydrostatic model

p
W= —/ vV -vdp' . (3.3.1)
0
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The combination of this relationship at the level p, with (2.4.2) yields the
tendency equation for surface pressure

Po
%Jrv-/ vdp = 0. (3.3.2)
ot )

This equation guarantees maintenance of integral conservation laws (of mass,
energy and momentum). By appearance it is close to the hydrostatic surface
pressure equation (2.4.6) of exact dynamics. Still, there is a principal differ-
ence in py and pj in the pseudo-anelastic model, too, and close appearance
of (3.3.2) to (2.4.6) should not be misinterpreted as coincidence of py and pj.
Pressure py is a prognostic field, which is prognosed from the lower boundary
equation (2.4.2) or from the equivalent equation (3.3.2). The hydrostatic
surface pressure pj in the pseudo-anelastic model is a diagnostical quantity,
for which equation (2.4.6) does not hold anymore and which can be evaluated
from (2.2.4) only.

Boundary conditions for the elliptic equation.

The lower boundary condition (2.4.4) is not affected by the pseudo-
anelastic approximation. For full geopotential, ® = gz, (2.4.4) gives ®|,, = gh.
Thus,

Blpo =0 (3.3.3)
The general lateral boundary condition is the Neumann condition
9¢
— | = 3.3.4
(52) =or. (3.3.4)

where ar is a given function, which specifies the normal gradient of baric
geopotential on the lateral boundary surface I'. The general idea is, that
when the horizontal momentum equation (3.2.3) is presented in the Eulerian
form

ov
E_F_vqsa

where F represents the "hydrostatic" tendency, then the normal gradient of
¢ must compensate the difference between the normal components of the
true and hydrostatic tendencies on the boundary. This gives

aVr

ar =n- <FF - ﬁ> , (3.3.5)
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where the subscript I points, that both F and v are externally driven on
the boundary. In practice, ar depends much on the applied boundary model.
In the present nonhydrostatic approach the lateral relaxation mechanism of
the hydrostatic HIRLAM is applied, and the choice of ar for this particular
model is discussed later. Until that, ar is treated as a given function.

A fixed upper boundary condition for ¢ as a limit ¢ — ¢ has no sense
due to indefinite nature of the right hand term in (3.2.2) at p = 0. Instead,
we will apply the integrability condition, which also determines behavior of ¢
at p = 0 uniquely (for a given lower boundary value):

Po Po
/ Bldp < 0o, if / Aldp < oo. (3.3.6)
0 0

For an explanation, what this condition means, let us consider equation
(3.2.7) for constant surface pressure py = const and isothermal atmosphere
H = const. The application of Fourier transformation in z, y transforms this
equation to an ordinary second order differential equation for the Fourier
coefficient ¢(p) of the baric potential at wavenumber k

Lped s peg— med,
dp” dp

where A(p) is the Fourier coefficient of source A(z,y, p) at wavenumber k.
Two independent solutions of the homogeneous equation are the regular and
irregular solutions

5e(p) = (ﬁ)ﬂkm () = (p)“km ,

Do p_o
where
M = \/ 1/4+H2k2 .

The regular solution satisfies the condition (3.3.6). The second, irregular
solution is unbounded at p — 0 and does not satisfy (3.3.6). Thus, the
irregular solution must be left aside.

When the orthogonal basis is applied in the solution of the elliptic equation,
condition (3.3.6) implies lack of singular sources at the upper boundary.
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Boundary sources.

Specification of the boundary conditions in the form (3.3.3) - (3.3.6) also
makes it possible to fix the structure of the surface source A’ in (3.2.7°) as

Ab(X,p, t) = 7(X7 t)5(p,p0) + f(Xl",p; t)&(X, XF) : (337)

Here v and f are the amplitudes of singular boundary sources, which have
to be specified from (3.3.3), and (3.3.4), respectively. At first, the general
solution of the elliptic equation is found for the optional distribution of am-
plitudes v and f' , and then, v and f' are determined from the boundary
conditions (3.3.3) - (3.3.4). Details of the fI' and ~ specification will be
discussed later, in Chapter 5, when the discrete model is introduced and
orthogonal bases are applied for solution of the elliptic equation.

3.4 Surface pressure adjustment

The application of the described pseudo-anelastic model with lower bound-
ary, evolving in accordance with the equation (3.3.2), would yield dynamics
with the external mode sound waves included. However, the aim of this non-
hydrostatic approach is to develop a model with eliminated external waves
and adjusted surface pressure. This would represent a truly anelastic model
with completely filtered acoustics. To achieve such a model, it is necessary
to modify both the lower boundary py and the lower boundary conditions.

Making use of small amplitude of the relative surface pressure fluctuation
P4/ Dy, We will consider motion in a given (pre-specified) geometrical domain

0 < p <Pylx,y,t), (3.4.1)

and linearize quantities and relationships, which depend explicitly on the
actual surface pressure, with respect to pj. The background field py(z,y, t)
approximates the real surface pressure. However, it is a given field (externally
driven as (2.5.7b), or fixed in time like (2.5.7a)), and it is not influenced
by actual dynamics of the atmosphere. Linearization affects the kinematic
condition (2.4.2) and the expression for geopotential ®. The linearized form
of (2.4.2) is
, _
38210 N % F vl - Vi = wlp, | (3.4.2)

18



from which the linearized form of vertically integrated mass balance follows
with the help of (3.3.1)

Opy |, 9P /po
V- v . 4.
; + : + i dp 0 (3.4.3)

Surface pressure adjustment means, that the pressure fluctuation tendency
term is very small in these equations in comparison with other terms, and
approximately
dp, IPy
o= T =0y,

dt ot

_ o
o +v-/ vdp = 0. (3.4.3)
ot .

The geopotential dependence on pj becomes evident, splitting ® into thermic
and baric components with respect to p,

-V » (3.4.2")

0

d=gp+¢, (3.4.4a)
— t __ Po Z /
¢ = g2 = gh(z,y) + R dp' (3.4.4b)
p
Po RT RT
b= g2b =" +/ —dp ~ " + (—) Do (3.4.4¢)
o P p Po

To investigate the adjustment process, we apply time derivative to (3.4.3)

d%p) i 9°Py
Ot? ot?

pO 8V
AV —dp = 0. 4.
+ /U Map = 0 (3.4.5)

Using the horizontal momentum equation (3.2.3) and the results from (3.4.4),
equation (3.4.5) is transformed to

0°py e
T V.- [pov ( - )] =A,, (3.4.6a)
po av Qﬁ
A= v-/ vy 40l -V (ot 6" + fk x v—AlJdp— 2P0 | (3.4.60)
0 dp ot?
where ¢ = /(RT)p, ~ 280 m/s is the isochoric sound speed. This is the

nonhomogeneous wave equation for surface pressure fluctuation. A special
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case of equation (3.4.6a) is a model with uniform bottom, p, = const., when
(3.4.6a) simplifies to
0°py
ot?
Dynamics of surface pressure can be treated as adjusted, if the first term in
(3.4.6a) is much less than the second one:

v [;—aov <Cip6>H (3.4.7)

Po

— V3(c’ppy) = A, .

<<

d*p
0t?

and when (3.4.6a) simplifies to

V. [;T)UV (Cip6>] = A, (3.4.8)

Po

Let L and 7 be the characteristic spatial and temporal scales of motion under
consideration. Then standard scale analysis of (3.4.7) leads to the condition

T >> 1, =L/c. (3.4.9)

In limited area models, L is of the the same order as the horizontal extent of
the domain of integration. In such a situation, the condition (3.4.8) means
that the characteristic time-scale of the process must be larger than the time
interval, required for sound waves (propagating with speed ¢) to travel out
of the domain. The condition (3.4.9) is in practice valid at all spatial scales
L, as for slow processes 7 ~ L/v, where v ~ 10 m/s. Note that adjustment

is achieved formally by increasing the sound speed to infinity (¢ — oc) in
(3.4.7).

In the adjusted model, the surface pressure consists of the mean steady com-
ponent and small adjusted contribution

Po = Po + g - (3.4.10)

The fluctuation pj can be evaluated from the equation (3.4.8), if the right
hand term is known. This is the case of hydrostatic dynamics. In nonhydro-
static region, the right hand term A, includes nonhydrostatic geopotential
¢" which is not known separately from baric geopotential ¢. Therefore it is
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necessary to move ¢" in (3.4.8) to the left side and, with the help of (3.4.4c),
present (3.4.8) as an integral condition for ¢

Po Po ov 6223
V-/ Vqﬁdp:—V-/ v - Vv+w—+Vo+ fkxv—Ay | dp+—=2
0 0 8p 8t2

(3.4.11)
In the adjusted case this relationship must be used for specification of the
boundary source amplitude 7 in (3.3.7). In physical aspect, (3.4.11) controls
the temporal maintenance of the vertically integrated mass balance (3.4.3").
Namely, it validates the condition (3.4.3") for all times, if that condition is
satisfied at the initial moment.

As it became evident, in the adjusted model the surface pressure fluctua-
tion is represented implicitly in the body of the baric geopotential (3.4.4c).
However, it is not completely invisible and can be diagnosed from ¢ using an
extrapolation

0
O~ 0, + (5] sh=ah.

Po

With the help of (3.4.4) we obtain

oD o Dy 8¢ RT
®_0 N _0+ _0 N h+ _0, <_> N <_ + _> N <_ - —> ,
|P QOID ¢P 9 ¢P 8]7 7o ap ap - 8]7 P _

Po

and the extrapolation formula reduces to

RT  0¢ ;L
<? - 3_p>p0 Dy = d)‘ﬁo : (3.4.12)

Usually, the second term in the first brackets is small in comparison with the

first, and approximately
RT
<?> pf] = ¢‘ﬁo : (3.4.12)

Po
The omega-velocity (3.3.1) can be diagnosed in the adjusted case with the
help of (3.4.3’) as

aﬁo B Po ,
p
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or in the equivalent form

3] Po
w= o +V- / vdp' . (3.4.13")
ot )

This relationship is used in the nonhydrostatic anelastic model elsewhere. As
the condition (3.4.3") arises from (3.4.11) at every ¢ > 0 on the constraint
that (3.4.3") holds for =0, the relationship (3.4.13") also provides the upper

boundary condition w — 0 (see (2.4.3)) at every ¢ > 0, at the additional
constraint that this condition is satisfied at ¢ = 0. .

The set of equations (3.2.3) - (3.2.4), (3.2.7), (3.4.4b), (3.4.13), when treated
in the domain (3.4.1), represents the anelastic, nonhydrostatic, pressure co-
ordinate model, as it completely lacks any (internal or external) acoustic
mode.

3. 5. Anelastic model in pressure coordinates: Summary

The closed set of relationships and equations, needed for integration of the
developed anelastic, pressure-coordinate model, is as follows.

The domain of integration is fixed in pressure-coordinates and is presented
by (3.4.1).

The prognostic fields of the model are the wind components u, v, and the
temperature 7. The consequent prognostic equations are the horizontal mo-
mentum equation (3.2.3) and temperature equation (3.2.4).

The baric and thermic geopotential components, which together determine
the horizontal gradient—force in the momentum equation (3.2.3), are both
diagnostic fields. The thermic geopotential ¢ is diagnosed from (3.4.4b). The
baric geopotential ¢ is diagnosed from the elliptic equation (3.2.7’), which is
solved in the domain (3.4.1) with boundary conditions (3.3.4), (3.3.6) (with
P, instead of py in the role of the upper boundary of integrals), and (3.4.11).

The omega-velocity represents also a diagnostic field, which is diagnosed
from (3.4.13) or from (3.4.13").
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The actual surface pressure presents an auxiliary field, which can be diag-
nosed from the relationship (3.4.12).

Comments

The general model, described in Section 2, is a perfect pressure-coordinate
equivalent of the general equations of atmospheric dynamics, commonly treat-
ed in Cartesian coordinates. However, the filtered anelastic model, derived in
Section 3, has not been widely used and has no direct analogues in the family
of numerical weather prediction models. In this respect, it is of certain inter-
est to follow possible links of this model with the most familiar approaches
in the numerical weather prediction practice.

As it appears, the closest relative to the general pressure-coordinate (p-
coordinate) model (2.2.1°) - (2.3.4) is the general (fully elastic) hydrostatic—
pressure—coordinate (p®— coordinate) model (Laprise 1992, 1998). These two
models actually represent the same general case, realized in (slightly) differ-
ent coordinate systems. The transformation of equation from p-coordinate
system to the p°-coordinate system and wice versa is straightforward. The
corresponding coordinate transformation is represented by the relationship
(2.2.4").

However, the further implementation of these equations goes in the Laprise’
approach and in the present model in different ways.

In the Laprise’ approach, the initial fully elastic equations are taken as a
basis for numerical implementation. The fast acoustic and buoyancy modes
are handled via semi-implicit reformulation of equations, making use of the
Tanguay-Robert-Laprise (1990) hypothesis. That would be an option in the
present case, too; for that it would be necessary to formulate equations of
motion (2.2.3), (2.3.1) - (2.3.4) in hybrid coordinates, and then present them
in the semi-implicit numerical framework. The essence of the semi-implicit
approach is, as wellknown, the reduction of the propagation speed (¢ — 0)
of fast acoustic and buoyancy disturbances, retaining the slow advective-
convective component of dynamics undistorted, and enhancing this way the
numerical stability.

In the present approach, the fast acoustic mode is removed (relaxed, elimi-
nated), before the numerics is introduced, making use of infinite sound speed
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(¢ = o0) approximation. This is achieved by removing both the internal
acoustic mode (using approximation n — 1 in (2.2.3)), and the external
acoustic wave (replacing (3.4.5) by (3.4.11)). It is notable, that the internal
wave removal is not sufficient alone (as this is used already in the hydrostatic
model without any visible improvement of numerical stability), a decisively
new quality is introduced by the complete elimination of transient acoustic
waves. The approach is "wave-selective": it removes acoustic waves com-
pletely, yet maintains the buoyancy waves unchanged (this was checked and
proven to be true, at least, for linear disturbances).

Note that the present anelastic model supports further implementation of the
semi-implicit scheme d la Tanguay-Robert-Laprise’ hypothesis for removal of
fast transient buoyancy mode, after which it would be closer to the semi-
implicit fully-elastic (Laprise 1998) model.
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