
NONHYDROSTATIC ADIABATICKERNEL FOR HIRLAMPart IFundamentals of nonhydrostati dynamis inpressure�related oordinatesRein RõõmTartu Observatory, Estoniaroom�aai.ee1 IntrodutionWe start with the desription of a numerial model of atmospheri dynamis,whih is designed as the nonhydrostati extension to the adiabati kernelof the present hydrostati HIRLAM. For representation of nonhydrostatidynamis, the model makes use of a pressure oordinate framework, andnumerial odes are formulated, like in the hydrostati parent-HIRLAM, inpressure-based hybrid oordinates of ECMWF origin.The pressure-oordinate approah to nonhydrostati modeling has many ad-vantages in omparison with other methods. Besides generality � pressureoordinates support presentation of most general, non-simpli�ed dynamis� this approah does not require prior separation of the bakground state,inherent in many nonhydrostati models. Another advantage is simpliity �in pressure oordinates any optional atmospheri motion with sophistiatedmass-distribution beomes an inompressible �ow with onstant density. Apratial advantage of pressure-oordinate approah in nonhydrostati mod-eling is that it supports immediate generalization of the existing hydrostatiHIRLAM into the domain of nonhydrostati spatial sales. Numerial pak-ages, suh as initialization tools, sub-grid physial parametrization libraries,1



and postproessing failities, an be maintained. Due to the enhaned resolu-tion of nonhydrostati dynamis, initialization and physial parametrizationmust be revised, but there is no need to start from the beginning. Thus, theoverall development ost may be signi�antly redued.The �rst NH model in pressure oordinates was developed by Miller (1974),and Miller and Peare (1974). That was a pure pressure-oordinate modelwith the bakground separation and aompanying linearization of energyonversion term. The Miller-Peare model is pseudo-anelasti ("partiallyanelasti") � internal aousti waves are �ltered due to onservation of press-ure-oordinate volume of air partiles, yet the external aousti mode (Lambwave) is maintained. A modi�ation of the Miller-Peare model to a sigma�oordinate framework was given by Miller and White (1984). White (1989)proved the existene of a more general model, whih does not require bak-ground separation and linearization, and provided a sigma-oordinate repre-sentation of that model. A variational formulation of the White model wasgiven by Salmon and Smith (1994). Rõõm (1997) developed a ompletelyanelasti sigma�oordinate model, in whih surfae pressure is adjusted andthe Lamb mode �ltered. Numerial formulations of the pseudo-anelastimodel have been developed by Xue and Thorpe (1991), Miranda and James(1992), and for the anelasti model by Rõõm (1997).A di�erent (parallel to the above�ited development) pressure-oordinaterepresentation theory of atmospheri dynamis was given by Rõõm (1989,1990, 1998), who showed that exat (aoustially non-�ltered) dynamis anbe presented in pressure-related oordinates, if vertial aelerations do notexeed gravitational aeleration. In that approah the main metrial re-lations and ontinuity of the pressure-oordinate spae are �rst expliitlyde�ned and the ontinuity equation for pressure-spae density is introdued,whih loses the system of dynami equations. The variational formulationof general equations is given in (Rõõm 1999). An important quality of thegeneral approah is that it inludes all simpli�ed pressure-oordinate ap-proahes, like hydrostati, pseudo-anelasti, and anelasti models, as speialases, whih allows for a uni�ed treatment of all pressure-oordinate dynam-is. This generality was employed by Rõõm and Männik (1999) at uni�edtesting of auray of di�erent pressure-oordinate models.
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The paper is designed and realized in two parts, eah representing a separatehapter:� Part I. Fundamentals of nonhydrostati atmospheri dynamis in press-ure�related oordinates.� Part II. Anelasti, hybrid-oordinate, Expliit-Eulerian model.Part I presents the fundamentals of general atmospheri dynamis in pressureoordinates. The problem is, that in spite of simpliity of pressure-oordinatedynamis, its interpretation is not just as trivial as in the hydrostati ase andan ause ambiguities, if not preliminarily separated into elementary piees.Though the numerous papers, ited above, deal with the main aspets ofthe pressure-oordinate models in many details, we still lak an elementaryonise presentation of the basi postulates of the theory. It appears that apaper like this, designed for wide use as an introdutory doumentation intothe numerial nonhydrostati model based on a pressure oordinate presen-tation, is just the right plae for a areful desription of the basis of theapproah. The disussion of the main fats is illuminating, helps to avoidambiguities, and makes further representation more simple, transparent andonise. In this hapter, initial de�nitions are presented in the frameworkof general pressure-oordinate dynamis, followed by traing the hanges,whih an appear when simpli�ations like anelastiity are introdued. Forinstane, the pressure oordinate itself serves as an example: is that theatual pressure, or just its hydrostati omponent, and what happens tothe pressure when the anelasti approximation is applied? Those familiarwith nonhydrostati dynamis in pressure-oordinates an easily omit thishapter, and start from the seond part, whih introdues the �nal anelastihybrid-oordinate model.
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2 Exat equations of adiabati atmospheri dy-namis in pressure oordinates2.1 Pressure vertial oordinateIn pressure oordinates the pressure p of an air partile is treated as thevertial oordinate of this partile and it determines along with horizontaloordinates x; y the loation (or p � oordinates) fx; y; pg of the partilein the pressure oordinate system. Consequently, the omponents of theveloity of the material partile in p-oordinates are fu; v; !gu = dxdt ; v = dydt ; ! = dpdt ; (2:1:1)and the material derivative of funtion A isdAdt = �A�t + u�A�x + v�A�y + !�A�p : (2:1:2)Ordinary height beomes in the pressure oordinate system a funtion ofp-oordinates and time, z = z(x; y; p; t), and it is often alled the isobariheight.In the moving atmosphere, the pressure onsists of the hydrostati omponentps and the nonhydrostati ontribution pnp = ps + pn ; (2:1:3a)where ps is determined via the barometri relation for any given height zps = g Z 1z �dz0 ; (2:1:3b)� being the air density, and the nonhydrostati part is de�ned as the di�erenebetween pressure and hydrostati pressurepn = p� ps : (2:1:3)When the atmosphere is in hydrostati equilibrium, then pn = 0, and thepressure oordinate oinides with the hydrostati pressure of the partile,but this is not the general ase, and in the moving atmosphere p and psmust be stritly distinguished. In the present study, the vertial oordinateis always identi�ed with the atual pressure p.4



2.2 ContinuityThe ontinuous quality of the medium is spei�ed via the density n of thematter in pressure oordinates and in the orresponding ontinuity equation.We de�ne nondimensional density via the mass dm of an elementary airvolume: dm = �jdxdydzj = njdxdydpj=g ;where g is the gravitational aeleration. Keeping in mind, that a negativedp orresponds to the positive dz, and using the general gas law, we getndp = �g�dz = �(p=H)dz ; (2:2:1)where H = p=(g�) = RT=g (2:2:2)is the loal sale height, T is the temperature and R is the gas onstant ofthe air. The di�erential equality (2.2.1) yields a metri equationpH �z�p = �n : (2:2:10)For hydrostati equilibrium onditions, p ! ps, the density n beomes equalto 1 and the metri equation simpli�es to the ordinary hydrostati equation.The density n satis�es the ontinuity equation (representing the mass on-servation law in pressure oordinate system)�n�t +r � (nv) + �n!�p = 0 ; (2:2:3)or in an equivalent formdndt + n�r � v + �!�p� = 0 ; (2:2:30)where r = ix ��x + iy ��y ; v = ixu+ iyuare horizontal gradient in pressure oordinates and horizontal wind vetor,whereas ix; iy; iz are unit vetors along x, y, and vertial axes. The onti-nuity equation (2.2.3) along with the metri equation (2.2.1') determine thequality of the urvilinear pressure-oordinate spae.5



The density n an be used for hydrostati pressure diagnostis. From (2.1.3b)and (2.2.1) a relationship follows:ps = Z po ndp ; (2:2:4)or, in the di�erential form �ps�p = n : (2:2:40)2.3 Equations of motion and thermodynamisThe equations of motion and thermodynamis in pressure oordinates, inadiabati and frition-free ase, are as follows (Rõõm 1989, 1998):Isobari height equation dzdt = w ; (2:3:1)Vertial momentum equationn dwdt = g(1 � n) ; (2:3:2)Horizontal momentum equationsn dvdt = � grz � nf � v ; (2:3:3)Temperature equation dTdt = {T!p ; (2:3:4)where w is vertial veloity, f= f iz, and f is the Coriolis parameter, { = R=pand p is isobari spei� heat. It is assumed that the atmosphere followsthe equation of the state of an ideal gas (this assumption was already usedat the de�nition of height sale H (2.2.2)).Seven equations (2.2.1'), (2.2.3), (2.3.1) - (2.3.4) present a losed system fordetermination of seven �elds n, z, u, v, w, T and !.
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2.4 Domain and boundary onditionsThe onditions at lateral boundaries are the same as in Cartesian oordinatemodels (and are not treated here, though we will disuss them later whilespeifying the ellipti equation's boundary onditions). Di�erenes ourin the "horizontal" onditions at the top and at the bottom. The domainoupied by the atmosphere is0 < p < p0(x; y; t) ; (2:4:1)where the lower boundary p0 evolves in aordane with the equationdp0dt = !jp0 ; (2:4:2)expressing the ondition that the lower boundary onsists of the same airpartiles all the time. Thus, the domain is varying in time and (2.4.2) presentsan additional prognosti equation whih must be integrated along with theremaining system.The boundary ondition at p = 0 islimp ! 0! = 0 : (2:4:3)and it forbids the out�ow of mass into outer spae.The primary boundary ondition at the underlying surfae iszjp0 = h(x; y); (2:4:4)where h(x; y) represents the surfae elevation above sea-level.Like p is not hydrostati in the general model, the surfae pressure p0 isdi�erent from the hydrostati surfae pressure omponent ps0. A diagnostiequation for ps0 follows from (2.2.4):ps0(x; y; t) � ps[x; y; p0(x; y; t); t℄ = Z p0(x;y;t)0 n(x; y; p; t)dp : (2:4:5)Ation on this relationship with �=�t yields (with the help of (2.2.3), (2.4.2)and (2.4.3)) �ps0�t +r � Z p00 nvdp = 0 : (2:4:6)This is the tendeny equation for hydrostati omponent of the surfae pres-sure in nonhydrostati pressure-oordinate dynamis. It expresses the verti-ally integrated mass onservation law.7



2.5 Isobari height omponentsFrom (2.2.1') and (2.4.4), an integral representation follows for isobari heightz = h+ Z p0p nHdpp :For appliations it is pratial to split z between a hydrostati part z� andanother ontribution ~z z = z� + ~z ;where z� is a solution of the hydrostati equationpH �z��p = �1 : (2:5:1)The general solution of this equation isz� = h(x; y) + Z p�p Hp0 dp0 ; (2:5:2)where p� stands for the onstant of integration. Di�erent hoies of p� yielddi�erent z� and ~z. The most important hoies of p� are the hydrostati om-ponent of surfae pressure ps0, atual surfae pressure p0, and mean surfaepressure p0.In the ase p� = ps0 we will have splitting of the isobari height into thehydrostati and nonhydrostati omponentsz = zs + zn ; (2:5:2a)where zs = h(x; y) + Z ps0p Hp0 dp0 ; (2:5:2b)and zn = z � zs : (2:5:2)Diagnostis of the hydrostati omponent zs from (2.5.2b) is a relativelysophistiated task, as it requires prior determination of ps0 from (2.4.5).More suitable for pratial appliations is the hoie p� = p0 , whih leadsto a splitting of z into thermi and bari omponentsz = zt + zb ; (2:5:3a)8



zt = h(x; y) + Z p0p Hp0 dp0 ; (2:5:3b)and zb = z � zt : (2:5:3)The most evident di�erene of two modes of splitting, (2.5.2) and (2.5.3),is that the thermi height equals the surfae elevation height h at the low-est pressure level of the model, p0, whereas the hydrostati height beomesequal to the surfae elevation at the hydrostati surfae pressure level ps0,whih is di�erent from the surfae pressure. A relationship between the tworepresentations is zt = zs + Æz ; zb = zn � Æz ; (2:5:4)where Æz = Z p0ps0 Hp0 dp0 � �Hp �p0 (p0 � ps0) (2:5:5)is a barotropi (ie., height-independent) height shift.The splitting is analogial when the mean surfae pressure p0 is used insteadof the atual pressure z = zt + zb : (2:5:6a)Thermi and bari geopotential (we will use the same names as in previousase) are in this ase zt = h(x; y) + Z p0p Hp0 dp0 ; (2:5:6b)and zb = z � zt : (2:5:6)The hoie of p0 is not unique. One possibility is the initial (analyzed) surfaepressure distribution: p0 = p0(x; y; 0) : (2:5:7a)Another possibility is presented, speifying p0 as a given (for instane, de-termined from a larger dynamial model), externally driven, time-dependent�eld: p0 = p̂0(x; y; t) : (2:5:7b)
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Finally, p0 may be spei�ed from the barometri formulap0 = ~p0(x; y) � psea exp"� Z h(x;y)0 dz0H0(z0)# ; (2:5:7)where H0(z) =RT0(z)=g is the horizontally averaged value of the sale heightat altitude z, and psea is the mean sea-level pressure.3 Anelasti pressure-oordinate modelThe general pressure-oordinate dynamis presented in the previous hapteris too general and allows in the ase of slow, large-sale motion several simpli-�ations. The most straightforward simpli�ed model � hydrostati primitive-equation model � follows, if one puts n =1 everywhere in the above-presentedequations. However, pressure oordinate dynamis supports muh more �ex-ible approximations, whih are almost as simple as the primitive equations,but maintain the nonhydrostati nature of the model. In the following wewill desribe the anelasti p-oordinate model. This is a modi�ation of thepseudo-anelasti model (White, 1989) with additional �ltering of externalmode sound waves (Lamb waves). The main attention will be paid to de-sribing and ommenting of simplifying assumptions.3.1 Simpli�ation of equationsi. The approximation n = 1 is applied everywhere, exept for the metriequation (2.2.1') and the right hand term in the vertial momentum equation(2.3.2): n is equalized to the unit in the ontinuity equation (2.2.3) (or(2.2.3')), on the left hand of the equation (2.3.2) and in the equation (2.3.3)everywhere. In other words, approximation n = 1 is applied to the termsfor whih the density �utuation n0 = n - 1 presents a seond order smallorretion. As n0 << 1 for slow dynamis at all spatial sales (typially jn0j <0.01), this approximation is justi�ed and maintains preision as long as quikproesses (like explosions and shok wave propagation) are not involved.ii. Equation (2.3.1) is approximated by the equationws = �H!p (3:1:1)10



where ws is a "hydrostati" approximation of vertial veloity w; equation(3.1.1) is its de�nition. Consequent approximation of w by ws is applied inthe equation (2.3.2), whih beomes (along with the approximation n = 1 onthe left hand side) dwsdt = g(1� n) + Aw: (3:1:2)Beginning with this equation and in what follows we have restored the dia-bati foring in prognosti equations. Aw represents here all terms omittedin simpli�ed adiabati treatment of vertial momentum equation: turbulentfrition, spetral smoothing, et.An approximation for w similar to (3.1.1) was proposed already in the �rstformulation of nonhydrostati p-spae model by Miller and Peare (1974),though they applied the linearized formulation with bakground sale heightinstead of the atual loal sale H. Formula (3.1.1) was �rst introdued, andits harmony with energy onservation demonstrated, by White (1989). Ap-proximation (3.1.1) an be justi�ed by the following two-step simpli�ationproedure. First, equation (2.3.1) is approximated asw � ~w = dzsdt ; (3:1:3)where zs represents the hydrostati isobari height (2.5.2b). Seondly, onthe right hand side of (3.1.3), whih is written with the help of the materialderivative de�nition (2.1.2) expliitly asdzsdt = dhdt + �Hp �ps0 dps0dt + Z ps0p ��H�t + vjp � rH� dp0p0 � Hp ! ;the last term, as the dominant one at short spatial sales, is maintained only.At shorter spatial sales (Lx < 10 -20 km), the �rst terms on the right handside ompensate eah other, while the integral term is muh smaller thanthe last one. These terms beome omparable with the last term, (�H!=p),in the hydrostati region, yet there the pseudo-anelasti model behaves likean ordinary hydrostati primitive equation model and does not depend onvertial veloity, and onsequently, on its approximations. It should be notedthat approximation (3.1.3) is also a valid one (see Rõõm 1999), yet it does notadd muh preision to the model performane in omparison with the (3.1.1),but makes omputations more sophistiated (and, onsequently, more noisy).11



Another approximative de�nition for vertial veloity in the pseudo-anelastimodel is proposed by Salmon and Smith (1994)w � ŵ = �1g dHdt ; (3:1:4)where H =H(p; s) represents the enthalpy, a harateristi thermodynamifuntion of pressure p and entropy density s . For a thermodynamially idealgas, where �H�p = 1� = RTp ; �H�s = T ;de�nition (3.1.4) yields ŵ = �H!p � Tg dsdt : (3:1:40)For adiabati proesses ds=dt = 0, and (3.1.4') redues to the original Whitede�nition (3.1.1). For pratial appliations, the same riterion holds for(3.1.4') as for (3.1.3): in the nonhydrostati domain, where vertial veloitybeomes essential for dynamis, the seond term in (3.1.4') is small in om-parison with the �rst one, and (3.1.4') redues to (3.1.1). In the following,we will keep to the approximation (3.1.1).Thus, the dynami equations of the pseudo-anelasti model are (2.2.1'),(3.1.1), (3.1.2), the ontinuity equation for anelasti mediumr � v + �!�p = 0 ; (3:1:5)the horizontal momentum equation (with diabati foring inluded)dvdt = � grz � f � v +Av; (3:1:6)and the temperature equation (with diabati foring inluded)dTdt = {T!p + AT : (3:1:7)Due to maintenane of (approximate) vertial momentum equation (3.1.2),this model is nonhydrostati. At the same time, the anelasti approximation(3.1.5) �lters internally propagating sound waves, making the model more12



stable while also supporting larger time step at numerial integration. Phys-ially, equation (3.1.5) is valid for proesses for whih harateristi time-sale� >> �L = L=a, where L is the harateristi spatial sale of the proessand a � 335 m/s is the speed of sound. This ondition is valid almost atall spatial sales, and approximation (3.1.5), overall aepted in the hydro-stati dynamis, is atually not less aurate in the nonhydrostati mesosaledomain.3.2 The �nal form of pseudo-anelasti equationsWe eliminate ws and n from further treatment, substituting ws in (3.1.2) withthe help of (3.1.1) and n with the help of (2.2.1'). In addition, nonhydrostatigeopotential � = gz is used instead of isobari height z, and its thermi andbari omponents ' and � are separated:� � gz = '+ � ; (3:2:1a)' � gzt = gh(x; y) +R Z p0p Tp0dp0 ; (3:2:1b)� � gzb = �� ' : (3:2:1)Suh separation is not obligatory, but it permits for expliit representationof bari and thermi ounterparts in the dynami equations, whih is advan-tageous for nonhydrostati modi�ation of hydrostati numerial shemes.The equations then beomed!dt = � p2H2 ���p + A! ; (3:2:2)dvdt = � r('+ �) � f � v +Av; (3:2:3)dTdt = {T!p + AT ; (3:2:4)r � v + �!�p = 0 ; (3:2:5)where A! = � pHAw + !�v!pp � ATT � 1R dRdt � : (3:2:6)13



To emphasize that the gas onstant R may have signi�ant density e�et inthe moist air, we have maintained the potential time-dependene of R in thisformula, though in the dry air dR=dt = 0.Now we have to introdue the geopotential equation. System (3.2.2) � (3.2.5)represents a losed set of �ve equations for determination of �ve unknown�elds !, u, v, T and �. The only diagnostial �eld here is the bari geopoten-tial � and the only diagnostial equation in this set, whih an be employedfor its determination, is anelasti ondition (3.2.5). Thus, the role of � is tokeep the motion non-divergent in time. The expliit equation for � followsafter applying the time derivative to (3.2.5):ddt �r � v + �!�p� = 0 ;or r � dvdt + ��p d!dt � 3Xi;j=1 �vi�xj �vj�xi = 0 ;(xi = x; x2 = y; x3 = p; v1 = u; v2 = v; v3 = !). Elimination of timederivatives with the help of momentum equations (3.2.2) - (3.2.3) yields thePoisson equation for �L� � r2�+ ��p � p2H2 ���p� = Av ; (3:2:7a)where the volume-distributed soure funtionAv = � 3Xi;j=1 �vi�xj �vj�xi �r � (r'+ fk� v) +r �Av + �A!�p : (3:2:7b)desribes the internal soures for � in the moving atmosphere, determinedby di�erent fores trying to hange the p-oordinate volume of air partiles.The hange is prevented by the reation of the �eld �. The �rst sum in(3.2.7b) represents inertial e�ets. Individual air masses move with di�erentveloities and ollide permanently, trying to hange the volume of eah other.The �, generated by this term as solution of the ellipti equation (3.2.7a),eliminates suh volume hange e�ets. Analogially, the seond term in A� isaused by the two-dimensional divergene of ageostrophi aeleration, andthe third � by three-dimensional divergene of diabati foring.14



Equation (3.2.7) is valid in the internal points of the domain. When on-sidering it in the losed domain with boundary points inluded, the singularsoures Ab, loated on the boundary surfae should be inluded, whih woulddesribe the e�et of boundary onditions, indued by the surrounding envi-ronment L� = Av + Ab : (3:2:70)Inlusion of boundary soures is essential, when the ellipti equation is solvedusing the orthogonal basis. Still, spei�ation of Ab requires the preliminaryspei�ation of boundary onditions for �. We will return to this problemlater.After the ellipti equation for � is derived, one equation in set (3.2.2) �(3.2.7) will be super�uous and an be left out. We will omit the vertialmomentum equation (3.2.2). Then the model to be integrated is representedvia equations (3.2.3) � (3.2.7). This is the �nal form, whih will be the basisystem for further numerial sheme development. Prognosti equations inthis system are the same as in hydrostati model, but a new salar �eld, thebari geopotential � in the horizontal momentum equation (3.2.3), diagnosedfrom the ellipti equation (3.2.7), is added.3.3 Geometry of the domain and boundary onditionsThe pseudo-anelasti approximation, introdued in setions (3.1) -(3.2) main-tains the quality of pressure-spae. The vertial oordinate p represents stillomplete pressure, ! is the true pressure hange rate of the individual air par-tile, and diagnosis of hydrostati and nonhydrostati pressure omponentsan be performed using formulae (2.1.3) and (2.2.4). The di�erene fromexat dynamis is only in the way of evaluation of the density distributionn, required for integral (2.2.4). In exat dynamis it was prognosed from theequation (2.2.3), whereas in the pseudo-anelasti model n is evaluated fromz distribution via (2.2.1').The maintenane of the essene of pressure and pressure veloity involvesalso maintenane of the geometri domain (2.4.1) and equation of the lowerboundary (2.4.2). At the upper boundary we assume ondition (2.4.3) for!. Integration of the ontinuity equation (3.2.5) yields then a diagnostiexpression for !, whih is in ommon with the hydrostati model! = � Z p0 r � vdp0 : (3:3:1)15



The ombination of this relationship at the level p0 with (2.4.2) yields thetendeny equation for surfae pressure�p0�t +r � Z p00 vdp = 0 : (3:3:2)This equation guarantees maintenane of integral onservation laws (of mass,energy and momentum). By appearane it is lose to the hydrostati surfaepressure equation (2.4.6) of exat dynamis. Still, there is a prinipal di�er-ene in p0 and ps0 in the pseudo-anelasti model, too, and lose appearaneof (3.3.2) to (2.4.6) should not be misinterpreted as oinidene of p0 and ps0.Pressure p0 is a prognosti �eld, whih is prognosed from the lower boundaryequation (2.4.2) or from the equivalent equation (3.3.2). The hydrostatisurfae pressure ps0 in the pseudo-anelasti model is a diagnostial quantity,for whih equation (2.4.6) does not hold anymore and whih an be evaluatedfrom (2.2.4) only.Boundary onditions for the ellipti equation.The lower boundary ondition (2.4.4) is not a�eted by the pseudo-anelasti approximation. For full geopotential, �= gz, (2.4.4) gives �jp0 = gh.Thus, �jp0 = 0 : (3:3:3)The general lateral boundary ondition is the Neumann ondition����n�� = a� ; (3:3:4)where a� is a given funtion, whih spei�es the normal gradient of barigeopotential on the lateral boundary surfae �. The general idea is, thatwhen the horizontal momentum equation (3.2.3) is presented in the Eulerianform �v�t = F�r� ;where F represents the "hydrostati" tendeny, then the normal gradient of� must ompensate the di�erene between the normal omponents of thetrue and hydrostati tendenies on the boundary. This givesa� = n � �F� � �v��t � ; (3:3:5)16



where the subsript � points, that both F and v are externally driven onthe boundary. In pratie, a� depends muh on the applied boundary model.In the present nonhydrostati approah the lateral relaxation mehanism ofthe hydrostati HIRLAM is applied, and the hoie of a� for this partiularmodel is disussed later. Until that, a� is treated as a given funtion.A �xed upper boundary ondition for � as a limit � ! �0 has no sensedue to inde�nite nature of the right hand term in (3.2.2) at p = 0. Instead,we will apply the integrability ondition, whih also determines behavior of �at p = 0 uniquely (for a given lower boundary value):Z p00 j�jdp <1; if Z p00 jAjdp <1: (3:3:6)For an explanation, what this ondition means, let us onsider equation(3.2.7) for onstant surfae pressure p0 = onst and isothermal atmosphereH = onst. The appliation of Fourier transformation in x; y transforms thisequation to an ordinary seond order di�erential equation for the Fourieroe�ient ~�(p) of the bari potential at wavenumber kddpp2 ddp ~��H2k2 ~� = H2 ~A ;where ~A(p) is the Fourier oe�ient of soure A(x; y; p) at wavenumber k.Two independent solutions of the homogeneous equation are the regular andirregular solutions~�re(p) = � pp0��k�1=2 ; ~�ir(p) = � pp0���k�1=2 ;where �k =p1=4 +H2k2 :The regular solution satis�es the ondition (3.3.6). The seond, irregularsolution is unbounded at p ! 0 and does not satisfy (3.3.6). Thus, theirregular solution must be left aside.When the orthogonal basis is applied in the solution of the ellipti equation,ondition (3.3.6) implies lak of singular soures at the upper boundary.
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Boundary soures.Spei�ation of the boundary onditions in the form (3.3.3) - (3.3.6) alsomakes it possible to �x the struture of the surfae soure Ab in (3.2.7') asAb(x; p; t) = (x; t)Æ(p; p0) + f(x�; p; t)Æ(x;x�) : (3:3:7)Here  and f are the amplitudes of singular boundary soures, whih haveto be spei�ed from (3.3.3), and (3.3.4), respetively. At �rst, the generalsolution of the ellipti equation is found for the optional distribution of am-plitudes  and f� , and then,  and f� are determined from the boundaryonditions (3.3.3) - (3.3.4). Details of the f� and  spei�ation will bedisussed later, in Chapter 5, when the disrete model is introdued andorthogonal bases are applied for solution of the ellipti equation.3.4 Surfae pressure adjustmentThe appliation of the desribed pseudo-anelasti model with lower bound-ary, evolving in aordane with the equation (3.3.2), would yield dynamiswith the external mode sound waves inluded. However, the aim of this non-hydrostati approah is to develop a model with eliminated external wavesand adjusted surfae pressure. This would represent a truly anelasti modelwith ompletely �ltered aoustis. To ahieve suh a model, it is neessaryto modify both the lower boundary p0 and the lower boundary onditions.Making use of small amplitude of the relative surfae pressure �utuationp00=p0, we will onsider motion in a given (pre-spei�ed) geometrial domain0 < p < p0(x; y; t) ; (3:4:1)and linearize quantities and relationships, whih depend expliitly on theatual surfae pressure, with respet to p00. The bakground �eld p0(x; y; t)approximates the real surfae pressure. However, it is a given �eld (externallydriven as (2.5.7b), or �xed in time like (2.5.7a)), and it is not in�uenedby atual dynamis of the atmosphere. Linearization a�ets the kinemationdition (2.4.2) and the expression for geopotential �. The linearized formof (2.4.2) is �p00�t + �p0�t + vjp0 � rp0 = !jp0 ; (3:4:2)18



from whih the linearized form of vertially integrated mass balane followswith the help of (3.3.1)�p00�t + �p0�t +r � Z p00 vdp = 0 : (3:4:3)Surfae pressure adjustment means, that the pressure �utuation tendenyterm is very small in these equations in omparison with other terms, andapproximately !jp0 = dp0dt = �p0�t + vjp0 � rp0 ; (3:4:20)�p0�t +r � Z p00 vdp = 0 : (3:4:30)The geopotential dependene on p00 beomes evident, splitting � into thermiand bari omponents with respet to p0� = '+ � ; (3:4:4a)' = gzt = gh(x; y) +R Z p0p Tp0dp0 ; (3:4:4b)� � gzb = �n + Z p0p0 RTp dp � �n + �RTp �p0 p00: (3:4:4)To investigate the adjustment proess, we apply time derivative to (3.4.3)�2p00�t2 + �2p0�t2 +r � Z p00 �v�t dp = 0 : (3:4:5)Using the horizontal momentum equation (3.2.3) and the results from (3.4.4),equation (3.4.5) is transformed to�2p00�t2 �r � �p0r�2p00p0 �� = Ap ; (3:4:6a)Ap = r�Z p00 [v �rv+!�v�p +r('+�n)+fk� v�Av℄dp� �2p0�t2 ; (3:4:6b)where  = p(RT )p0 � 280 m/s is the isohori sound speed. This is thenonhomogeneous wave equation for surfae pressure �utuation. A speial19



ase of equation (3.4.6a) is a model with uniform bottom, p0 = onst., when(3.4.6a) simpli�es to �2p00�t2 �r2(2p00) = Ap :Dynamis of surfae pressure an be treated as adjusted, if the �rst term in(3.4.6a) is muh less than the seond one:�����2p00�t2 ���� << ����r � �p0r�2p00p0 ������ (3:4:7)and when (3.4.6a) simpli�es to�r � �p0r�2p00p0 �� = Ap: (3:4:8)Let L and � be the harateristi spatial and temporal sales of motion underonsideration. Then standard sale analysis of (3.4.7) leads to the ondition� >> �L � L= : (3:4:9)In limited area models, L is of the the same order as the horizontal extent ofthe domain of integration. In suh a situation, the ondition (3.4.8) meansthat the harateristi time-sale of the proess must be larger than the timeinterval, required for sound waves (propagating with speed ) to travel outof the domain. The ondition (3.4.9) is in pratie valid at all spatial salesL, as for slow proesses � � L=v, where v � 10 m/s. Note that adjustmentis ahieved formally by inreasing the sound speed to in�nity ( ! 1) in(3.4.7).In the adjusted model, the surfae pressure onsists of the mean steady om-ponent and small adjusted ontributionp0 = p0 + p00 : (3:4:10)The �utuation p00 an be evaluated from the equation (3.4.8), if the righthand term is known. This is the ase of hydrostati dynamis. In nonhydro-stati region, the right hand term Ap inludes nonhydrostati geopotential�n whih is not known separately from bari geopotential �. Therefore it is20



neessary to move �n in (3.4.8) to the left side and, with the help of (3.4.4),present (3.4.8) as an integral ondition for �r�Z p00 r�dp = �r�Z p00 �v � rv + !�v�p +r'+ fk� v �Av� dp+ �2p0�t2 ;(3:4:11)In the adjusted ase this relationship must be used for spei�ation of theboundary soure amplitude  in (3.3.7). In physial aspet, (3.4.11) ontrolsthe temporal maintenane of the vertially integrated mass balane (3.4.3').Namely, it validates the ondition (3.4.3') for all times, if that ondition issatis�ed at the initial moment.As it beame evident, in the adjusted model the surfae pressure �utua-tion is represented impliitly in the body of the bari geopotential (3.4.4).However, it is not ompletely invisible and an be diagnosed from � using anextrapolation �jp0 � �jp0 + ����p�p0 p00 = gh :With the help of (3.4.4) we obtain�jp0 = 'p0+�p0 = gh+�p0 ; ����p �p0 = ����p + �'�p�p0 = ����p � RTp �p0 ;and the extrapolation formula redues to�RTp � ���p�p0 p00 = �jp0 : (3:4:12)Usually, the seond term in the �rst brakets is small in omparison with the�rst, and approximately �RTp �p0 p00 = �jp0 : (3:4:120)The omega-veloity (3.3.1) an be diagnosed in the adjusted ase with thehelp of (3.4.3') as ! = �p0�t + vjp0 � rp0 + Z p0p r � vdp0 ; (3:4:13)21



or in the equivalent form ! = �p0�t +r � Z p0p vdp0 : (3:4:130)This relationship is used in the nonhydrostati anelasti model elsewhere. Asthe ondition (3.4.3') arises from (3.4.11) at every t > 0 on the onstraintthat (3.4.3') holds for t=0, the relationship (3.4.13') also provides the upperboundary ondition ! ! 0 (see (2.4.3)) at every t > 0, at the additionalonstraint that this ondition is satis�ed at t = 0. .The set of equations (3.2.3) - (3.2.4), (3.2.7), (3.4.4b), (3.4.13), when treatedin the domain (3.4.1), represents the anelasti, nonhydrostati, pressure o-ordinate model, as it ompletely laks any (internal or external) aoustimode.3. 5. Anelasti model in pressure oordinates: SummaryThe losed set of relationships and equations, needed for integration of thedeveloped anelasti, pressure-oordinate model, is as follows.The domain of integration is �xed in pressure�oordinates and is presentedby (3.4.1).The prognosti �elds of the model are the wind omponents u; v, and thetemperature T . The onsequent prognosti equations are the horizontal mo-mentum equation (3.2.3) and temperature equation (3.2.4).The bari and thermi geopotential omponents, whih together determinethe horizontal gradient�fore in the momentum equation (3.2.3), are bothdiagnosti �elds. The thermi geopotential ' is diagnosed from (3.4.4b). Thebari geopotential � is diagnosed from the ellipti equation (3.2.7'), whih issolved in the domain (3.4.1) with boundary onditions (3.3.4), (3.3.6) (withp0 instead of p0 in the role of the upper boundary of integrals), and (3.4.11).The omega�veloity represents also a diagnosti �eld, whih is diagnosedfrom (3.4.13) or from (3.4.13'). 22



The atual surfae pressure presents an auxiliary �eld, whih an be diag-nosed from the relationship (3.4.12).CommentsThe general model, desribed in Setion 2, is a perfet pressure-oordinateequivalent of the general equations of atmospheri dynamis, ommonly treat-ed in Cartesian oordinates. However, the �ltered anelasti model, derived inSetion 3, has not been widely used and has no diret analogues in the familyof numerial weather predition models. In this respet, it is of ertain inter-est to follow possible links of this model with the most familiar approahesin the numerial weather predition pratie.As it appears, the losest relative to the general pressure�oordinate (p-oordinate) model (2.2.1') - (2.3.4) is the general (fully elasti) hydrostati�pressure�oordinate (ps�oordinate) model (Laprise 1992, 1998). These twomodels atually represent the same general ase, realized in (slightly) di�er-ent oordinate systems. The transformation of equation from p-oordinatesystem to the ps-oordinate system and vie versa is straightforward. Theorresponding oordinate transformation is represented by the relationship(2.2.4').However, the further implementation of these equations goes in the Laprise'approah and in the present model in di�erent ways.In the Laprise' approah, the initial fully elasti equations are taken as abasis for numerial implementation. The fast aousti and buoyany modesare handled via semi-impliit reformulation of equations, making use of theTanguay-Robert-Laprise (1990) hypothesis. That would be an option in thepresent ase, too; for that it would be neessary to formulate equations ofmotion (2.2.3), (2.3.1) - (2.3.4) in hybrid oordinates, and then present themin the semi-impliit numerial framework. The essene of the semi-impliitapproah is, as wellknown, the redution of the propagation speed ( ! 0)of fast aousti and buoyany disturbanes, retaining the slow advetive-onvetive omponent of dynamis undistorted, and enhaning this way thenumerial stability.In the present approah, the fast aousti mode is removed (relaxed, elimi-nated), before the numeris is introdued, making use of in�nite sound speed23
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