
NONHYDROSTATIC ADIABATICKERNEL FOR HIRLAMPart IFundamentals of nonhydrostati
 dynami
s inpressure�related 
oordinatesRein RõõmTartu Observatory, Estoniaroom�aai.ee1 Introdu
tionWe start with the des
ription of a numeri
al model of atmospheri
 dynami
s,whi
h is designed as the nonhydrostati
 extension to the adiabati
 kernelof the present hydrostati
 HIRLAM. For representation of nonhydrostati
dynami
s, the model makes use of a pressure 
oordinate framework, andnumeri
al 
odes are formulated, like in the hydrostati
 parent-HIRLAM, inpressure-based hybrid 
oordinates of ECMWF origin.The pressure-
oordinate approa
h to nonhydrostati
 modeling has many ad-vantages in 
omparison with other methods. Besides generality � pressure
oordinates support presentation of most general, non-simpli�ed dynami
s� this approa
h does not require prior separation of the ba
kground state,inherent in many nonhydrostati
 models. Another advantage is simpli
ity �in pressure 
oordinates any optional atmospheri
 motion with sophisti
atedmass-distribution be
omes an in
ompressible �ow with 
onstant density. Apra
ti
al advantage of pressure-
oordinate approa
h in nonhydrostati
 mod-eling is that it supports immediate generalization of the existing hydrostati
HIRLAM into the domain of nonhydrostati
 spatial s
ales. Numeri
al pa
k-ages, su
h as initialization tools, sub-grid physi
al parametrization libraries,1



and postpro
essing fa
ilities, 
an be maintained. Due to the enhan
ed resolu-tion of nonhydrostati
 dynami
s, initialization and physi
al parametrizationmust be revised, but there is no need to start from the beginning. Thus, theoverall development 
ost may be signi�
antly redu
ed.The �rst NH model in pressure 
oordinates was developed by Miller (1974),and Miller and Pear
e (1974). That was a pure pressure-
oordinate modelwith the ba
kground separation and a

ompanying linearization of energy
onversion term. The Miller-Pear
e model is pseudo-anelasti
 ("partiallyanelasti
") � internal a
ousti
 waves are �ltered due to 
onservation of press-ure-
oordinate volume of air parti
les, yet the external a
ousti
 mode (Lambwave) is maintained. A modi�
ation of the Miller-Pear
e model to a sigma�
oordinate framework was given by Miller and White (1984). White (1989)proved the existen
e of a more general model, whi
h does not require ba
k-ground separation and linearization, and provided a sigma-
oordinate repre-sentation of that model. A variational formulation of the White model wasgiven by Salmon and Smith (1994). Rõõm (1997) developed a 
ompletelyanelasti
 sigma�
oordinate model, in whi
h surfa
e pressure is adjusted andthe Lamb mode �ltered. Numeri
al formulations of the pseudo-anelasti
model have been developed by Xue and Thorpe (1991), Miranda and James(1992), and for the anelasti
 model by Rõõm (1997).A di�erent (parallel to the above�
ited development) pressure-
oordinaterepresentation theory of atmospheri
 dynami
s was given by Rõõm (1989,1990, 1998), who showed that exa
t (a
ousti
ally non-�ltered) dynami
s 
anbe presented in pressure-related 
oordinates, if verti
al a

elerations do notex
eed gravitational a

eleration. In that approa
h the main metri
al re-lations and 
ontinuity of the pressure-
oordinate spa
e are �rst expli
itlyde�ned and the 
ontinuity equation for pressure-spa
e density is introdu
ed,whi
h 
loses the system of dynami
 equations. The variational formulationof general equations is given in (Rõõm 1999). An important quality of thegeneral approa
h is that it in
ludes all simpli�ed pressure-
oordinate ap-proa
hes, like hydrostati
, pseudo-anelasti
, and anelasti
 models, as spe
ial
ases, whi
h allows for a uni�ed treatment of all pressure-
oordinate dynam-i
s. This generality was employed by Rõõm and Männik (1999) at uni�edtesting of a

ura
y of di�erent pressure-
oordinate models.
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The paper is designed and realized in two parts, ea
h representing a separate
hapter:� Part I. Fundamentals of nonhydrostati
 atmospheri
 dynami
s in press-ure�related 
oordinates.� Part II. Anelasti
, hybrid-
oordinate, Expli
it-Eulerian model.Part I presents the fundamentals of general atmospheri
 dynami
s in pressure
oordinates. The problem is, that in spite of simpli
ity of pressure-
oordinatedynami
s, its interpretation is not just as trivial as in the hydrostati
 
ase and
an 
ause ambiguities, if not preliminarily separated into elementary pie
es.Though the numerous papers, 
ited above, deal with the main aspe
ts ofthe pressure-
oordinate models in many details, we still la
k an elementary
on
ise presentation of the basi
 postulates of the theory. It appears that apaper like this, designed for wide use as an introdu
tory do
umentation intothe numeri
al nonhydrostati
 model based on a pressure 
oordinate presen-tation, is just the right pla
e for a 
areful des
ription of the basi
s of theapproa
h. The dis
ussion of the main fa
ts is illuminating, helps to avoidambiguities, and makes further representation more simple, transparent and
on
ise. In this 
hapter, initial de�nitions are presented in the frameworkof general pressure-
oordinate dynami
s, followed by tra
ing the 
hanges,whi
h 
an appear when simpli�
ations like anelasti
ity are introdu
ed. Forinstan
e, the pressure 
oordinate itself serves as an example: is that thea
tual pressure, or just its hydrostati
 
omponent, and what happens tothe pressure when the anelasti
 approximation is applied? Those familiarwith nonhydrostati
 dynami
s in pressure-
oordinates 
an easily omit this
hapter, and start from the se
ond part, whi
h introdu
es the �nal anelasti
hybrid-
oordinate model.
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2 Exa
t equations of adiabati
 atmospheri
 dy-nami
s in pressure 
oordinates2.1 Pressure verti
al 
oordinateIn pressure 
oordinates the pressure p of an air parti
le is treated as theverti
al 
oordinate of this parti
le and it determines along with horizontal
oordinates x; y the lo
ation (or p � 
oordinates) fx; y; pg of the parti
lein the pressure 
oordinate system. Consequently, the 
omponents of thevelo
ity of the material parti
le in p-
oordinates are fu; v; !gu = dxdt ; v = dydt ; ! = dpdt ; (2:1:1)and the material derivative of fun
tion A isdAdt = �A�t + u�A�x + v�A�y + !�A�p : (2:1:2)Ordinary height be
omes in the pressure 
oordinate system a fun
tion ofp-
oordinates and time, z = z(x; y; p; t), and it is often 
alled the isobari
height.In the moving atmosphere, the pressure 
onsists of the hydrostati
 
omponentps and the nonhydrostati
 
ontribution pnp = ps + pn ; (2:1:3a)where ps is determined via the barometri
 relation for any given height zps = g Z 1z �dz0 ; (2:1:3b)� being the air density, and the nonhydrostati
 part is de�ned as the di�eren
ebetween pressure and hydrostati
 pressurepn = p� ps : (2:1:3
)When the atmosphere is in hydrostati
 equilibrium, then pn = 0, and thepressure 
oordinate 
oin
ides with the hydrostati
 pressure of the parti
le,but this is not the general 
ase, and in the moving atmosphere p and psmust be stri
tly distinguished. In the present study, the verti
al 
oordinateis always identi�ed with the a
tual pressure p.4



2.2 ContinuityThe 
ontinuous quality of the medium is spe
i�ed via the density n of thematter in pressure 
oordinates and in the 
orresponding 
ontinuity equation.We de�ne nondimensional density via the mass dm of an elementary airvolume: dm = �jdxdydzj = njdxdydpj=g ;where g is the gravitational a

eleration. Keeping in mind, that a negativedp 
orresponds to the positive dz, and using the general gas law, we getndp = �g�dz = �(p=H)dz ; (2:2:1)where H = p=(g�) = RT=g (2:2:2)is the lo
al s
ale height, T is the temperature and R is the gas 
onstant ofthe air. The di�erential equality (2.2.1) yields a metri
 equationpH �z�p = �n : (2:2:10)For hydrostati
 equilibrium 
onditions, p ! ps, the density n be
omes equalto 1 and the metri
 equation simpli�es to the ordinary hydrostati
 equation.The density n satis�es the 
ontinuity equation (representing the mass 
on-servation law in pressure 
oordinate system)�n�t +r � (nv) + �n!�p = 0 ; (2:2:3)or in an equivalent formdndt + n�r � v + �!�p� = 0 ; (2:2:30)where r = ix ��x + iy ��y ; v = ixu+ iyuare horizontal gradient in pressure 
oordinates and horizontal wind ve
tor,whereas ix; iy; iz are unit ve
tors along x, y, and verti
al axes. The 
onti-nuity equation (2.2.3) along with the metri
 equation (2.2.1') determine thequality of the 
urvilinear pressure-
oordinate spa
e.5



The density n 
an be used for hydrostati
 pressure diagnosti
s. From (2.1.3b)and (2.2.1) a relationship follows:ps = Z po ndp ; (2:2:4)or, in the di�erential form �ps�p = n : (2:2:40)2.3 Equations of motion and thermodynami
sThe equations of motion and thermodynami
s in pressure 
oordinates, inadiabati
 and fri
tion-free 
ase, are as follows (Rõõm 1989, 1998):Isobari
 height equation dzdt = w ; (2:3:1)Verti
al momentum equationn dwdt = g(1 � n) ; (2:3:2)Horizontal momentum equationsn dvdt = � grz � nf � v ; (2:3:3)Temperature equation dTdt = {T!p ; (2:3:4)where w is verti
al velo
ity, f= f iz, and f is the Coriolis parameter, { = R=
pand 
p is isobari
 spe
i�
 heat. It is assumed that the atmosphere followsthe equation of the state of an ideal gas (this assumption was already usedat the de�nition of height s
ale H (2.2.2)).Seven equations (2.2.1'), (2.2.3), (2.3.1) - (2.3.4) present a 
losed system fordetermination of seven �elds n, z, u, v, w, T and !.
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2.4 Domain and boundary 
onditionsThe 
onditions at lateral boundaries are the same as in Cartesian 
oordinatemodels (and are not treated here, though we will dis
uss them later whilespe
ifying the ellipti
 equation's boundary 
onditions). Di�eren
es o

urin the "horizontal" 
onditions at the top and at the bottom. The domaino

upied by the atmosphere is0 < p < p0(x; y; t) ; (2:4:1)where the lower boundary p0 evolves in a

ordan
e with the equationdp0dt = !jp0 ; (2:4:2)expressing the 
ondition that the lower boundary 
onsists of the same airparti
les all the time. Thus, the domain is varying in time and (2.4.2) presentsan additional prognosti
 equation whi
h must be integrated along with theremaining system.The boundary 
ondition at p = 0 islimp ! 0! = 0 : (2:4:3)and it forbids the out�ow of mass into outer spa
e.The primary boundary 
ondition at the underlying surfa
e iszjp0 = h(x; y); (2:4:4)where h(x; y) represents the surfa
e elevation above sea-level.Like p is not hydrostati
 in the general model, the surfa
e pressure p0 isdi�erent from the hydrostati
 surfa
e pressure 
omponent ps0. A diagnosti
equation for ps0 follows from (2.2.4):ps0(x; y; t) � ps[x; y; p0(x; y; t); t℄ = Z p0(x;y;t)0 n(x; y; p; t)dp : (2:4:5)A
tion on this relationship with �=�t yields (with the help of (2.2.3), (2.4.2)and (2.4.3)) �ps0�t +r � Z p00 nvdp = 0 : (2:4:6)This is the tenden
y equation for hydrostati
 
omponent of the surfa
e pres-sure in nonhydrostati
 pressure-
oordinate dynami
s. It expresses the verti-
ally integrated mass 
onservation law.7



2.5 Isobari
 height 
omponentsFrom (2.2.1') and (2.4.4), an integral representation follows for isobari
 heightz = h+ Z p0p nHdpp :For appli
ations it is pra
ti
al to split z between a hydrostati
 part z� andanother 
ontribution ~z z = z� + ~z ;where z� is a solution of the hydrostati
 equationpH �z��p = �1 : (2:5:1)The general solution of this equation isz� = h(x; y) + Z p�p Hp0 dp0 ; (2:5:2)where p� stands for the 
onstant of integration. Di�erent 
hoi
es of p� yielddi�erent z� and ~z. The most important 
hoi
es of p� are the hydrostati
 
om-ponent of surfa
e pressure ps0, a
tual surfa
e pressure p0, and mean surfa
epressure p0.In the 
ase p� = ps0 we will have splitting of the isobari
 height into thehydrostati
 and nonhydrostati
 
omponentsz = zs + zn ; (2:5:2a)where zs = h(x; y) + Z ps0p Hp0 dp0 ; (2:5:2b)and zn = z � zs : (2:5:2
)Diagnosti
s of the hydrostati
 
omponent zs from (2.5.2b) is a relativelysophisti
ated task, as it requires prior determination of ps0 from (2.4.5).More suitable for pra
ti
al appli
ations is the 
hoi
e p� = p0 , whi
h leadsto a splitting of z into thermi
 and bari
 
omponentsz = zt + zb ; (2:5:3a)8



zt = h(x; y) + Z p0p Hp0 dp0 ; (2:5:3b)and zb = z � zt : (2:5:3
)The most evident di�eren
e of two modes of splitting, (2.5.2) and (2.5.3),is that the thermi
 height equals the surfa
e elevation height h at the low-est pressure level of the model, p0, whereas the hydrostati
 height be
omesequal to the surfa
e elevation at the hydrostati
 surfa
e pressure level ps0,whi
h is di�erent from the surfa
e pressure. A relationship between the tworepresentations is zt = zs + Æz ; zb = zn � Æz ; (2:5:4)where Æz = Z p0ps0 Hp0 dp0 � �Hp �p0 (p0 � ps0) (2:5:5)is a barotropi
 (ie., height-independent) height shift.The splitting is analogi
al when the mean surfa
e pressure p0 is used insteadof the a
tual pressure z = zt + zb : (2:5:6a)Thermi
 and bari
 geopotential (we will use the same names as in previous
ase) are in this 
ase zt = h(x; y) + Z p0p Hp0 dp0 ; (2:5:6b)and zb = z � zt : (2:5:6
)The 
hoi
e of p0 is not unique. One possibility is the initial (analyzed) surfa
epressure distribution: p0 = p0(x; y; 0) : (2:5:7a)Another possibility is presented, spe
ifying p0 as a given (for instan
e, de-termined from a larger dynami
al model), externally driven, time-dependent�eld: p0 = p̂0(x; y; t) : (2:5:7b)
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Finally, p0 may be spe
i�ed from the barometri
 formulap0 = ~p0(x; y) � psea exp"� Z h(x;y)0 dz0H0(z0)# ; (2:5:7
)where H0(z) =RT0(z)=g is the horizontally averaged value of the s
ale heightat altitude z, and psea is the mean sea-level pressure.3 Anelasti
 pressure-
oordinate modelThe general pressure-
oordinate dynami
s presented in the previous 
hapteris too general and allows in the 
ase of slow, large-s
ale motion several simpli-�
ations. The most straightforward simpli�ed model � hydrostati
 primitive-equation model � follows, if one puts n =1 everywhere in the above-presentedequations. However, pressure 
oordinate dynami
s supports mu
h more �ex-ible approximations, whi
h are almost as simple as the primitive equations,but maintain the nonhydrostati
 nature of the model. In the following wewill des
ribe the anelasti
 p-
oordinate model. This is a modi�
ation of thepseudo-anelasti
 model (White, 1989) with additional �ltering of externalmode sound waves (Lamb waves). The main attention will be paid to de-s
ribing and 
ommenting of simplifying assumptions.3.1 Simpli�
ation of equationsi. The approximation n = 1 is applied everywhere, ex
ept for the metri
equation (2.2.1') and the right hand term in the verti
al momentum equation(2.3.2): n is equalized to the unit in the 
ontinuity equation (2.2.3) (or(2.2.3')), on the left hand of the equation (2.3.2) and in the equation (2.3.3)everywhere. In other words, approximation n = 1 is applied to the termsfor whi
h the density �u
tuation n0 = n - 1 presents a se
ond order small
orre
tion. As n0 << 1 for slow dynami
s at all spatial s
ales (typi
ally jn0j <0.01), this approximation is justi�ed and maintains pre
ision as long as qui
kpro
esses (like explosions and sho
k wave propagation) are not involved.ii. Equation (2.3.1) is approximated by the equationws = �H!p (3:1:1)10



where ws is a "hydrostati
" approximation of verti
al velo
ity w; equation(3.1.1) is its de�nition. Consequent approximation of w by ws is applied inthe equation (2.3.2), whi
h be
omes (along with the approximation n = 1 onthe left hand side) dwsdt = g(1� n) + Aw: (3:1:2)Beginning with this equation and in what follows we have restored the dia-bati
 for
ing in prognosti
 equations. Aw represents here all terms omittedin simpli�ed adiabati
 treatment of verti
al momentum equation: turbulentfri
tion, spe
tral smoothing, et
.An approximation for w similar to (3.1.1) was proposed already in the �rstformulation of nonhydrostati
 p-spa
e model by Miller and Pear
e (1974),though they applied the linearized formulation with ba
kground s
ale heightinstead of the a
tual lo
al s
ale H. Formula (3.1.1) was �rst introdu
ed, andits harmony with energy 
onservation demonstrated, by White (1989). Ap-proximation (3.1.1) 
an be justi�ed by the following two-step simpli�
ationpro
edure. First, equation (2.3.1) is approximated asw � ~w = dzsdt ; (3:1:3)where zs represents the hydrostati
 isobari
 height (2.5.2b). Se
ondly, onthe right hand side of (3.1.3), whi
h is written with the help of the materialderivative de�nition (2.1.2) expli
itly asdzsdt = dhdt + �Hp �ps0 dps0dt + Z ps0p ��H�t + vjp � rH� dp0p0 � Hp ! ;the last term, as the dominant one at short spatial s
ales, is maintained only.At shorter spatial s
ales (Lx < 10 -20 km), the �rst terms on the right handside 
ompensate ea
h other, while the integral term is mu
h smaller thanthe last one. These terms be
ome 
omparable with the last term, (�H!=p),in the hydrostati
 region, yet there the pseudo-anelasti
 model behaves likean ordinary hydrostati
 primitive equation model and does not depend onverti
al velo
ity, and 
onsequently, on its approximations. It should be notedthat approximation (3.1.3) is also a valid one (see Rõõm 1999), yet it does notadd mu
h pre
ision to the model performan
e in 
omparison with the (3.1.1),but makes 
omputations more sophisti
ated (and, 
onsequently, more noisy).11



Another approximative de�nition for verti
al velo
ity in the pseudo-anelasti
model is proposed by Salmon and Smith (1994)w � ŵ = �1g dHdt ; (3:1:4)where H =H(p; s) represents the enthalpy, a 
hara
teristi
 thermodynami
fun
tion of pressure p and entropy density s . For a thermodynami
ally idealgas, where �H�p = 1� = RTp ; �H�s = T ;de�nition (3.1.4) yields ŵ = �H!p � Tg dsdt : (3:1:40)For adiabati
 pro
esses ds=dt = 0, and (3.1.4') redu
es to the original Whitede�nition (3.1.1). For pra
ti
al appli
ations, the same 
riterion holds for(3.1.4') as for (3.1.3): in the nonhydrostati
 domain, where verti
al velo
itybe
omes essential for dynami
s, the se
ond term in (3.1.4') is small in 
om-parison with the �rst one, and (3.1.4') redu
es to (3.1.1). In the following,we will keep to the approximation (3.1.1).Thus, the dynami
 equations of the pseudo-anelasti
 model are (2.2.1'),(3.1.1), (3.1.2), the 
ontinuity equation for anelasti
 mediumr � v + �!�p = 0 ; (3:1:5)the horizontal momentum equation (with diabati
 for
ing in
luded)dvdt = � grz � f � v +Av; (3:1:6)and the temperature equation (with diabati
 for
ing in
luded)dTdt = {T!p + AT : (3:1:7)Due to maintenan
e of (approximate) verti
al momentum equation (3.1.2),this model is nonhydrostati
. At the same time, the anelasti
 approximation(3.1.5) �lters internally propagating sound waves, making the model more12



stable while also supporting larger time step at numeri
al integration. Phys-i
ally, equation (3.1.5) is valid for pro
esses for whi
h 
hara
teristi
 time-s
ale� >> �L = L=
a, where L is the 
hara
teristi
 spatial s
ale of the pro
essand 
a � 335 m/s is the speed of sound. This 
ondition is valid almost atall spatial s
ales, and approximation (3.1.5), overall a

epted in the hydro-stati
 dynami
s, is a
tually not less a

urate in the nonhydrostati
 mesos
aledomain.3.2 The �nal form of pseudo-anelasti
 equationsWe eliminate ws and n from further treatment, substituting ws in (3.1.2) withthe help of (3.1.1) and n with the help of (2.2.1'). In addition, nonhydrostati
geopotential � = gz is used instead of isobari
 height z, and its thermi
 andbari
 
omponents ' and � are separated:� � gz = '+ � ; (3:2:1a)' � gzt = gh(x; y) +R Z p0p Tp0dp0 ; (3:2:1b)� � gzb = �� ' : (3:2:1
)Su
h separation is not obligatory, but it permits for expli
it representationof bari
 and thermi
 
ounterparts in the dynami
 equations, whi
h is advan-tageous for nonhydrostati
 modi�
ation of hydrostati
 numeri
al s
hemes.The equations then be
omed!dt = � p2H2 ���p + A! ; (3:2:2)dvdt = � r('+ �) � f � v +Av; (3:2:3)dTdt = {T!p + AT ; (3:2:4)r � v + �!�p = 0 ; (3:2:5)where A! = � pHAw + !�
v!
pp � ATT � 1R dRdt � : (3:2:6)13



To emphasize that the gas 
onstant R may have signi�
ant density e�e
t inthe moist air, we have maintained the potential time-dependen
e of R in thisformula, though in the dry air dR=dt = 0.Now we have to introdu
e the geopotential equation. System (3.2.2) � (3.2.5)represents a 
losed set of �ve equations for determination of �ve unknown�elds !, u, v, T and �. The only diagnosti
al �eld here is the bari
 geopoten-tial � and the only diagnosti
al equation in this set, whi
h 
an be employedfor its determination, is anelasti
 
ondition (3.2.5). Thus, the role of � is tokeep the motion non-divergent in time. The expli
it equation for � followsafter applying the time derivative to (3.2.5):ddt �r � v + �!�p� = 0 ;or r � dvdt + ��p d!dt � 3Xi;j=1 �vi�xj �vj�xi = 0 ;(xi = x; x2 = y; x3 = p; v1 = u; v2 = v; v3 = !). Elimination of timederivatives with the help of momentum equations (3.2.2) - (3.2.3) yields thePoisson equation for �L� � r2�+ ��p � p2H2 ���p� = Av ; (3:2:7a)where the volume-distributed sour
e fun
tionAv = � 3Xi;j=1 �vi�xj �vj�xi �r � (r'+ fk� v) +r �Av + �A!�p : (3:2:7b)des
ribes the internal sour
es for � in the moving atmosphere, determinedby di�erent for
es trying to 
hange the p-
oordinate volume of air parti
les.The 
hange is prevented by the rea
tion of the �eld �. The �rst sum in(3.2.7b) represents inertial e�e
ts. Individual air masses move with di�erentvelo
ities and 
ollide permanently, trying to 
hange the volume of ea
h other.The �, generated by this term as solution of the ellipti
 equation (3.2.7a),eliminates su
h volume 
hange e�e
ts. Analogi
ally, the se
ond term in A� is
aused by the two-dimensional divergen
e of ageostrophi
 a

eleration, andthe third � by three-dimensional divergen
e of diabati
 for
ing.14



Equation (3.2.7) is valid in the internal points of the domain. When 
on-sidering it in the 
losed domain with boundary points in
luded, the singularsour
es Ab, lo
ated on the boundary surfa
e should be in
luded, whi
h woulddes
ribe the e�e
t of boundary 
onditions, indu
ed by the surrounding envi-ronment L� = Av + Ab : (3:2:70)In
lusion of boundary sour
es is essential, when the ellipti
 equation is solvedusing the orthogonal basis. Still, spe
i�
ation of Ab requires the preliminaryspe
i�
ation of boundary 
onditions for �. We will return to this problemlater.After the ellipti
 equation for � is derived, one equation in set (3.2.2) �(3.2.7) will be super�uous and 
an be left out. We will omit the verti
almomentum equation (3.2.2). Then the model to be integrated is representedvia equations (3.2.3) � (3.2.7). This is the �nal form, whi
h will be the basi
system for further numeri
al s
heme development. Prognosti
 equations inthis system are the same as in hydrostati
 model, but a new s
alar �eld, thebari
 geopotential � in the horizontal momentum equation (3.2.3), diagnosedfrom the ellipti
 equation (3.2.7), is added.3.3 Geometry of the domain and boundary 
onditionsThe pseudo-anelasti
 approximation, introdu
ed in se
tions (3.1) -(3.2) main-tains the quality of pressure-spa
e. The verti
al 
oordinate p represents still
omplete pressure, ! is the true pressure 
hange rate of the individual air par-ti
le, and diagnosis of hydrostati
 and nonhydrostati
 pressure 
omponents
an be performed using formulae (2.1.3
) and (2.2.4). The di�eren
e fromexa
t dynami
s is only in the way of evaluation of the density distributionn, required for integral (2.2.4). In exa
t dynami
s it was prognosed from theequation (2.2.3), whereas in the pseudo-anelasti
 model n is evaluated fromz distribution via (2.2.1').The maintenan
e of the essen
e of pressure and pressure velo
ity involvesalso maintenan
e of the geometri
 domain (2.4.1) and equation of the lowerboundary (2.4.2). At the upper boundary we assume 
ondition (2.4.3) for!. Integration of the 
ontinuity equation (3.2.5) yields then a diagnosti
expression for !, whi
h is in 
ommon with the hydrostati
 model! = � Z p0 r � vdp0 : (3:3:1)15



The 
ombination of this relationship at the level p0 with (2.4.2) yields thetenden
y equation for surfa
e pressure�p0�t +r � Z p00 vdp = 0 : (3:3:2)This equation guarantees maintenan
e of integral 
onservation laws (of mass,energy and momentum). By appearan
e it is 
lose to the hydrostati
 surfa
epressure equation (2.4.6) of exa
t dynami
s. Still, there is a prin
ipal di�er-en
e in p0 and ps0 in the pseudo-anelasti
 model, too, and 
lose appearan
eof (3.3.2) to (2.4.6) should not be misinterpreted as 
oin
iden
e of p0 and ps0.Pressure p0 is a prognosti
 �eld, whi
h is prognosed from the lower boundaryequation (2.4.2) or from the equivalent equation (3.3.2). The hydrostati
surfa
e pressure ps0 in the pseudo-anelasti
 model is a diagnosti
al quantity,for whi
h equation (2.4.6) does not hold anymore and whi
h 
an be evaluatedfrom (2.2.4) only.Boundary 
onditions for the ellipti
 equation.The lower boundary 
ondition (2.4.4) is not a�e
ted by the pseudo-anelasti
 approximation. For full geopotential, �= gz, (2.4.4) gives �jp0 = gh.Thus, �jp0 = 0 : (3:3:3)The general lateral boundary 
ondition is the Neumann 
ondition����n�� = a� ; (3:3:4)where a� is a given fun
tion, whi
h spe
i�es the normal gradient of bari
geopotential on the lateral boundary surfa
e �. The general idea is, thatwhen the horizontal momentum equation (3.2.3) is presented in the Eulerianform �v�t = F�r� ;where F represents the "hydrostati
" tenden
y, then the normal gradient of� must 
ompensate the di�eren
e between the normal 
omponents of thetrue and hydrostati
 tenden
ies on the boundary. This givesa� = n � �F� � �v��t � ; (3:3:5)16



where the subs
ript � points, that both F and v are externally driven onthe boundary. In pra
ti
e, a� depends mu
h on the applied boundary model.In the present nonhydrostati
 approa
h the lateral relaxation me
hanism ofthe hydrostati
 HIRLAM is applied, and the 
hoi
e of a� for this parti
ularmodel is dis
ussed later. Until that, a� is treated as a given fun
tion.A �xed upper boundary 
ondition for � as a limit � ! �0 has no sensedue to inde�nite nature of the right hand term in (3.2.2) at p = 0. Instead,we will apply the integrability 
ondition, whi
h also determines behavior of �at p = 0 uniquely (for a given lower boundary value):Z p00 j�jdp <1; if Z p00 jAjdp <1: (3:3:6)For an explanation, what this 
ondition means, let us 
onsider equation(3.2.7) for 
onstant surfa
e pressure p0 = 
onst and isothermal atmosphereH = 
onst. The appli
ation of Fourier transformation in x; y transforms thisequation to an ordinary se
ond order di�erential equation for the Fourier
oe�
ient ~�(p) of the bari
 potential at wavenumber kddpp2 ddp ~��H2k2 ~� = H2 ~A ;where ~A(p) is the Fourier 
oe�
ient of sour
e A(x; y; p) at wavenumber k.Two independent solutions of the homogeneous equation are the regular andirregular solutions~�re(p) = � pp0��k�1=2 ; ~�ir(p) = � pp0���k�1=2 ;where �k =p1=4 +H2k2 :The regular solution satis�es the 
ondition (3.3.6). The se
ond, irregularsolution is unbounded at p ! 0 and does not satisfy (3.3.6). Thus, theirregular solution must be left aside.When the orthogonal basis is applied in the solution of the ellipti
 equation,
ondition (3.3.6) implies la
k of singular sour
es at the upper boundary.
17



Boundary sour
es.Spe
i�
ation of the boundary 
onditions in the form (3.3.3) - (3.3.6) alsomakes it possible to �x the stru
ture of the surfa
e sour
e Ab in (3.2.7') asAb(x; p; t) = 
(x; t)Æ(p; p0) + f(x�; p; t)Æ(x;x�) : (3:3:7)Here 
 and f are the amplitudes of singular boundary sour
es, whi
h haveto be spe
i�ed from (3.3.3), and (3.3.4), respe
tively. At �rst, the generalsolution of the ellipti
 equation is found for the optional distribution of am-plitudes 
 and f� , and then, 
 and f� are determined from the boundary
onditions (3.3.3) - (3.3.4). Details of the f� and 
 spe
i�
ation will bedis
ussed later, in Chapter 5, when the dis
rete model is introdu
ed andorthogonal bases are applied for solution of the ellipti
 equation.3.4 Surfa
e pressure adjustmentThe appli
ation of the des
ribed pseudo-anelasti
 model with lower bound-ary, evolving in a

ordan
e with the equation (3.3.2), would yield dynami
swith the external mode sound waves in
luded. However, the aim of this non-hydrostati
 approa
h is to develop a model with eliminated external wavesand adjusted surfa
e pressure. This would represent a truly anelasti
 modelwith 
ompletely �ltered a
ousti
s. To a
hieve su
h a model, it is ne
essaryto modify both the lower boundary p0 and the lower boundary 
onditions.Making use of small amplitude of the relative surfa
e pressure �u
tuationp00=p0, we will 
onsider motion in a given (pre-spe
i�ed) geometri
al domain0 < p < p0(x; y; t) ; (3:4:1)and linearize quantities and relationships, whi
h depend expli
itly on thea
tual surfa
e pressure, with respe
t to p00. The ba
kground �eld p0(x; y; t)approximates the real surfa
e pressure. However, it is a given �eld (externallydriven as (2.5.7b), or �xed in time like (2.5.7a)), and it is not in�uen
edby a
tual dynami
s of the atmosphere. Linearization a�e
ts the kinemati

ondition (2.4.2) and the expression for geopotential �. The linearized formof (2.4.2) is �p00�t + �p0�t + vjp0 � rp0 = !jp0 ; (3:4:2)18



from whi
h the linearized form of verti
ally integrated mass balan
e followswith the help of (3.3.1)�p00�t + �p0�t +r � Z p00 vdp = 0 : (3:4:3)Surfa
e pressure adjustment means, that the pressure �u
tuation tenden
yterm is very small in these equations in 
omparison with other terms, andapproximately !jp0 = dp0dt = �p0�t + vjp0 � rp0 ; (3:4:20)�p0�t +r � Z p00 vdp = 0 : (3:4:30)The geopotential dependen
e on p00 be
omes evident, splitting � into thermi
and bari
 
omponents with respe
t to p0� = '+ � ; (3:4:4a)' = gzt = gh(x; y) +R Z p0p Tp0dp0 ; (3:4:4b)� � gzb = �n + Z p0p0 RTp dp � �n + �RTp �p0 p00: (3:4:4
)To investigate the adjustment pro
ess, we apply time derivative to (3.4.3)�2p00�t2 + �2p0�t2 +r � Z p00 �v�t dp = 0 : (3:4:5)Using the horizontal momentum equation (3.2.3) and the results from (3.4.4),equation (3.4.5) is transformed to�2p00�t2 �r � �p0r�
2p00p0 �� = Ap ; (3:4:6a)Ap = r�Z p00 [v �rv+!�v�p +r('+�n)+fk� v�Av℄dp� �2p0�t2 ; (3:4:6b)where 
 = p(RT )p0 � 280 m/s is the iso
hori
 sound speed. This is thenonhomogeneous wave equation for surfa
e pressure �u
tuation. A spe
ial19




ase of equation (3.4.6a) is a model with uniform bottom, p0 = 
onst., when(3.4.6a) simpli�es to �2p00�t2 �r2(
2p00) = Ap :Dynami
s of surfa
e pressure 
an be treated as adjusted, if the �rst term in(3.4.6a) is mu
h less than the se
ond one:�����2p00�t2 ���� << ����r � �p0r�
2p00p0 ������ (3:4:7)and when (3.4.6a) simpli�es to�r � �p0r�
2p00p0 �� = Ap: (3:4:8)Let L and � be the 
hara
teristi
 spatial and temporal s
ales of motion under
onsideration. Then standard s
ale analysis of (3.4.7) leads to the 
ondition� >> �L � L=
 : (3:4:9)In limited area models, L is of the the same order as the horizontal extent ofthe domain of integration. In su
h a situation, the 
ondition (3.4.8) meansthat the 
hara
teristi
 time-s
ale of the pro
ess must be larger than the timeinterval, required for sound waves (propagating with speed 
) to travel outof the domain. The 
ondition (3.4.9) is in pra
ti
e valid at all spatial s
alesL, as for slow pro
esses � � L=v, where v � 10 m/s. Note that adjustmentis a
hieved formally by in
reasing the sound speed to in�nity (
 ! 1) in(3.4.7).In the adjusted model, the surfa
e pressure 
onsists of the mean steady 
om-ponent and small adjusted 
ontributionp0 = p0 + p00 : (3:4:10)The �u
tuation p00 
an be evaluated from the equation (3.4.8), if the righthand term is known. This is the 
ase of hydrostati
 dynami
s. In nonhydro-stati
 region, the right hand term Ap in
ludes nonhydrostati
 geopotential�n whi
h is not known separately from bari
 geopotential �. Therefore it is20



ne
essary to move �n in (3.4.8) to the left side and, with the help of (3.4.4
),present (3.4.8) as an integral 
ondition for �r�Z p00 r�dp = �r�Z p00 �v � rv + !�v�p +r'+ fk� v �Av� dp+ �2p0�t2 ;(3:4:11)In the adjusted 
ase this relationship must be used for spe
i�
ation of theboundary sour
e amplitude 
 in (3.3.7). In physi
al aspe
t, (3.4.11) 
ontrolsthe temporal maintenan
e of the verti
ally integrated mass balan
e (3.4.3').Namely, it validates the 
ondition (3.4.3') for all times, if that 
ondition issatis�ed at the initial moment.As it be
ame evident, in the adjusted model the surfa
e pressure �u
tua-tion is represented impli
itly in the body of the bari
 geopotential (3.4.4
).However, it is not 
ompletely invisible and 
an be diagnosed from � using anextrapolation �jp0 � �jp0 + ����p�p0 p00 = gh :With the help of (3.4.4) we obtain�jp0 = 'p0+�p0 = gh+�p0 ; ����p �p0 = ����p + �'�p�p0 = ����p � RTp �p0 ;and the extrapolation formula redu
es to�RTp � ���p�p0 p00 = �jp0 : (3:4:12)Usually, the se
ond term in the �rst bra
kets is small in 
omparison with the�rst, and approximately �RTp �p0 p00 = �jp0 : (3:4:120)The omega-velo
ity (3.3.1) 
an be diagnosed in the adjusted 
ase with thehelp of (3.4.3') as ! = �p0�t + vjp0 � rp0 + Z p0p r � vdp0 ; (3:4:13)21



or in the equivalent form ! = �p0�t +r � Z p0p vdp0 : (3:4:130)This relationship is used in the nonhydrostati
 anelasti
 model elsewhere. Asthe 
ondition (3.4.3') arises from (3.4.11) at every t > 0 on the 
onstraintthat (3.4.3') holds for t=0, the relationship (3.4.13') also provides the upperboundary 
ondition ! ! 0 (see (2.4.3)) at every t > 0, at the additional
onstraint that this 
ondition is satis�ed at t = 0. .The set of equations (3.2.3) - (3.2.4), (3.2.7), (3.4.4b), (3.4.13), when treatedin the domain (3.4.1), represents the anelasti
, nonhydrostati
, pressure 
o-ordinate model, as it 
ompletely la
ks any (internal or external) a
ousti
mode.3. 5. Anelasti
 model in pressure 
oordinates: SummaryThe 
losed set of relationships and equations, needed for integration of thedeveloped anelasti
, pressure-
oordinate model, is as follows.The domain of integration is �xed in pressure�
oordinates and is presentedby (3.4.1).The prognosti
 �elds of the model are the wind 
omponents u; v, and thetemperature T . The 
onsequent prognosti
 equations are the horizontal mo-mentum equation (3.2.3) and temperature equation (3.2.4).The bari
 and thermi
 geopotential 
omponents, whi
h together determinethe horizontal gradient�for
e in the momentum equation (3.2.3), are bothdiagnosti
 �elds. The thermi
 geopotential ' is diagnosed from (3.4.4b). Thebari
 geopotential � is diagnosed from the ellipti
 equation (3.2.7'), whi
h issolved in the domain (3.4.1) with boundary 
onditions (3.3.4), (3.3.6) (withp0 instead of p0 in the role of the upper boundary of integrals), and (3.4.11).The omega�velo
ity represents also a diagnosti
 �eld, whi
h is diagnosedfrom (3.4.13) or from (3.4.13'). 22



The a
tual surfa
e pressure presents an auxiliary �eld, whi
h 
an be diag-nosed from the relationship (3.4.12).CommentsThe general model, des
ribed in Se
tion 2, is a perfe
t pressure-
oordinateequivalent of the general equations of atmospheri
 dynami
s, 
ommonly treat-ed in Cartesian 
oordinates. However, the �ltered anelasti
 model, derived inSe
tion 3, has not been widely used and has no dire
t analogues in the familyof numeri
al weather predi
tion models. In this respe
t, it is of 
ertain inter-est to follow possible links of this model with the most familiar approa
hesin the numeri
al weather predi
tion pra
ti
e.As it appears, the 
losest relative to the general pressure�
oordinate (p-
oordinate) model (2.2.1') - (2.3.4) is the general (fully elasti
) hydrostati
�pressure�
oordinate (ps�
oordinate) model (Laprise 1992, 1998). These twomodels a
tually represent the same general 
ase, realized in (slightly) di�er-ent 
oordinate systems. The transformation of equation from p-
oordinatesystem to the ps-
oordinate system and vi
e versa is straightforward. The
orresponding 
oordinate transformation is represented by the relationship(2.2.4').However, the further implementation of these equations goes in the Laprise'approa
h and in the present model in di�erent ways.In the Laprise' approa
h, the initial fully elasti
 equations are taken as abasis for numeri
al implementation. The fast a
ousti
 and buoyan
y modesare handled via semi-impli
it reformulation of equations, making use of theTanguay-Robert-Laprise (1990) hypothesis. That would be an option in thepresent 
ase, too; for that it would be ne
essary to formulate equations ofmotion (2.2.3), (2.3.1) - (2.3.4) in hybrid 
oordinates, and then present themin the semi-impli
it numeri
al framework. The essen
e of the semi-impli
itapproa
h is, as wellknown, the redu
tion of the propagation speed (
 ! 0)of fast a
ousti
 and buoyan
y disturban
es, retaining the slow adve
tive-
onve
tive 
omponent of dynami
s undistorted, and enhan
ing this way thenumeri
al stability.In the present approa
h, the fast a
ousti
 mode is removed (relaxed, elimi-nated), before the numeri
s is introdu
ed, making use of in�nite sound speed23



(
 ! 1) approximation. This is a
hieved by removing both the internala
ousti
 mode (using approximation n ! 1 in (2.2.3)), and the externala
ousti
 wave (repla
ing (3.4.5) by (3.4.11)). It is notable, that the internalwave removal is not su�
ient alone (as this is used already in the hydrostati
model without any visible improvement of numeri
al stability), a de
isivelynew quality is introdu
ed by the 
omplete elimination of transient a
ousti
waves. The approa
h is "wave-sele
tive": it removes a
ousti
 waves 
om-pletely, yet maintains the buoyan
y waves un
hanged (this was 
he
ked andproven to be true, at least, for linear disturban
es).Note that the present anelasti
 model supports further implementation of thesemi-impli
it s
heme á la Tanguay-Robert-Laprise' hypothesis for removal offast transient buoyan
y mode, after whi
h it would be 
loser to the semi-impli
it fully-elasti
 (Laprise 1998) model.Referen
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