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IntrodutionPart II ontinues the desription of the numerial model of atmospheri dy-namis, designed as the nonhydrostati extension to the hydrostati kernelof HIRLAM. The theoretial onept, initiated in Part I, will be brought tonumerial odes. The anelasti hybrid�oordinate model is formulated bothin the ontinuous and disrete representations, and the numerial ode withthe expliit�Eulerian time stepping sheme is implemented in the HIRLAMenvironment. The paper ends with numerial examples, demonstrating theapabilities of the model.The numerial ode is based on the former results, obtained by Xue andThorpe (1991), Miranda and James (1992), and, with respet to pressureadjustment, Rõõm (1997). However, there are several modi�ations in om-parison with those papers. Instead of the sigma oordinates, the presentmodel makes use of the more general hybrid oordinates of HIRLAM. Also,the whole vertial extent of the atmosphere is inorporated, and there isno arti�ial upper boundary in the present approah. However, the most1



fundamental di�erene is in the level and mode of simpli�ations. In theabove-ited papers the Miller-Peare variant (Miller and Peare, 1974) is ap-plied, whih makes use of the bakground separation and linearization ofthe energy onversion term. We make use of the more general White model(White, 1989) without linearization in that term. At the same time, somelinearization is introdued at surfae pressure handling, whih is needed forsurfae pressure adjustment.In the development of numerial ode, the main attention is paid to the re-ation of the ellipti solver for the bari geopotential equation. It is di�erentfrom the hydrostati semi-impliit sheme whih makes use of the Helmholtzequation. In this ase we have to deal with the Poisson equation. The maindi�erene is that the Poisson equation does not have any large diagonal partlike the Helmholtz equation does, and, as a result, the iterative sheme of thelatter is not appliable here. The present solution algorithm is based on thesheme, initiated by Xue and Thorpe (1991), and further elaborated for three-dimensional domain by Miranda and James (1992). The essential quality ofthat sheme is the appliation of fast disrete Fourier transformation in hori-zontal with onsequent numerial inversion of one-dimensional Laplaians foreah Fourier mode in vertial. The lateral boundary�ondition treatment intheir approah follows Williams (1969). In this approah we have gone onestep further, and apply an orthogonal basis in all three oordinates, inludingthe vertial hybrid oordinate. The nonhomogeneous boundary onditionsare handled by introdution of singular soures on lateral and bottom bound-aries. Due to suh a modi�ation, the developed inversion algorithm beomesa rather universal tool for solution of Poisson equations in horizontally ret-angular domains with general boundary onditions. At the same time, thesheme is not more time onsuming than the original Xue-Thorpe approah.The hybrid-oordinate representation of the nonhydrostati model followsthe notation of the hydrostati HIRLAM, presented in the Manual (Källén1996). A few exeptions are:(i) instead of ~�h, the notation v will be used for the horizontal wind veloity.(ii) instead of RdT� , notation RT (with the "moist" R and true T ) will beused; { = R=p orresponds to moist air.(iii) Speial notation m � �p=�� is used.2



(iv) Energy onservation, disregarded by the hydrostati sheme in some mi-nor terms of adiabati dynamis, is restored following Haltiner and Williams(1980).The setion and formula numbering is ontinued from Part I. The �rst setionin this part has number 4; "(3.4.1)" represents referene to the formula (3.4.1)in setion 3 of Part I, et.4 Continuous anelasti hybrid-oordinate model4.1 DiagnostisThe vertial �-oordinate 0 < � < 1 is de�ned via mapping � ! p:p = A(�) +B(�)p0 : (4:1:1)where p0(x; t) is a given (�xed or externally driven) bakground surfae pres-sure �eld, and A(�) � 0, B(�) � 0 are the appropriate weights, whihsatisfy boundary onditionsA(0) = A(1) = 0 ; B(0) = 0 ; B(1) = 1 : (4:1:2)Thus, the vertial domain in the pressure oordinates is (3.4.1), and � = 1orresponds to p = p0.The horizontal domain is a part of the globe with spherial oordinates f�; �g�� < � < � ; � � < � < � : (4:1:3)However, the horizontal oordinates, used at the de�nition of gradient oper-ators, are x = a� and y = a� ; with a as the mean radius of the Earth. thephysial di�erenes along the parallel and meridian aredX = a os �d� = hxdx dY = ad� = hydy ; (4:1:4)where hx = os � ; hy = 1are the metrial oe�ients. Thus, the urvilinear hybrid oordinates arefx ; y ; � g, whereas the veloity omponents are u = hxdx=dt, v = hydy=dt,_� = d�=dt. 3



The hybrid-oordinate densitym is related to the pressure-oordinate densityn via md� = ndp, and for the anelasti model with n = 1m = �p�� : (4:1:5)In aordane with the de�nition (4.1.1), m depends on time (via p0), andthe ontinuity equation for it is�m�t +r � (mv) + � _�m�� = 0 ; (4:1:6)where the �-oordinate "horizontal" divergene of vetor a = fax; ayg isr � a = 1hxhy ��hyax�x + �hxay�y � : (4:1:7)From the de�nition (4.1.1)! = m _� +B(�)��p0�t + v � rp0� ; (4:1:8)or alternatively ! = m _� + v � rp+ �p�t : (4:1:80)Condition (2.4.3) and (3.4.2') give with the help of (4.1.8) boundary ondi-tions for _�: _� = 0 at � = 0 and � = 1 : (4:1:9)As a onsequene, integration of (4.1.6) in vertial gives�p0�t + Z 10 r � (mv)d� = 0 ; (4:1:10)whereas integration of (4.1.6) in the the domain [�; 1℄ yieldsm _� = (1� B)�p0�t + Z 1� r � (mv)d� : (4:1:11)Using (4.1.8'), the ontinuity equation (4.1.6) an be presented in the formĜ+ � v + 1m�!�� = 0 ; (4:1:12)4



where Ĝ+ is the �-oordinate presentation of the pressure-oordinate "hori-zontal" divergeneĜ+ � v � rp � v = 1mr � (mv)� 1m�(v � rp)�� ; (4:1:13)whih an be simpli�ed toĜ+ � v = r � v � 1m�v�� � rp ; (4:1:130)where the "horizontal" hybrid�oordinate gradient isr = ix 1hx ��x + iy 1hy ��y : (4:1:14)Thus, (4.1.12) is the hybrid-oordinate presentation of the anelasti ondition(3.2.5).The "horizontal" pressure-oordinate gradient is presented asĜ' � rp' = r'� 1m�'��rp : (4:1:15)The operators Ĝ and Ĝ+ are skew symmetri onjugates of eah other:ZV dV m'Ĝ+ � a = � ZV dV ma � Ĝ' (4:1:16)for optional �nite a and ', where dV = hxhydxdyd� , and V is the domain ofintegration. This relationship is useful in the disrete ase for establishmentof proper symmetry of the operators Ĝ and Ĝ+.
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4.2 DynamisIn the Eulerian presentation the equations of motion (3.2.3) � (3.2.4) are,after separation of momentum advetion terms into the gradient, solenoidaland vertial parts, �u�t = Fu � bGx� ; (4:2:1)�v�t = Fv � bGy� ; (4:2:2)�T�t = FT ; (4:2:3)where bGx and bGy are the omponents of Ĝ:bGx� � 1hx ����x�p = 1hx ����x � 1m �p�x ������ ; (4:2:4a)bGy� � 1hy ����y�p = 1hy ����y � 1m �p�y ������ : (4:2:4b)Fu, Fv and FT are the hydrostati tendenies, whih are those of the hydro-stati HIRLAM (with an exeption that ' is the thermi geopotential ratherthan the hydrostati one):Fu = (f + �) v � _��u�� � 1hx �RT � ln p�x + ��x ('+ E)�+ Pu +Ku; (4:2:5)Fv = (f + �)u� _��v�� � 1hy �RT � ln p�y + ��y ('+ E)�+ Pv +Kv; (4:2:6)FT = � uhx �T�x � vhy �T�y � _��T�� + {T!p + PT +KT : (4:2:7)The vortiity and energy terms are here� = 1hxhy ��hyv�x � �hxu�y � (4:2:8)E = 12(u2 + v2) ; (4:2:9)6



and Px, Kx represent the tendenies from physial parametrization and hor-izontal di�usion (the sum Px +Kx orresponds to Ax in (3.1.6) - (3.1.7)).The thermi geopotential (3.4.4b) is in the hybrid oordinates' = gh+ Z 1� RT md�0p : (4:2:10)The vertial momentum equation (3.2.2), whih is required for the dedutionof the �-equation, is in hybrid oordinates (and in the Eulerian presentation)�!�t = F! � p2mH2 ���� (4:2:11)where F! = A! � v � r! � _��!�� : (4:2:12)Di�erentiation of the ontinuity equation (4.1.12) in time, and eliminationof veloity tendenies with the help of (4.2.1), (4.2.2) and (4.2.11), yields the�-oordinate form of ellipti equation (3.2.7):L� � Ĝ+ � Ĝ�+ 1m ��� � p2mH2 ����� = Av ; (4:2:13a)where the volume-distributed soure funtion isAv = Ĝ+ � Fv + 1m�F!�� ; (4:2:13b)and Fv = fFu; Fvg.The boundary onditions (3.3.4), (3.4.11), and (3.3.6) beome����n�� = a�; (4:2:14)r � Z 10 (Ĝ�)md� = r � Z 10 Fvmd� � �2p0�t2 ; (4:2:15)Z 10 j�jmd� <1; if Z 10 jAjmd� <1: (4:2:16)They de�ne the struture of the boundary-distributed singular soure fun-tion, whih is the same as (3.3.7)Ab(x; �; t) = (x; t)Æ(�; 1) + f(x�; �; t)Æ(x;x�) : (4:2:17)7



5 Disrete anelasti hybrid-oordinate modelDisretization takes advantage of the hydrostati HIRLAM framework to fullextent. Some minor hanges are introdued into omputation of the disretethermi geopotential with the aim to inrease smoothness of the soure Av,whih is aompanied with alterations in energy onversion term. However,all these hanges are not too extensive.The grid is the lassial staggered (Arakawa C) grid. The surfaes i =1=2; Nlon + 1=2, and j = 1=2; Nlat + 1=2 are lateral boundaries, k = 1=2orresponds to the level � = 0 (outer spae) and k = Nlev+1=2 orrespondsto � = 1 (model surfae p = p0). It is onvenient to onsider eah small ubewith the enter at fi; j; kg and faets at fi � 1=2; j; kg, fi; j � 1=2; kg, andfi; j; k � 1=2g, as an elementary pseudo-partile. The disrete salar �elds:temperature T , spei� humidity q, et., and bari geopotential � are loatedin partile enters: Tijk; �ijk; qijk;whereas the omponents of vetors u, v, ! (and m _�, w), determining in-and out�ows on the partile boundaries, are loated in the enters of partilefaets: ui+1=2jk; vij+1=2k; !ijk+1=2 ; (m _�)ijk+1=2 :Also, the disrete pressure is loated in the enters of horizontal faets:pijk+1=2;and, onsequently, the pressure di�erene belongs to salars:(��p)ijk = pijk+1=2 � pijk�1=2 :Standard notation is used for averaging and di�erene operators, and for�nite di�erenes:A�l = Al�1=2 + Al+1=22 ; A�l+1=2 = Al + Ai+12 ;(Æ�A)l = Al+1=2 � Al�1=2�l+1=2 � �l�1=2 ; (Æ�A)l+1=2 = Al+1 � Al�l+1 � �l ;(��A)l = Al+1=2 � Al�1=2 ; (��A)l+1=2 = Al+1 � Al ;where � is for x, y, or �. 8



Horizontal averaging over the kth �-level is denoted ashaik = 1NlonNlatXij aijk :5.1 DiagnostisThe pressure is pijk+1=2 = Ak+1=2 +Bk+1=2p0ij ; (5:1:1)where Ak+1=2 = A(�k+1=2) ; Bk+1=2 = B(�k+1=2) ; (5:1:2a)A1=2 = ANlev+1=2 = 0 ; B1=2 = 0 ; BNlev+1=2 = 1 : (5:1:2b)The oordinate di�erenes are �x = a��; �y = a��; ��. The physialdi�erenes along the horizontal oordinate axes are�Xij = hxij�x ; �Yij = hyij�y : (5:1:3)The horizontal divergene, a �nite-di�erene analogue of (4.1.7), is(r � a)ijk = 1(hxhy)ij hÆx(hyxax) + Æy(hxyay)iijk ; (5:1:4)whereas the horizontal gradient of a salar aijk has omponents[(ra)x℄i+1=2jk = 1hxi+1=2j (Æxa)i+1=2jk = ai+1jk � aijkhxi+1=2j�x ; (5:1:5a)[(ra)y℄ij+1=2k = 1hyij+1=2 (Æya)ij+1=2k = aij+1k � aijkhyij+1=2�y : (5:1:5b)In these di�erene formulae we have maintained the original, formal, two-dimensional struture of hx and hy, used in HIRLAM (both for better o-inidene with the HIRLAM formalism and for larger symmetry), thoughatually hxij = hxj depends on the meridional index only, whereas hyij = 1.The auxiliary vetor V = fUi+1=2jk; Vij+1=2kg is:Ui+1=2jk = (��pxu)i+1=2jk ; Vij+1=2k = ���pyu�ij+1=2k : (5:1:6)9



The disrete analogue of (4.1.11) will then be(m _�)ijk+1=2 = (1� Bk+1=2)�p0�t + NlevXk0=k+1(r �V)ijk0 ; (5:1:7)from whih the reurrene formula (the disrete form of (4.1.6)) follows(m _�)ijk�1=2 = (m _�)ijk+1=2 + (r �V)ijk +�Bk �p0ij�t ; (5:1:8a)(m _�)ijNlev+1=2 = 0 : (5:1:8b)The vertially integrated mass balane ondition (4.1.10) beomes�p0ij�t + NlevXk=1 (r �V)ijk = 0 : (5:1:9)The formula (4.1.8') for omega-veloity is!ijk+1=2 = (m _�)ijk+1=2 + (v� � rp)ijk+1=2 + �pijk+1=2�t ; (5:1:10)where we de�ne(v� � rp)ijk+1=2 � 1(hxhy)ij �hyxu�Æxpx + hxyv�Æypy�ijk+1=2 : (5:1:11)For the operator Ĝ+ a disrete presentation follows from these de�nitions(Ĝ+ � v)ijk = [r �V���(v� � rp)℄ijk(��p)ijk= 1(��phxhy)ijk hÆx �hyx��pxu���� �hyxu�Æxpx�iijk+ 1(��phxhy)ijk hÆy �hxy��pyv���� �hxyv�Æypy�iijk : (5:1:12)This formula an be simpli�ed (Appendix A) to(Ĝ+�v)ijk = 1(hxhy)ij "Æx(hyxu)� hyx(��u)Æxpx���p + Æy(hxyv)� hxy(��v)Æypy���p #ijk ;(5:1:120)10



whih is a disrete analogue for (4.1.13'). The onjugated to (5.1.12) gradientis (for details see Appendix A)(Ĝx�)i+1=2jk = 1hxx "Æx�� (Æxp)���x���px #i+1=2jk ; (5:1:13a)(Ĝy�)ij+1=2k = 1hyy "Æy�� (Æyp)���y���py #ij+1=2k : (5:1:13b)The disrete analogue of (4.1.12), onsistent with (5.1.8) - (5.1.12), is�Ĝ+ � v + ��!��p�ijk = 0 : (5:1:14)The thermi geopotential (4.2.10) is'ijk�1=2 = ghij + NlevXk0=k(RT )ijk0�ijk0 ; (5:1:15)where�ijk = (�� ln p)ijk = ln pijk+1=2 � ln pijk�1=2 ; k 6= 1; and �ij1 = 2 ln 2 :(5:1:16)The thermi geopotential an be evaluated also from the reurrene'ijNlev+1=2 = ghij ;'�ijk = 'ijk+1=2 + 12(RT )ijk�ijk ; (5:1:17)'ijk�1=2 = '�ijk + 12(RT )ijk�ijk :Coe�ients �ijk are di�erent from those, employed in the ommon hydro-stati HIRLAM, and thus, the thermi geopotential diagnostis is di�erent.Suh a modi�ation is required for redution of numerial noise at the om-putation of the divergene Ĝ+ �(Ĝ'), whih onstitutes a major ontributionto the soure Av in the ellipti equation (4.2.13).11



5.2 DynamisThe equations of motion (4.2.1) � (4.2.3) are in the disrete model�ut+�t � ut��t2�t �i+1=2jk = Fui+1=2jk � ( bGx�)i+1=2jk ; (5:2:1)�vt+�t � vt��t2�t �ij+1=2k = Fvij+1=2k � ( bGy�)i+1=2jk ; (5:2:2)�T t+�t � T t��t2�t �ijk = FT ijk : (5:2:3)The omponents of the hydrostati veloity tendeny orrespond to the timelevel t:Fui+1=2jk = �" 1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !#i+1=2jk�( eGx'�)i+1=2jk + (Pu +Ku)i+1=2jk ; (5:2:4)Fvij+1=2k = �" 1hyy  ZhyxU yx + ÆyE + hym _�y��v���py !#ij+1=2k�( eGy'�)ij+1=2k + (Pv +Kv)ij+1=2k ; (5:2:5)whereZi+1=2j+1=2k = hfhxhyxy + Æx(hyyv)� Æy(hxxu)ii+1=2j+1=2k(hxhy��pxy)i+1=2j+1=2k (5:2:6)Eijk = 12 � 1hy hyxu2x + 1hxhxyv2y�ijk ; (5:2:7)and ( eGx'�)i+1=2jk = 1hxx �Æx'� � Æxp���'x��px �i+1=2jk : (5:2:8a)( eGx'�)ij+1=2k = 1hyy �Æy'� � Æyp���'y��py �ij+1=2k : (5:2:8b)12



The temperature tendeny isFT ijk = �(âT )ijk + �{T!p �ijk + (PT +KT )ijk ; (5:2:9)where (âT )ijk = [hyUÆxT x + hxV ÆyT y + hxhy(m _�)��T �℄ijk(hxhy��p)ijk (5:2:10)is the disrete temperature-advetion term, and Pxijk, Kxijk are tendeniesfrom physial parametrization and horizontal di�usion.Note that the horizontal gradient eG in (5.2.8) is di�erent from Ĝ, de�ned in(5.1.13). The modi�ation onsists in the substitution of terms Æxp��'���and Æyp��'��� , inluding double vertial averaging, by more simple, verti-ally diagonal approximations Æxp���'x and Æyp���'y. Suh modi�ationgives rise to the numerial smoothness of this term, whih is substantial athigh resolutions in the steep orography ase.The disrete presentation of the energy onversion term in (5.2.9) is�RT!p �ijk = ��
��'��p�ijk ; (5:2:11a)where
ijk = !�ijk � "hyx�� (Æxp��u)x + hxy�� (Æyp��v)y4hyhx #ijk : (5:2:11b)This formula is onsistent with the disrete presentation of the thermi geopo-tential (5.1.15) and de�nition (5.2.8), whih is proved in Appendix B (see(B.5)), where the overall energetis of the disrete model is heked. Theterm in the square brakets is aused by the use of approximation (5.2.8)instead of (5.1.13). This term is a seond order small quantity as it is pro-portional to a seond order vertial di�erene and tends to zero like (��p)2.Exept for very poor vertial resolution or drasti variations of the horizontalwind with height, it an be omitted and the energy onversion term an besimpli�ed to �{T!p �ijk = !�ijk ({T�)ijk(��p)ijk : (5:2:110)13



5.3 The ellipti equation for bari geopotentialFor establishment of the proper form of ellipti equation we also need thedisrete analogue of the omega-equation (4.2.11) - (4.2.12). Proeeding fromenergy onservation, it is orret to start from the de�nition!ijk+1=2 = ��wspH� �ijk+1=2 ; (5:3:1)where wsijk+1=2 is the hydrostati vertial veloity, whih does make use of thetendeny equation (omes from (3.1.2) with the help of (2.2.1') and (3.2.1))�wst+�t � wst��t2�t �ijk+1=2 = � pH� �����p��ijk+1=2�(âws)ijk+1=2 + (Pw +Kw)ijk+1=2 ; (5:3:2a)with âws representing the transport of vertial veloity(âws)ijk+1=2 = [hyU�Æxwsx + hxV �Æywsy + hxhym _����ws�℄ijk+1=2(hxhy��p�)ijk+1=2 ; (5:3:2b)and Pw and Kw representing the physial parametrization and spetral dif-fusion terms for ws. The orrespondene of (5.3.2) to energy onservation isestablished in Appendix B.Di�erentiation of (5.3.1) in time gives�!t+�t � !t��t2�t �ijk+1=2 = F!ijk+1=2 � "� pH��2 �����p�#ijk+1=2 ; (5:3:3a)whereF!ijk+1=2 = � pH� (âws �Kw � Pw)�ijk+1=2 + � !T �FT ��ijk+1=2 : (5:3:3b)Di�erentiation of the disrete ontinuity equation (5.1.14) in time, and elim-ination of the veloity tendenies with the help of (5.2.1), (5.2.2), and (5.3.3)yields the disrete form of ellipti equation:(L�)ijk = Avijk ;14



where the disrete ellipti operator is(L�)ijk = (Ĝ+ � Ĝ�)ijk + � 1��p�� � p2(H�)2 �����p���ijk ; (5:3:4a)and the volume-distributed soure funtion isAvjik = (Ĝ+ � Fv)ijk + ���F!��p �ijk : (5:3:4b)Here Fv = fFui+1=2jk; Fvij+1=2kg. Keeping in mind a solution of thisequation in the orthogonal basis, we will supplement the soure funtionwith a singular, boundary-distributed soure Ab, and onsider the equationin the form (L�)ijk = Aijk ; (5:3:4)where A�ijk = Avjik + Abijk : (5:3:4d)The boundary-distributed soure funtion is a disrete analogue of (4.2.17)Abjik = fxljkxÆi;1 � fxrjk xÆi;Nlon + f ylik yÆj;1 � f yrik yÆj;Nlat + ijÆk;Nlev ; (5:3:4e)where x = 2hhxi�x ; dy = 2hhyi�yand Æi;j is the Kroneker symbol. Note that funtions xÆi;i0, yÆj;j0 representthe disrete analogues of the Dira delta-funtion Æ(x;x�) on the x- andy-walls, respetively.The amplitudes of lateral soures f and bottom soure  are determined bynonhomogeneous lateral onditions, and vertial ondition, respetively.5.3.1 Boundary onditions for the ellipti equationThe ondition of integrability (4.2.16) redues in the disrete ase to arequirement that the solution has no rapidly (exponentially) inreasing modeat k ! 0. This is ahieved, employing the eigenfuntion tehnique in ��oordinate. 15



The vertial ondition (mass balane ondition for �), a disrete analogueof (4.2.15), follows, di�erentiating (5.1.9) in time and eliminating the veloitytendenies with the help of (5.2.1) and (5.2.2)(B̂�)ij � NlevXk=1 hÆx �hyx��pxĜx��+ Æy �hxy��pyĜy��iijk = bij ; (5:3:5a)bij = NlevXk=1 hÆx �hyx��pxF̂u� + Æy �hxy��pyF̂v�iijk + �2p0ij�t2 : (5:3:5b)This ondition is used for the spei�ation of oe�ients ij in the boundarysoure (5.3.4e).The lateral boundary ondition (4.2.14) beomes in the disrete ase� 1hxx Æx��3=2;jk = axljk ; � 1hxx Æx��Nlon�1=2;jk = axrjk ; (5:3:6a) 1hyy Æy�!i;3=2;k = aylik ;  1hyy Æy�!i;Nlat�=2;k = ayrik ; (5:3:6b)where oe�ients a are known. These onditions will determine the oe�-ients f in the boundary soure (5.3.4e).In a partiular ase of smooth (along boundary) a and largeNlon; Nlat; Nlev,oe�ients f in (5.3.4e) are related to the boundary gradients expliitly (Ap-pendix D) fxljk = axljk ; fxrjk = axrjk ; f ylik = aylik ; f yrik = ayrik : (5:3:7)Consequently, the boundary soure (5.3.4e) transforms in the ontinuouslimit to (4.2.17) with f(x�; �; t) = �a� ; (5:3:70)where a� represents the given normal boundary gradient of � (see (3.3.4)).5.3.2 Solver for the ellipti equationThe general idea is to solve the equation (5.3.4) in the tree-dimensional or-thogonal basis for given Av and for Ab with optional oe�ients f and , andthen determine oe�ients  from (5.3.5), and f from (5.3.6). For appliation16



of the basis in all three oordinates, equation (5.3.4) and ondition (5.3.5)have to be represented as the sums of horizontally homogeneous main partsand horizontally nonhomogeneous perturbations. The main ellipti operatoris inverted expliitly, then the solution is substituted into the perturbationterms and a new improved solution is looked for, repeating the proedureuntil the required preision is ahieved. As the metri oe�ient hx dependson the spherial Earth in the latitude �, the planet's roundness is onsideredin this algorithm as a perturbation to the plane geometry. This means thattoo large areas will not be aessible by the model. In pratie, integrationareas are limited within a square with 5 000 km long side.Equation (5.3.4) is presented as(L�)ijk = Aijk � (L0�)ijk ; (5:3:8)where (L�)ijk = (Lx�)ijk + (Ly�)ijk + (L��)ijk ; (5:3:9a)Lx,Ly, and L� are the horizontally homogenized, one-dimensional Laplaians(Lx�)ijk = � 1hhxiÆx��2ijk ; (Lx�)ijk = � 1hhyiÆy��2ijk (5:3:9b)(L��)ijk = � 1h��pi�� � hpi2hH�i2 �����p���ijk ; (5:3:9)and L0 is de�ned as L0 = L � L : (5:3:9d)Analogial expansion of the integral ondition (5.3.5) to the sum of main andperturbation parts gives (B̂0�)ij = bij � (B̂0�)ij ; (5:3:10a)where B̂0 is the horizontally homogenized part of B̂(B̂0�)ij = hhxihhyi"(Lx + Ly)NlevXk=1 h��pik�k#ij (5:3:10b)and perturbation B̂0 is de�ned as(B̂0�)ij = (B̂�)ij � (B̂0�)ij : (5:3:10)17



The iterative algorithm is�(0)ijk = 0 at t = 0; and [�(0)ijk℄t = [�(final)ijk ℄t��t at t > 0; (5:3:11a)and for l = 1,2,....(L�(l))ijk = Avijk + Ab(l)ijk � (L0�(l�1))ijk � A(l)ijk; (5:3:11b)(B̂0�(l))ij = bij � (B̂0�(l�1))ij � b(l)ij ; (5:3:11)where Ab(l) is the iterated boundary soureAb(l)jik = fxl(l)jk xÆi;1 � fxr(l)jk xÆi;Nlon + f yl(l)ik yÆj;1 � f yr(l)ik yÆj;Nlat + (l)ij Æk;Nlev(5:3:11d)with the iterated oe�ients f (l), (l), whih have to be spei�ed from theiterated versions of onditions (5.3.6):� 1hxx Æx�(l)�3=2;jk = axljk ; � 1hxx Æx�(l)�Nlon�1=2;jk = axrjk ; (5:3:11e) 1hyy Æy�(l)!i;3=2;k = aylik ;  1hyy Æy�(l)!i;Nlat�=2;k = ayrik ; (5:3:11f)and from (5.3.11), respetively.The iterative set of equations (5.3.11) is solved using the three-dimensionalorthogonal basis X 
 Y 
 E, whereX = fXq; q = 1; ::; Nlong = ffXiq; i = 1:::; Nlong; q = 1; :::; Nlong ;Y = fYr; r = 1; ::; NlatgYr = ffYjr; j = 1:::; Nlatg; r = 1; :::; Nlatg ;E = fEs; s = 1; ::; NlevgEs = ffEks; k = 1:::; Nlevg; s = 1; :::; Nlevg ;represent the one-dimensional bases in the x, y and � dimensions, respe-tively. They are hosen as the eigenvetors of the one-dimensional Lapla-ians:(LxXq)i = ��xqXiq ; (LyYr)j = ��yrYjr ; (L�Es)k = ���sEks ; (5:3:12)where �xq , �yr , ��s are the orresponding eigenvalues.18



For X and Y the disrete normalized osine bases are employed (see Ap-pendix C), whereas the basis E and eigenvalues �� (they depend on the ver-tial temperature distribution in the atmosphere) are spei�ed, numeriallysolving the vertial eigenvalue problem (ibid).Presenting �(l) in the basis�(l)ijk =Xqrs XiqYjrEks ~�(l)qrs ; (5:3:13)the solution of the equation (5.3.11b) for Fourier oe�ients ~� will be~�(l)qrs = � ~A(l)qrs�xq + �yr + ��s ; (5:3:14a)~A(l)qrs = ~Avqrs � (L̂0�(l�1))qrs+x ~fxlrs (l)Xq;1 � x ~fxrrs (l)Xq;Nlon + y ~f ylqs(l)Yr;1 � y ~f yrqs (l)Yr;Nlat + ~(l)qrE�1s;Klev;(5:3:14b)where ~Av, L̂0�(l�1) are the Fourier oe�ients of the volume distributedsoure and perturbation term~Avqrs =Xijk XqiXrjE�1sk Avijk ; (L̂0�(l�1))qrs =Xijk XqiXrjE�1sk (L0�(l�1))qrs ;and ~f (l), ~(l) are the Fourier oe�ients of f (l), (l):~fxl=r(l)rs =Xjk YrjE�1sk fxl=r(l)jk ; ~f yl=r(l)qs =Xik XqiE�1sk f yl=r(l)ik ; ~(l)qr =Xij XqiYrj(l)ij :Substitution of the solution (5.3.14) into the boundary onditions (5.3.11e)- (5.3.11f) yields (for details see Appendix D) an iterative algorithm for theFourier oe�ients of the boundary fore:~fxlrs (l) = ~fxlrs (l�1) + Æ ~fxlrs (l) ; (5:3:15a)~fxrrs (l) = ~fxrrs (l�1) + Æ ~fxrrs (l) ; (5:3:15b)~f ylqs(l) = ~f ylqs(l�1) + Æ ~f ylqs(l) ; (5:3:15)19



~f yrqs (l) = ~f yrqs (l�1) + Æ ~f yrqs (l) ; (5:3:15d)where the inrements areÆ ~fxl(l)rs = 1sxrs "~axlrs � ^� 1hx Æx�(l�1)�3=2;r;s# ; (5:3:16a)Æ ~fxr(l)rs = 1sxrs "~axrrs � ^� 1hx Æx�(l�1)�Nlon�1=2;r;s# ; (5:3:16b)Æ ~f yl(l)qs = 1syqs "~aylqs � ^� 1hy Æy�(l�1)�q;3=2;s# ; (5:3:16)Æ ~f yr(l)qs = 1syqs "~ayrqs � ^� 1hy Æy�(l�1)�q;Nlat�1=2;s# : (5:3:16d)andsxrs = 1Nlon� 1  Nlon�1Xq=2 �xq�xq + �yr + ��s + 2(hhxi�x)2(�xNlon + �yr + ��s)! ;(5:3:17a)syqs = 1Nlat� 1  Nlat�1Xr=2 �yr�xq + �yr + ��s + 2(hhyi�y)2(�xq + �yNlat + ��s)! :(5:3:17b)In the ase of smooth boundary onditions and for large grids (Nlon; Nlat;Nlev !1), the square brakets in formulae (5.3.16) beome zero at l = 2,whih yields the ase (5.3.7) (Appendix D).After the oe�ients ~f are spei�ed from (5.3.15), (5.3.16), the soure fun-tion (5.3.14b) still inludes unknown oe�ients ~, whih an be solved from(5.3.11). Transforming this relationship into the basis and using represen-tation (5.3.14) (where ~f (l) are spei�ed from (5.3.15)), the expliit formulafor  resultse(l)qr = 1s�qr 24 ~bqr � ^(B0�(l�1))qrhhxihhyi(�xq + �yr) �Xs sA(l)qrs�xq + �yr + ��s35 ; (5:3:18a)
20



where s�qr =Xs sE�1s;lev�xq + �yr + ��s ; s =Xk h�pikEks ; (5:3:18b)A(l) = ~Avqrs � (L̂0�(l�1))qrs+x ~fxlrs (l)Xq;1 � x ~fxrrs (l)Xq;Nlon + y ~f ylqs(l)Yr;1 � y ~f yrqs (l)Yr;Nlat : (5:3:18)Thus, the solution of the ellipti equation at the lth iteration is (5.3.13),where oe�ients ~� are presented by (5.3.14), with ~f (l)) evaluated from(5.3.15) and (l) from (5.3.18). The iterative` proess is stopped at l, forwhih: hj�(l) � �(l�1)ji < "hj�(l)ji ; (5:3:19)where " depends on the required preision (The typial value in appliationis " � 10�3 � 10�4).5.4 Boundary and initial �eldsThe nonhydrostati sheme takes advantage of the Davies' boundary relax-ation sheme (Davies 1976) of hydrostati HIRLAM. Modi�ations, induedby the presene of nonhydrostati fore are desribed in the following.Hydrostati evolution from the time level t � �t to the level t + �t, whenthe boundary relaxation zone (BRZ) is present, is desribed by the formula(for �eld u, ases of v and T are similar)ut+�t = (1� �)~ut+�t + �ut+�tb ; ~ut+�t = ut��t + 2�tFu ;where � is the weight funtion, whih is zero beyond the relaxation zone,inreases smoothly in the relaxation zone towards the boundary, and beomes� = 1 on the boundary �. Field ~ut+�t is the evolution of u to the levelt+�t from the initial state ut��t when BRZ is absent, while Fu presents thehydrostati tendeny (5.2.4). The funtion ut+�tb presents the boundary �eld(whih represents the surrounding environment), towards whih the internal�eld ut+�t is relaxed and whih is always reahed by ut+�t on the boundarysurfae �. From this formula, the e�etive ('boundary relaxed') hydrostatitendenies are F̂u = (1� �)Fu + �ut+�tb � ut��t2�t ; (5:4:1a)21



F̂v = (1� �)Fv + �vt+�tb � vt��t2�t ; (5:4:1b)F̂T = (1� �)FT + �T t+�tb � T t��t2�t : (5:4:1)The orresponding modi�ations of the nonhydrostati equations (5.2.1) -(5.2.3) are ut+�ti+1=2jk � ut��ti+1=2jk2�t = F̂ui+1=2jk � ( bGx�)i+1=2jk ; (5:4:2a)vt+�tij+1=2k � vt��tij+1=2k2�t = F̂vij+1=2k � ( bGy�)i+1=2jk ; (5:4:2b)T t+�tijk � T t��tijk2�t = F̂T ijk : (5:4:2)The BRZ is not applied to !, and its tendeny remains (5.3.3). Thanks to theinlusion of the boundary relaxation in the hydrostati tendeny, the barigeopotential � takes into onsideration all fores and maintains the anelastiquality of the model in the whole domain, inluding the relaxation zone.To establish in (5.4.2a) and (5.4.2b) rigid onditions ut+�tj� = ut+�tb , vt+�tj� =vt+�tb , the normal gradient of � has to vanish on �, whih yields zero valuefor the boundary funtion a in (5.3.6):axljk = 0 ; axrjk = 0 ; aylik = 0 ; ayrik = 0 : (5:4:3)Consequently, the boundary soure amplitude f in (5.3.4e), (5.3.11d) be-omes also zero, and the iteration algorithm (5.3.15) - (5.3.16) is not required.Thus, in the ase of the Davies' relaxation sheme, the lateral boundary valueproblem for � redues to the homogeneous Neumann problem.An important quality of the Davies' sheme is approximation of the singularlateral boundary soure Ab (see (4.2.17)) of the ontinuous model (withoutBRZ) by the volume-distributed soure Av, whih in the BRZ approahesthe singular limit (4.2.17), if the depth of the BRZ tends to zero. To provethis, we will onsider the volume distributed soure funtion Av in the BRZnear the right wall in x-diretion:L� d < x < L ; L = a�22



(Disussion is on�ned to this partiular ase. However, results would bethe same at the other walls). For a su�iently narrow BRZ, when d ! 0,the most rapidly hanging funtion in the tendenies (5.4.1) is the weightfuntion �, whih gradient beomes large in the BRZ. As a result, the volume-distributed soure funtion (5.3.4b) an be estimated from (5.4.1a) - (5.4.1b)in the BRZ asAv � �a 1hx ���x where a = Fu � ut+�tb � ut��t2�t : (5:4:4)At the limit d ! 0, � approahes the Heaviside funtion and, onsequently,1hx ���x ! Æ(x; x�);whereas a tends to a� in (3.3.5). Thus, Av approahes preisely the �rst termof the singular boundary soure (4.2.17), with f = � a� (see (3.3.7')) wherea� is determined as (3.3.5).As seen from (5.4.4), the soure Av is spei�ed in the boundary zone by the"hydrostati disbalane" a. Extreme values of a should be avoided, as large awould ause large amplitude of � near lateral boundaries, whih would resultin large normal gradients of � and strong spurious tangential irulation inthe boundary zone. As a is mainly driven by the boundary �elds ub; vb; Tband p0, the amplitude of a depends how well the boundary �elds, inludingp0, math the hydrostati evolution model. Espeially sensitive is a to thehoie of the mean surfae pressure �eld p0.Two main hoies, requiring di�erent approah, are as follows.a. p0(x; y; t) is taken, along with other boundary �elds ub, vb, and Tb, froma oarser, hydrostati foreast model. In this ase a is always small, therewould be no problem with large spurious boundary soures, and the integra-tion sheme (5.4.2a) - (5.4.2) supported by homogeneous onditions (5.4.3),is advantageous. In this sheme, � and p00 will represent �ne, small-sale,nonhydrostati ontributions to the hydrostati �elds. The desribed ap-proah is attrative beause of its simpliity, and it is presently applied asthe basi sheme in NH HIRLAM.b. p0 = p̂0(x; y), where p̂0(x; y) is the mean barometri bakground pressure(2.5.7). This approah assumes prior spei�ation of the mean temperatureT0(p). For given initial veloity and temperature �elds, p̂0 is rather di�erent23



from the atual hydrostati surfae pressure. Consequently, the thermi andCoriolis fores are mutually out of balane, hydrostati tendeny beomeslarge everywhere and a in (5.4.4) beomes also large. To restore the approx-imate geostrophi balane in the BRZ, a ompensating bari geopotentialforing must be added to the hydrostati tendeny before the BRZ is ap-plied. The algorithm here is as follows. The bari geopotential is presentedas a sum of the steady �eld � and transient omponent �0� = � + �0 : (5:4:5)The steady omponent is spei�ed as a solution of the ellipti equation (5.3.4)in the homogeneous ase, a = 0, nonhomogeneous boundary onditionsaxljk = Fu;3=2;j;k ; axrjk = Fu;Nlon�1=2;j;k ; aylik = Fv;i;3=2;k ; ayrik = Fv;i;Nlat�1=2;k ;(5:4:6)orresponding to the atual hydrostati tendeny Fv on the boundary. Theforing �Ĝ� is then added to the hydrostati tendeny with the resultingequations of motionut+�ti+1=2jk � ut��ti+1=2jk2�t = F̂ui+1=2jk � ( bGx�0)i+1=2jk ; (5:4:7a)vt+�tij+1=2k � vt��tij+1=2k2�t = F̂vij+1=2k � ( bGy�0)i+1=2jk ; (5:4:7b)where F̂u = (1� �)(Fu � bGx�) + �ut+�tb � ut��t2�t ; (5:4:7)F̂v = (1� �)(Fv � bGy�) + �vt+�tb � vt��t2�t : (5:4:7d)The transient omponent �0 is omputed at eah t from the ellipti equation(5.3.4) with A, orresponding to the e�etive tendenies (5.4.7), (5.4.7d),and with the homogeneous boundary onditions (5.4.3). Fores in roundbrakets in (5.4.7) -(5.4.7d) ompensate eah other, mainly, and the result-ing e�etive tendeny F̂v remains restrited in the BRZ. The major om-pensation is ahieved due to the appliation of nonhomogeneous boundaryonditions (5.4.6). These onditions supply the solution � with a long-waveomponent, whih ompensates the initial large Fv, restoring the approxi-mate geostrophi balane and providing the initial tendeny to be moderate.24



In this respet, substitution of Fv to Fv � Ĝ� gives an e�et, similar to thebakground surfae pressure �eld initialization from the oarser model. Con-sequently, the onditions (5.4.6) are rather essential, and the proper spei�-ation of the normal omponent of hydrostati tendeny Fv on the boundary� is of great signi�ane. Fortunately, the thermi and Coriolis forings, bothbeing reliably omputable from the temperature and wind distributions, aremajor ontributors to this tendeny.The temperature and ! tendenies are not a�eted by the desribed modi�-ation (5.4.5) - (5.4.7d), and remain (5.4.2), and (5.3.3), respetively.Though the desribed sheme with p̂0 in the role of lower model surfaeis more rigorous in omparison with the former one, its advantage is, thatit provides some lowering of numerial noise, if p̂0 is hosen appropriatelysmooth. Along with the appliation of p̂0, and when the bakground tem-perature T0(p) is introdued into onsideration, it is advantageous to applyone more noise-lowering modi�ation, whih onsists in the prior separationof the bakground thermi geopotential in (3.4.4b)'(x; y; p; t) = '0(p) + '0(x; y; p; t) : (5:4:8a)The mean omponent depends on the bakground temperature only'0(p) = gh(x; y) +Rd Z p0(x;y)p T0(p0)p0 dp0 ; (5:4:8b)where Rd is the gas onstant of the dry air, whereas the �utuative part is afuntion of the �utuative part of RT'0(x; y; p; t) = Z p0(x;y)p (RT )0(x; y; p0; t)p0 dp0= Z p0(x;y)p (RT )(x; y; p0; t)� RdT0(p0)p0 dp0 : (5:4:8)Canellation of '0 dependene on x; y ours due to the barometri formula(2.5.7). Due to this anellation, the hydrostati tendeny will not inludethe large bakground geopotential '0, whih will enhane smoothness of thenumerially omputed Fv. 25



When applied in the disrete sheme, the tendenies (5.2.4), (5.2.5) are mod-i�ed toFui+1=2jk = �" 1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !#i+1=2jk�( eGx'0�)i+1=2jk + (Pu +Ku)i+1=2jk ; (5:4:9a)Fvij+1=2k = �" 1hyy  ZhyxU yx + ÆyE + hym _�y��v���py !#ij+1=2k�( eGy'0�)ij+1=2k + (Pv +Kv)ij+1=2k ; (5:4:9b)where '0 is omputed from the reurrene (whih is a modi�ation of (5.1.17))'0ijNlev+1=2 = 0 ;'0�ijk = '0ijk+1=2 + 12(RT )0ijk�ijk ; (5:4:10)'0ijk�1=2 = '0�ijk + 12(RT )0ijk�ijk :Note that there is no linearization in onnetion with the separation (5.4.8a),and the equation for the full temperature remains (5.4.2).
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6 Expliit Eulerian time sheme6.1 Time shemeIntegration of equations (5.4.2a) � (5.4.2) (or (5.4.7a), (5.4.7b), (5.4.2),respetively, when the separation (5.4.5) is applied) is implemented as theexpliit-Eulerian leapfrog time-stepping sheme, whih is a parallel optionto the ordinary, hydrostati expliit-Eulerian integration sheme. Nonhydro-stati integration is swithed on with the logial key nhdyn. The integrationblok�sheme in the nonhydrostati regime is presented in Fig. 6.1.1.
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In the main routine GEMINI, subrou-tines COSTI, PGRAD, COEF, andNDUV are alled after general initial-ization. The subroutine COSTI ini-tializes oe�ients for fast 2D osine-Fourier transformation. The sub-routine PGRAD omputes p0, whihin the present realization is the ini-tial atual hydrostati surfae pres-sure, and prepares di�erene arrays��p, �xp. The subroutine COEFprepares oe�ients for the elliptisolver, inluding the mean temper-ature < T >k, mean pressure <p >k+1=2, and vertial eigenvetorsand eigenvalues of the mean elliptioperator. The routine NDUV heksthe balane (5.1.9) of the vertiallyintegrated mass and restores the bal-ane if there exists any initial depar-ture.The restoration algorithm is as follows. The imbalaned =  �p0�t + NlevXk=1 (r �V)k!(in) (6:1:1)27



is omputed and then a gradiental orretion is introdued into the veloity�eld: v(fin)k = v(in)k �r� ; (6:1:2)where � is the solution of the equationr � (p0r�) = d: (6:1:3)This equation is inverted iteratively with fast osine-Fourier transformation.The orreted veloity �eld (6.1.2) satis�es the balane ondition (5.1.9).The realulation of boundary pressure �eld p0 in PGRAD, oe�ients inCOEF and restoration of the mass balane with NDUV is applied repeatedlyafter eah nor time-step.In the main Eulerian time-stepping routine NHEULER, whih represents amodi�ation of the hydrostati subroutine EULER, the subroutine HSDYN(represents a modi�ation of DYN) is alled, whih omputes the hydrostatitendenies Fu; Fv; FT , and F! in aordane with (5.2.4), (5.2.5), (5.2.9), and(5.3.3b). Thereafter, the expliit horizontal spetral smoothing (optional)for u; v; ; T; and humidity q is arried out in HDIFF4 whih is followed byphysial parametrization in PHCALL. The expliit smoothing and physialparametrization are ommon with the hydrostati model. After that thereis another branhing: instead of the impliit smoothing with DIFFH, in thenonhydrostati ase a spetral smoothing is performed by subroutines HDIFand VDIF4. The subroutine HDIF represents an impliit di�usive spetral�lter of variable order. It makes use of the osine-Fourier transformation andats on the Fourier amplitude ~ ijk of the �eld  (in the role of  are u; v,and T 0) as follows( ~ ijk)(fin) = ~ (in)ijk1 + hk [(�xi + �yj )=(�xNlon=2 + �yNlat=2)℄qk : (6:1:4a)Here hk and qk are the level-dependent smoothing parameters, and �x; �yrepresent the eigenvalues of one-dimensional horizontal Laplaians (see (5.3.12),and Appendix C, (C.1)). The default value for hk is 1, though in the short-sale domain (dx; dy < 10 km) k must be inreased to avoid buoyany wavere�etion at the top. The parameter q varies with the height aording toqk = 2� exp[�(k � 1)2=k2h℄ ; (6:1:4b)28



the default value for kh is 5. Thus, in the majority of the atmosphere, qk = 2and the �lter has fourth order, whereas at the top, where qk ! 1, it steadilytransforms to a seond order �lter.The expliit vertial 4th order �lter VDIF4 performs smoothing (Mirandaand James 1992) finijk = (1� vk) inijk � vk ( ijk+2 +  ijk�2 � 4 ijk+1 � 4 ijk�1)in : (6:1:5a)The parameter vk is a pieewise linear funtion of the level indexvk = � vmin if k > kv,vmin + (vmax � vmin)kv�kkv�1 if k � kv. (6:1:5b)The default values of the parameters are kv = Nlev, vmin = 0.0, vkax =0.0625. Note that v = 0.0625 yields total elimination of the 2-grid-lengthwaves. TABLE 6.1.1The nonhydrostati tuning parameters inthe namelist NAMRUN and ommon COMNHDName Type Default Referenelnhdyn logial .false. NH swithlnor logial .false. Swithfor COEF and NDUVnor integer 50 Period in time-stepsfor COEF and NDUVlhdif logial .false. Swith for (6.1.4)rkh real 5.0 kh in (6.1.4b)lvdif4 logial .false. Swith for (6.1.5)nkv integer Nlev kv in (6.1.5b)gvmin real 0.0 vmin in (6.1.5b)gvmax real 0.0625 vmax in (6.1.5b)epsell real 5.e-4 " in (5.3.4e)Smoothing is followed by the boundary relaxation in BNDREL, whih isan ordinary boundary relaxation subroutine of the hydrostati HIRLAM.29



Thereafter, the hydrostati tendenies are passed to the subroutine ELLIPT,in whih the bari geopotential is omputed. Finally, NHEULER is �n-ished by the tendeny updating with nonhydrostati ontributions and bythe next time level prognosti �eld omputation. The tuning parameters ofthe nonhydrostati model are presented in Table 6.1. In the program theyare desribed in the ommon COMNHD.INC with default initialization inthe routine NAMEIN, and they an be initialized expliitly in the namelistNAMRUN.6.2 Numerial testsThe developed NH model is tested in two di�erent regimes: (A) nonhydro-stati foreast on low-resolution ("hydrostati") grids with realisti initialdata and with the physis inluded. These simulations should be onsideredas preliminary experiments, whih will be extensively ontinued after odeparallelization. (B) nonhydrostati simulations on high-resolution grids inthe adiabati regime without the physis, with arti�ial initial and boundarydata and model orography.Modeling is performed in the single-proessor environment on Pentium II.The time step �t is in all experiments hosen maximal for that partiularresolution. It is determined by the Courant-Friedrihs-Lewy stability ondi-tion �t < �x=(U + C) ; (6:2:1)where �x is the horizontal grid-step, U is the dominant horizontal wind-speed, and C is the typial phase speed of buoyany waves. As the externalwaves are exluded, C represents the internal buoyany wave phase speed.It is � 100 � 150 m/s at large sales but diminishes rapidly as the horizontalsale dereases. The typial time-step is 90 s at the 22 km resolution, 60s at the 11 km resolution, 50 s at the 2.2 km resolution (for U = 25m/s),and 30 s at the 1 km resolution (for U = 25 m/s). Presumably, at thehigh-resolution limit (�x;�y � 5 km), where C << U , the expliit shemereahes theoretial upper limit �x=U .A. Low�resolution tests with physisExperiments in the realisti onditions are arried through at the 22 and 11km resolutions. Integration is performed with the non-hydrostati extension30



(a) hydrostati model (b) nonhydrostati modelFig.6.2.1 6h foreast of surfae pressure with the expliit hydrostati (a)and nonhydrostati model (b). 194�140 grid, 31 levels, 22 km resolution.of HIRLAM 4.6.0, and thus, the physial pakage represents the physis ofversion 4.6.0.The purpose of 22-km-resolution experiments is to hek the in�uene of thesurfae pressure adjustment and to demonstrate, that this does not reduemodel quality in the hydrostati domain. Another purpose is to show that theplane approximation in the main part of ellipti operator does not in�uenemodel performane in the ase of moderate (square side less than 5000 km)integration area. Integration is performed with the 31 level, 194x140 points(4300 km � 3100 km) model. The time step is 90 s, and the default spetralsmoothing is applied. The results of 6h foreasts of the sea-level pressureare shown in Fig. 6.2.1, where the nonhydrostati model is ompared withthe expliit (20 s time-step), hydrostati Eulerian sheme. As seen fromthe example, results by NH model are lose to the orresponding results ofthe hydrostati sheme, though not idential. The omparison shows also,that there is no systemati distortion of nonhydrostati pressure foreast tothe edges of the area due to the quasi-plane approximation of the elliptiequation.The results of 24 hour foreast with the 11 km resolution on the 114�100points grid (1210 km�1100 km) for the sea-level pressure are shown in Fig.31



6.2.2, and for the vertial ross-setion of u-wind and temperature, in Fig.6.2.3. The time step in these experiments is 60 s. The foreasts by the NHmodel and semi-impliit Eulerian hydrostati model are ompared with theanalysis for the same time. The sea-level surfae pressure distributions (Fig.6.2.2) of hydrostati and nonhydrostati models show reasonable oinidene.Spetral smoothing in the NH model is redued in omparison with the de-fault standard to the values: hk = 0:5, vmin = 0, and vmax = 0.01. In spiteof that, the NH sheme produes smoother wind distribution in the middletroposphere than the hydrostati model (Fig. 6.2.3). At the same time, thenonhydrostati sheme exhibits wind anomaly at the top, whih is aused by

(a) hydrostati model (b) nonhydrostati model

() analysis
Fig. 6.2.2. 24 h foreast ofsurfae pressure with the hydro-stati model (a), and nonhydro-stati model (b); () - analysis forthe same time. Grid size 114�100points, 31 levels, 11 km resolution.
32



residual buoyany-wave re�etion on the upper boundary and whih showsthat the level of spetral smoothing is too low in the top region. However, thelose o-inidene of the two models during a rather ontinuous run showsthat the NH kernel does work and produes reliable results.

(a) hydrostati model (b) nonhydrostati model

() analysis
Fig. 6.2.3. The 24 h vertial rosssetions (along the meridian 14E onthe loal grid) of temperature andu-omponent of wind. (a) - hydro-stati model, (b) - nonhydrostatimodel, () - analysis. Grid size114�100 points, 31 levels, 11 kmresolution.

B. High�resolution adiabati testsHigh-resolution experimentation in the adiabati mode has been the maintool for model debugging and nonhydrostati kernel quality testing. Fol-lowing examples aim at demonstrating the quality of the model in atuallynonhydrostati onditions and learing up its high-resolution limit. Theseare experiments with arti�ial orography and initial state of the atmosphere.33
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by spetral �lters (6.1.4) and (6.1.5), is neessary at the top. Parameterhk an be varied in a broad interval. Its enlargement auses the inreaseof smoothing rate and redution of the wave amplitude, whereas redutionauses larger noise and spurious wave re�etion near the top, and fores atime step derease. Vertial di�usive smoothing (6.1.5) is the default one inall experiments, as the model is relatively insensitive to the small variationof vk , while the large variation is not supported by the expliit �lter.Experimentation with one-dimensional orography is a sensitive indiator ofmodel quality. Vertial osillations of the atmosphere are strongest in thisase, as the atmosphere an not �ow around the obstale, yet is fored toget over it. Both wave amplitudes and vertial extent of wave pattern areredued in the ase of two-dimensional obstale. An experiment with two-dimensional orography (6.2.1), ax = ay = 1 km, h0 = 200 m, s = 1.5 is shownin Fig. 6.2.8. As seen, vertial �ow disturbanes are restrited below the 800hPa level (though modeling is performed for the omplete vertial extent ofthe atmosphere).The general onlusion from the presented experiments is that the model isapable of nonhydrostati simulation. In omparison with the linear modelthere is some redution of wave amplitude and narrowing of wave wings dueto spetral di�usion (espeially manifested near the top of the atmosphere)but both the general wave pattern and the nonhydrostati lee-ward shift arereprodued authentially.As experimentation shows, the grid-point extent nbdpts of the BRZ mustbe inreased along with the resolution. In Fig. (6.2.4), and (6.2.5) with�x;�y = 2.2 km, bndpts = 6 and 8, respetively. In the high-resolution(0.4 km) experiment with two-dimensional hill in Fig. 6.2.8, this parameteris nbdpts = 8 (whih is yet not too extreme), while in the experiments withone�dimensional mountains with the same resolution (Figs. 6.2.6 and 6.2.7),bndpts = 20 and 16, respetively. The reason for the large grid-point ex-tent of the BRZ is the potential buoyany wave re�etion in narrower BRZs.The re�etion would be muh stronger in the ase of one-dimensional orog-raphy, as wave amplitudes are larger in this ase and they do not dereasesigni�antly during propagation from the mountain to the boundary. Thisexplains larger nbdpts in one-dimensional experiments. However, the situa-tion would be similar for a small-sale two-dimensional hill, plaed near theouter boundary. For pratial reason of rapidly inreasing omputationalost, the reasonable value of nbdpts is restrited within nbpts = 10, and even37



HIRLAM
0

200

400

600

800

1000
0 10 20 30 40 50 60 70 80

p,
 h

P
a

X, km

Analytial model
1000

800

600

400

200

0

0 10 20 30 40 50 60 70 80

p,
 h

P
a

X, kmFig. 6.2.7 Vertial veloity waves in the ase of the stationary �ow overone-dimensional isolated mountain. a = 1 km, h0 = 200 m, U = 15 m/s, N= 0.01 1/s, isoline step �w = 0.05 m/s. Grid 257�49, resolution 0.4 km;�t = 20 s; Nstep = 300; hk = 35, nbdpts = 16.in extreme situations it should not go beyond 15 - 20. This limitation sets, fora nonhydrostati model with the BRZ, the pratial upper limit of horizontalresolution at 0.5 - 1 km.7 ConlusionsIn this part the theoretial onept of the nonhydrostati, pressure-oordinate,anelasti model of atmospheri dynamis has been brought to the numerialode. Preliminary experimentation with the new ode has shown its abilityto produe reliable results both in hydrostati and nonhydrostati regions.It is premature, of ourse, to make far-reahing onlusions before thoroughand areful testing of the new routine. However, the model has shown itspotential in these preliminary runs, and some onlusions an be alreadymade.The present maximum horizontal resolution of the model is approximately0.5 km. This limit is set by gravity wave re�etion at the lateral boundaries.To ahieve the 0.5 km resolution without meaningful re�etion, the boundaryrelaxations zone depth must be 15 - 20 points. For higher resolutions, eitherthis depth should be inreased even more (whih is non-realisti), or lateralboundaries should be made transparent to buoyany waves.38



(a)
-10

-5

0

5

10

10 15 20 25 30 35 40 45 50

Y
, k

m

X, km

(b)
0

200

400

600

800

1000
10 15 20 25 30 35 40 45 50

p,
 h

P
a

X, km()
-10

-5

0

5

10

10 15 20 25 30 35 40 45 50

Y
, k

m

X, km

(d)
0

200

400

600

800

1000
10 15 20 25 30 35 40 45 50

p,
 h

P
a

X, kmFig. 6.2.8 Distributions of u and w omponents of wind at the stationary�ow over the irular hill. ax = ay = 1 km, h0 = 200 m, U = 15 m/s, N= 0.005 1/s. Grid 129�97, resolution 0.4 km, �t = 20 s, Nstep = 300;u; v; T : hk = 20, nbdpts = 8. Isoline interval 0.01 m/s.(a) � u at the level p = 860 hPa, (b) � u at the vertial plane y = 0, () � wat the level p = 860 hPa, (d) � w at the vertial plane y = 0.
39



The model is eonomial in terms of vertial resolution requirements. Thestandard 31-level eta-grid provides su�ient resolution for adiabati dynam-is at all horizontal sales. However, muh higher vertial resolution may beneeded by diabati proesses. So far, tests with the �ner vertial grid aremissing.Due to the appliation of surfae pressure adjustment, the aessible timestep is rather large and makes the model appliable in high-resolution simu-lations already in its present expliit�mode realization. In the high-resolutiondomain (�x < 5 km), the time step reahes the theoretial upper limit andmost likely an not be signi�antly inreased with the help of a semi�impliitsheme. At larger sales, where the main limiting fator is the internal buoy-any wave speed, the impliit sheme would approximately double the presenttime-step.The pratial advantage of the model is that it supports instant inlusionof existing physis. Still, at �ner sales, beginning with 11 km resolution,physial parametrization should be revised.AknowledgementsThis investigation has the �nanial support of the EstonianSiene Foundation under Grant 2624.A. Männik has the grant for PhD studies o�ered by the VäisäläFoundation at the Finnish Aademy of Sienes.8 ReferenesHaltiner, G.J., Williams, R.T., 1980:Numerial Predition and Dynami Meteorol-ogy. John Wiley and Sons, 477 p.Källén, E. (Editior), 1996: HIRLAM Doumentation Manual.Miller, M. J., Peare, R. P., 1974: A three-dimensional primitive equation modelof umulonimbus onvetion. Q. J. R. Meteorol. So., 100, 133�154Miranda, P. M. A. and James, I. N. 1992 Non-linear three-dimensional e�ets ongravity-wave drag: splitting �ow and breaking waves. Q. J. R. Meteorol. So.,118, 1057�1081Press, H.W., Teukolsky, S.A., Vettering, W.T., Flannery, B.P., 1992: NumerialReipes in FORTRAN, Cambridge University Press, 961 p.Rõõm, R., 1997: Nonhydrostati Atmospheri Dynamis in Pressure-Related Co-40
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Appendix APressure gradient Ĝ and divergene Ĝ+ in the disrete modelIntegration of divergene (5.1.12) givesZ dV mĜ+ � v �Xijk �x�y(��phxahyĜ+ � v)ijk= �x�yXijk hÆx �hyx��pxu���� �hyu�Æxpx�+Æy �hxy��pyv���� �hxv�Æypy�iijk : (A:1)Due to the full di�erenes in the square brakets, this integral transforms to a sur-fae integral (disappears for �nite u and v). Thus, (5.1.12) de�nes the divergene,indeed.To get the alternative form (5.1.12'), the identity[Æ�(s�v)℄i = (sÆ�v)i + (vÆ�s�)i (A:2)is required. With the help of this identity, the �rst term in the �rst square braketof (5.1.12) an be modi�edÆx �hyx��pxu� = ��pÆx(hyxu) + hyxuÆx��px ;41



whereas the seond term (with � in the role of �) an be presented�� �hyxu�Æxpx� = hyxuÆx��px + hyx(��u)Æxpx� :Analogial identities hold for the seond square braket. As a result, (5.1.12')follows.To derive the operator Ĝ skew onjugate to Ĝ+, the integral relationship (4.1.16)has to be used, whih for the �-omponent isXijk (hxhy��p'Ĝ+x u)ijk = �Xijk (hxxhyx��pxuĜx')i+1=2jk : (A:3)Using de�nition (5.1.12), left side here isXijk (hxhy��p'Ĝ+x u)ijk =Xijk 'ijk hÆx �hyx��pxu���� �hyxu�Æxpx�iijk (A:4)To the �rst term in the sum an identity is appliedXi ai(Æxb)i = �Xi bi+1=2(Æxa)i+1=2 ;where �nite funtions are assumed. Further, this identity is denoted shortly asai(Æxb)i � �bi+1=2(Æxa)i+1=2 : (A:5)Thus "�" means "equivalent at the summation over �nite funtions". Analogialidentity is applied to the seond term in (A.4)ak(��b)k � �bk+1=2(��a)k+1=2 ; (A:6)along with (a�)k+1=2(b)k+1=2 � (a)k(b�)k : (A:7)This results in the formula Xijk (hxhy��p'Ĝ+x u)ijk =�Xijk (hxxhyx��px)i+1=2jkui+1=2jk " 1hxx Æx'� 1hxx��px (Æxp)��'x�#i+1=2jk ;from whih presentation (5.1.13) follows for Ĝx and Ĝy.42



In further appliations, the following equivalenes (whih proeed from the de�ni-tions of Ĝ and Ĝ+) are also useful:(hxhy��p'Ĝ+x u)ijk � �(hxxhyx��pxuĜx')i+1=2jk ; (A:8a)(hxhy��p'Ĝ+y v)ijk � �(hxyhyy��pyvĜy')ij+1=2k : (A:8b)The �rst one represents (A.3), the seond is its y-oordinate analogue.In a small domain, when j tan �j < 1, divergene (5.1.12) an be simpli�ed, on-sidering the metrial oe�ients hx = os � and hy = 1 onstants(Ĝ+ � v)ijk = " 1hx Æx(u)� (��u)Æxpx�hx��p + 1hy Æy(v)� (��v)Æypy�hy��p #ijk ; (A:8)whih means a plane approximation for Ĝ+. This approximation was applied ininitial versions of the nonhydrostati model (Rõõm and Männik 1999). Yet itdoes not yield muh simpli�ation in omparison with more preise representation(5.1.12') and is not applied in the reent versions.Appendix BEnergetis in the disrete modelTotal energy of the disrete model isE = �x�yg Xijk Eijk ; (B:1)where Eijk is the energy, assoiated with the ell with indexes fi; j; kg:Eijk = Evijk +Ewijk +ET ijk ;Evijk = 12 ��hxxhyx��pxu2�i+1=2jk + �hxyhyy��pyv2�ij+1=2k�Ewijk = 12 �hxhy��p� (ws)22 �ijk+1=2 ;ET ijk = [hxhy(��p)pT ℄ijk :Applying to Eijk di�erentiation in time yields with the use of equations (5.2.1),(5.2.2), (5.2.3), and (5.3.3) (dissipative P - and K-terms are omitted)�Eijk�t = bzijk � bEijk � bTijk � bwijk + b'ijk + b�ijk (B:2)43



wherebzijk = �hyxUZhxyV xy�i+1=2jk ��hxyV ZhyxUyx�ij+1=2k (B:3a)bEijk = hhyx �UÆxE + uhxm _�x��u��ii+1=2jk+ hhxy �V ÆyE + vhym _�y��v��iij+1=2k (B:3b)bTijk = (hxhy��ppâT )ijk= np[hyUÆxT x + hxV ÆyT y + hxhy(m _�)��T �℄oijk (B:3)bwijk = [hxhy��p�ws(âws)℄ijk+1=2 =[hyU�Æxwsx + hxV �Æywsy + hxhym _����ws�℄ijk+1=2 (B:3d)b'ijk = ��hxxhyxU eGx'��i+1=2jk � �hxyhyyV eGy'��ij+1=2k+(hxhy��p)ijk�RT!p �ijk (B:3e)b�ijk = ��hxxhyxUĜx��i+1=2jk � �hxyhyyV Ĝy��ij+1=2k+�hxhy wpH�����ijk+1=2 (B:3f)For energy onservation, the right hand terms in (B.2) should at the summationeither transform to surfae integrals as full di�erenes or mutually annihilate inneighboring nodes.In (B.3a), an equivalene holds (equivalene "�" is de�ned in Appendix A) for the�rst term �hyxUZhxyV xy�i+1=2jk � �hyxUyZhxyV x�i+1=2j+1=2kand analogous equivalene holds for the seond term. As a result, (B.3a) transformsto a surfae integral.In (B.3b), equivalenes are valid�hyxuhxm _�x��u��i+1=2jk � �hyxhxm _�xu���u�i+1=2jk+1=2 =44



�hyxhxm _�x�� u22 �i+1=2jk+1=2 � "hxhym _���  1hy hyxu22 x!#ijk+1=2 :Analogially,�hxyvhym _�y��v��ij+1=2k � "hxhym _���  1hxhxy v22 y!#ijk+1=2 :Thus,bEijk � �hyxUÆxE�i+1=2jk + �hxyV ÆyE�ij+1=2k + (hxhym _���E)ijk+1=2 ��hyxUÆxEx + hxyV ÆyEy + hxhym _���E��ijk :Addition to this relationship of the identity 0 = (E D)ijk, whereDijk � hÆx �hyxU�+ Æy �hxyV �+�� (hxhym _�)iijk = 0 (B:4)is equal to zero due to (5.1.8), results inbEijk � hÆx �hyxExU�+ Æy �hxyEyV �+�� �hxhyE�m _��iijk :The disrete divergene of a vetor on the right side will give at the summation asurfae integral.Analogial addition of identity 0 = pTD to (B.3) yieldsbTijk = hÆx �hyxpT xU�+ Æy �hxypT yV �+�� �hxhypT �m _��iijk :Quite similar is also transformation of (B.3d) to a divergent form. First, with thehelp of (A.7) bwijk �(U�hxywsxÆxws)i+1=2jk+1=2+(V �hyxwsyÆyws)ij+1=2k+1=2+(hxhym _��ws���ws)ijk= �U�hxyÆx (ws)22 �i+1=2jk+1=2+�V �hyxÆy (ws)22 �ij+1=2k+1=2+�hxhym _���� (ws)22 �ijk�  UhxyÆx (ws)2�2 !i+1=2jk+ V hyxÆy (ws)2�2 !ij+1=2k+ hxhym _��� (ws)2�2 !ijk+1=2 :45



A full divergene results from this relationship after addition of identity 0 =D(ws)2�=2.The relation (B.3e) an be used for spei�ation of disrete representation of theenergy onversion term RT!=p. First, (B3.e) is presented in the formb'ijk = b1ijk + b2ijk ;whereb1ijk = ��hxxhyxUĜx'��i+1=2jk��hxyhyyV Ĝy'��ij+1=2k+(hxhy��p)ijk�RT!p �ijkorresponds to the exat gradient Ĝ, andb2ijk = ��hxxhyxU( eGx � Ĝx)'��i+1=2jk � �hyxhyyV ( eGy � Ĝy)'��ij+1=2k =� hhyxu�Æxp��'�x� � Æxp���'x�ii+1=2jk�hhxyv �Æyp��'�y� � Æyp���'y�iij+1=2krepresents a modi�ation due to approximation Ĝ ! eG.Appliation of the equivalenes (A.8) to b1ijk results inb1ijk � �hxhy(��p)�'Ĝ+ � v + RT!p ��ijk ;whih an be presented with the help of (5.1.14) asb1ijk � �hxhy ��'���! + (��p)RT!p ��ijk :Using equivalenes (A.7) and (A.5), the �rst term an be transformed further:� (hxhy'���!)ijk � � (hxhy'��!�)ijk+1=2 � (hxhy!���')ijk :Thus, b1ijk � �hxhy �!���'+ (��p)RT!p ��ijk :The term b2ijk an be transformed, applying to the �rst terms in the round braketsequivalene (A.7) twie in respet of �:b2ijk � � hhyx �u�Æxp� � uÆxp����'xii+1=2jk�hhxy �v�Æyp� � vÆyp����'yiij+1=2k46



= �"hyx4 �� (Æxp��u)��'x#i+1=2jk � "hxy4 �� (Æyp��v)��'y#ij+1=2k� �14 h�hyx�� (Æxp��u)x + hxy�� (Æyp��v)y���'iijk :Thus, b'ijk � �hxhy �!���'+ (��p)RT!p ��ijk�14 h�hyx�� (Æxp��u)x + hxy�� (Æyp��v)y���'iijk :This expression annot be simpli�ed further, and for energy onservation the rightside should vanish to give �RT!p �ijk = ��
��'��p�ijk (B:5a)where 
ijk = !�ijk � "hyx�� (Æxp��u)x + hxy�� (Æyp��v)y4hyhx #ijk : (B:5b)Finally, with the help of (A.8) and (5.2.12), an equivalene follows for (B.3f):b�ijk � (hxhy)ij n[�(��p)Ĝ+ � v℄ijk � (!���)ijk+1=2o ;whih an be further transformed with the help of (A.7) tob�ijk � (hxhy���p)ijk�Ĝ+ � v + ��!��p�ijk :Due to (5.1.14), expression in the large round brakets is zero.Thus, we have shown that energy is onserved in the employed disretizationsheme. A single non-trivial additional relationship, required for energy onser-vation, is the expression (B.5) for the energy-onversion term.
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Appendix COrthogonal basesHorizontal bases X and YFor X and Y the disrete normalized osine bases are employed,Xiq = 8>>><>>>: 1p2(Nlon�1) ; q = 12 os[�(i�1)(q�1)=(Nlon�1)℄p2(Nlon�1) ; q = 2; :::Nlon� 1(�1)i�1p2(Nlon�1) ; q = Nlon (C:1a)
Yjr = 8>>><>>>: 1p2(Nlat�1) ; r = 12 os[�(j�1)(r�1)=(Nlat�1)℄p2(Nlat�1) ; r = 2; :::Nlat � 1(�1)j�1p2(Nlat�1) :r = Nlat (C:1b)They are solutions of the eigen-problems (see (5.3.12))(LxXq) = ��xqXq ; (LyYr) = ��yrYr ;where and �xq , �yr are�xq = 4hhxi2�x2 sin2��2 q � 1Nlon� 1� �yr = 4hhyi2�y2 sin2��2 r � 1Nlat� 1� : (C:1)Two suessive osine transformations perform the identity transformation: XX = I,Y Y = I, whih means that the inverse transformations oinide with the direttransformations X�1 = X ; Y �1 = Y : (C:2)Vertial basis.The eigenvalue-problem for vertial Laplaian (see (5.3.12)) isXk0 (L�)kk0Ek0s = ���sEks ; (C:3)with L�, presented by (5.3.9). With the help of transformationEks = eks=ph�pis; (C:4)48



The equation (C.3) an be presented in the symmetrial formk+1Xk0=k�1Mk;k0ek0s = ���seks ; k; s = 1; :::; Nlev ; (C:5)where M is a symmetrial tridiagonal matrixMkk = ��k�1=2 + �k+1=2h�pik ; Mk;k+1 = Mk+1;k = �k+1=2(h�pikh�pik+1)1=2 ;(C:6a)�k+1=2 = hpi2k+1=2hH�i2k+1=2h�pi�k+1=2 ; (C:6b)for k = 1; ::::; Nlon � 1,and MNlev;Nlev = �MNlev�1;Nlev : (C:6)This is a negative semi-de�nite matrix: it has one (with index s = 1 by agreement)null�eigenvalue ��1 = 0with the orresponding eigenvetoreks = ph�pis;where  is onstant, whereas other eigenvalues are real and positive ��s > 0,s = 2; :::; Nlon.Inverse to e is the matrix e�1kl = elkand thus, inverse of E in aordane with (C.4) isE�1ks =ph�pikeks : (C:7)Exept the �rst one, eigenvetors and eigenvalues must be solved from (C.3) nu-merially. There exist multiple reipes and ready free-ware for omputation ofeigenvetors and eigenvalues of symmetri, tri-diagonal, negative/semi-negativematrixes. In the NH HIRLAM the routine tqli from Reipes (Press et al, 1992)is applied. 49



Appendix DIterative algorithm for lateral boundary fores fThe derivation of iterative equations (5.3.15), (5.3.16) is similar for all four groupsof oe�ients ~fxl(l), ~fxr(l), ~fyl(l), ~fyr(l), and we will follow in detail the derivationof ~fxl(l) from the �rst ondition in (5.3.11e). Applying to this relationship theFourier transformation in x and � oordinates, Y �1E�1, and using (5.3.13) forpresentation of �, we get 1hhxi�xXq (X2q �X1q)~�(l)qrs = ~axlrs : (D:1)Let us present ~� in (5.3.14) with expliitly exposed fxl(l):~�(l)qrs = � x ~fxl(l)Xq;1�xq + �yr + ��s + ~�xl(l)qrs ; (D:2)where the last term represents the remaining part of (5.3.14), inluding all otherboundary oe�ients fxr(l), fyl(l), fyr(l), and ~(l). Substitution of (D.2) into (D.1)and making use of x = 2=(hhxi�x) results in~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�xl(l)qrs ! ; (D:3)where sxrs = � 2(hhxi�x)2 Xq (X2q �X1q)Xq;1�xq + �yr + ��s :The expliit presentation of sxrs with the help of (C.1a) yields (5.3.17a).The equation (D.3) inludes unknown oe�ients f and  also on the right side, andthus, for the spei�ation of boundary oe�ients, similar equations are needed forf on other lateral walls, and for , and the arising system should be onsidered andsolved in orpore. However, the seond, summation term on the right hand of (D.3)is small for smooth �xl(l), whih assumes smoothness of the volume-distributedsoure Av and boundary gradients a. In Fourier terms, smoothness of � meansthat the oe�ients ~�xl(l) are essentially di�erent from zero for small indexes qonly(1). For very small q; r; s whih assume a very narrow spetrum ~a of normal1It is worth of pointing out, that for small q, the �rst term in the right hand sumapproximates the derivative of the ontinuous osine at the zero, whih is the ontinuoussine at the zero, whih is zero. 50



gradients (i.e., extreme smoothness of a), and for Nlon;Nlat ! 1, whih meansontinuous limit of the model, one hassxrs; ! 1 ; X2q �X1qhhxi�x ! 0 ;and, as a onsequene, ~fxl(l) ! ~axlrs ; (D:4)whih yields the �rst relationship in (5.3.7).For smooth Av and a, but for �nite Nlon;Nlat;Nlev, the seond term in (D.3) isstill small, and it an be approximated in the iterative sheme from the previousiteration (l � 1): ~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�xl(l�1)qrs ! : (D:5)Presenting in (D.4) ~fxl(l) = ~fxl(l�1) + Æ ~fxl(l) ; (D:6)we obtain Æ ~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�(l�1)qrs ! : (D:7)(Note the full oe�ient of the previous iteration ~�(l�1) on the right side). Thisequation is the equation (5.3.16a), written in a di�erent way.The �rst iterative solution of (D.6) - (D.7) is~fxlrs(1) = ~axlrs=sxrs ; (D:8)whih already takes into aount the �nite resolution of the model. As 0 < sxrs; syqs< 1 for �nite Nlon;Nlat, the spetral oe�ients (D.8) are larger than preditedby the smooth approximation (D.4).
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