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Introduction

Part IT continues the description of the numerical model of atmospheric dy-
namics, designed as the nonhydrostatic extension to the hydrostatic kernel
of HIRLAM. The theoretical concept, initiated in Part I, will be brought to
numerical codes. The anelastic hybrid—coordinate model is formulated both
in the continuous and discrete representations, and the numerical code with
the explicit-Eulerian time stepping scheme is implemented in the HIRLAM
environment. The paper ends with numerical examples, demonstrating the
capabilities of the model.

The numerical code is based on the former results, obtained by Xue and
Thorpe (1991), Miranda and James (1992), and, with respect to pressure
adjustment, Room (1997). However, there are several modifications in com-
parison with those papers. Instead of the sigma coordinates, the present
model makes use of the more general hybrid coordinates of HIRLAM. Also,
the whole vertical extent of the atmosphere is incorporated, and there is
no artificial upper boundary in the present approach. However, the most
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fundamental difference is in the level and mode of simplifications. In the
above-cited papers the Miller-Pearce variant (Miller and Pearce, 1974) is ap-
plied, which makes use of the background separation and linearization of
the energy conversion term. We make use of the more general White model
(White, 1989) without linearization in that term. At the same time, some
linearization is introduced at surface pressure handling, which is needed for
surface pressure adjustment.

In the development of numerical code, the main attention is paid to the cre-
ation of the elliptic solver for the baric geopotential equation. It is different
from the hydrostatic semi-implicit scheme which makes use of the Helmholtz
equation. In this case we have to deal with the Poisson equation. The main
difference is that the Poisson equation does not have any large diagonal part
like the Helmholtz equation does, and, as a result, the iterative scheme of the
latter is not applicable here. The present solution algorithm is based on the
scheme, initiated by Xue and Thorpe (1991), and further elaborated for three-
dimensional domain by Miranda and James (1992). The essential quality of
that scheme is the application of fast discrete Fourier transformation in hori-
zontal with consequent numerical inversion of one-dimensional Laplacians for
each Fourier mode in vertical. The lateral boundary—condition treatment in
their approach follows Williams (1969). In this approach we have gone one
step further, and apply an orthogonal basis in all three coordinates, including
the vertical hybrid coordinate. The nonhomogeneous boundary conditions
are handled by introduction of singular sources on lateral and bottom bound-
aries. Due to such a modification, the developed inversion algorithm becomes
a rather universal tool for solution of Poisson equations in horizontally rect-
angular domains with general boundary conditions. At the same time, the
scheme is not more time consuming than the original Xue-Thorpe approach.

The hybrid-coordinate representation of the nonhydrostatic model follows
the notation of the hydrostatic HIRLAM, presented in the Manual (Kéllén
1996). A few exceptions are:

(i) instead of 77, the notation v will be used for the horizontal wind velocity.

(ii) instead of R,T,, notation RT (with the "moist" R and true T) will be
used; s = R/c, corresponds to moist air.

(iii) Special notation m = 0p/0n is used.



(iv) Energy conservation, disregarded by the hydrostatic scheme in some mi-
nor terms of adiabatic dynamics, is restored following Haltiner and Williams
(1980).

The section and formula numbering is continued from Part I. The first section

in this part has number 4; "(3.4.1)" represents reference to the formula (3.4.1)
in section 3 of Part I, etc.

4 Continuous anelastic hybrid-coordinate model

4.1 Diagnostics

The vertical n-coordinate 0 < n < 1 is defined via mapping n — p:

p=AMm) + Bn)p, - (4.1.1)

where Py (x,t) is a given (fixed or externally driven) background surface pres-
sure field, and A(n) > 0, B(n) > 0 are the appropriate weights, which
satisfy boundary conditions

A0)=A1)=0, B(0)=0, B(1)=1. (4.1.2)

Thus, the vertical domain in the pressure coordinates is (3.4.1), and n = 1
corresponds to p = p,.

The horizontal domain is a part of the globe with spherical coordinates {\, 6}
A< A<A, -0<0<0O. (4.1.3)

However, the horizontal coordinates, used at the definition of gradient oper-
ators, are x = a\ and y = afl , with a as the mean radius of the Earth. the
physical differences along the parallel and meridian are

dX =acosfd\ = hydr dY = adf = hydy , (4.1.4)

where
hy =cos@, h,=1

are the metrical coefficients. Thus, the curvilinear hybrid coordinates are
{z ,y,n }, whereas the velocity components are v = h,dz/dt, v = h,dy/dt,

n = dn/dt.



The hybrid-coordinate density m is related to the pressure-coordinate density

n via mdn = ndp, and for the anelastic model with n — 1
0
m=2 (4.1.5)
on

In accordance with the definition (4.1.1), m depends on time (via p,), and
the continuity equation for it is

om anm

where the 7-coordinate "horizontal" divergence of vector a = {a,, a,} is

1 Ohya,  Ohya,
ra= . 4.1.
v-a hyh, < oz * Jy ) (4.1.7)
From the definition (4.1.1)
. Ipy _
w=mn+ B(n) E"'V'Vpo : (4.1.8)
or alternatively
. dp ,
w:mn—i-v-Vp-i-E. (4.1.8")

Condition (2.4.3) and (3.4.2") give with the help of (4.1.8) boundary condi-
tions for n:

n=0 a n=0 and n=1. (4.1.9)
As a consequence, integration of (4.1.6) in vertical gives
e 1
o +/ V- (mv)dy =0, (4.1.10)
ot 0

whereas integration of (4.1.6) in the the domain [n, 1] yields
on 1
mn = (1— B)% +/ V- (mv)dn . (4.1.11)
n

Using (4.1.8’), the continuity equation (4.1.6) can be presented in the form

Low g (4.1.12)

G+-v+— =
m On
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where G is the n-coordinate presentation of the pressure-coordinate "hori-
zontal" divergence

A 1 1 .
G+'VEvp'V:—V'(mV)——M : (4.1.13)

which can be simplified to
Gtv=V.v——— Vp, (4.1.13)

where the "horizontal" hybrid—coordinate gradient is

w10 10

V:l h—xax"—l h_ya_y

(4.1.14)

Thus, (4.1.12) is the hybrid-coordinate presentation of the anelastic condition
(3.2.5).

The "horizontal" pressure-coordinate gradient is presented as

R 10
Gp=V,p=Vp— Ea—ivp. (4.1.15)

The operators G and G+ are skew symmetric conjugates of each other:

/ dVmeG*t-a = —/ dVma - Gy (4.1.16)
v v

for optional finite a and ¢, where dV' = h,h,dxdydn , and V is the domain of
integration. This relationship is useful in the discrete case for establishment
of proper symmetry of the operators G and G*.



4.2 Dynamics

In the Eulerian presentation the equations of motion (3.2.3) - (3.2.4) are,
after separation of momentum advection terms into the gradient, solenoidal
and vertical parts,

ou ~
ov ~
—=F, - 4.2.2
R -Gy (422
oT
—=F 4.2.
at T s ( 3)
where @m and @y are the components of G:
Ag= L (99) _ 1 (00 10p0¢
Gop = hy <8x>p  he <6m m Ox 677>n’ (4.2.4a)
~ 1 agb) 1 <8q§ 1 8p8q5>
Go=—|—) =—|——-————] . 4.2.4b
v hy, <6y , Ny dy mayadn . ( )

F,, F, and Fr are the hydrostatic tendencies, which are those of the hydro-
static HIRLAM (with an exception that ¢ is the thermic geopotential rather
than the hydrostatic one):

Ou 1 [__Olnp O ]
F, = —nN— — — |RT — FE P K, 4.2.
Ov 1 [__9dlnp 0 1
F, = % RT 9 o+ B +P+ K, (42
(f+&u "o " _R o +ay(<,0+ )_+ + (4.2.6)

FT:_____——fy—n+T+PT+KT- (4.2.7)

1 Ohyv  Ohgzu
£ = hohy ( o oy ) (4.2.8)
E= %(uQ +0?) (4.2.9)



and P,, K, represent the tendencies from physical parametrization and hor-
izontal diffusion (the sum P, + K, corresponds to A, in (3.1.6) - (3.1.7)).

The thermic geopotential (3.4.4b) is in the hybrid coordinates

mdn'

1
g0=gh+/ RT PR (4.2.10)
n

The vertical momentum equation (3.2.2), which is required for the deduction
of the ¢-equation, is in hybrid coordinates (and in the Eulerian presentation)

Ow p? 0¢
— =F, — — 4.2.11
ot Y mH?0n ( )

where p
F, :Aw—v-w_ﬁa—j;. (4.2.12)

Differentiation of the continuity equation (4.1.12) in time, and elimination
of velocity tendencies with the help of (4.2.1), (4.2.2) and (4.2.11), yields the
n-coordinate form of elliptic equation (3.2.7):

A 10 [ p* 0¢
Lo=G" G+ —— — | = A" 4.2.13
¢ ¢+m8n (mH2877> ’ ( )
where the volume-distributed source function is
. 1 OF,
A= Gt oF, 4 LT (4.2.13b)
m O0n
and F, = {F,, F,}.
The boundary conditions (3.3.4), (3.4.11), and (3.3.6) become
8¢>
) =ar, (4.2.14)
<8n r
1 R 1 82]3
\% / (Go)mdn =V / F,mdn — >, (4.2.15)
1 1
/ |p|mdn < oo, if / |Almdn < . (4.2.16)
0 0

They define the structure of the boundary-distributed singular source func-
tion, which is the same as (3.3.7)

Ab(x,n,t) = y(x,1)6(n, 1) + f(xr,n,1)d(x, xp) . (4.2.17)



5 Discrete anelastic hybrid-coordinate model

Discretization takes advantage of the hydrostatic HIRLAM framework to full
extent. Some minor changes are introduced into computation of the discrete
thermic geopotential with the aim to increase smoothness of the source A,
which is accompanied with alterations in energy conversion term. However,
all these changes are not too extensive.

The grid is the classical staggered (Arakawa C) grid. The surfaces i =
1/2, Nlon +1/2, and j = 1/2, Nlat + 1/2 are lateral boundaries, &k = 1/2
corresponds to the level n = 0 (outer space) and k = Nlev + 1/2 corresponds
ton = 1 (model surface p = ). It is convenient to consider each small cube
with the center at {4, j,k} and facets at {i £ 1/2,7,k}, {i,7 £1/2,k}, and
{i,j,k +1/2}, as an elementary pseudo-particle. The discrete scalar fields:
temperature T, specific humidity ¢, etc., and baric geopotential ¢ are located
in particle centers:
Tijka ¢ijk; Qijk,
whereas the components of vectors u, v, w (and mn, w), determining in-
and outflows on the particle boundaries, are located in the centers of particle
facets:
Wit1/2jk,  Vij4+1/2k>  Wijkt+1/2 5 (M))ijk+1/2 -

Also, the discrete pressure is located in the centers of horizontal facets:
Pijk+1/2,
and, consequently, the pressure difference belongs to scalars:
(Anp)ijk = DPijk+1/2 — Pijk—1/2 -

Standard notation is used for averaging and difference operators, and for
finite differences:

— A+ AL —t A+ A
A= ! + ) Az+1/2 =—" )
2 2
Appio — Aiciye A — A
0cA) = , (0:A = -,
O =g T, O = g

(AﬁA)l = Al+1/2 - Al71/2 ) (AfA)lJrl/Q = Al+1 — A,

where ¢ is for z, y, or 7.



Horizontal averaging over the kth n-level is denoted as

1
(o) = NlonNlat Zaijk ’

ij
5.1 Diagnostics

The pressure is

Pijkr1/2 = Aky172 + Biy12Doij (5.1.1)

where
Agvig = Alksry2) » Brpje = B(kviy2) (5.1.2a)
Aig = Aniewirz =0, Bijg =0, Bniewr12=1. (5.1.2b)

The coordinate differences are Ax = aAN, Ay = aAf, An. The physical
differences along the horizontal coordinate axes are

AXij = hyijAx . AYj; = hyijAy . (5.1.3)
The horizontal divergence, a finite-difference analogue of (4.1.7), is

1 —z —
ca)i, = —— 1.4
(V- a)ise = gy [ an) + ()] (5.1.4)

whereas the horizontal gradient of a scalar a;;; has components

1 Ait1jk — Qijk
Va),l; g = 0,0); go= 9t WP , 5.1.5a
[( ) ] 1724k hmi-l—l/?j( ) 1723k hm‘+1/2jAfE ( )
1 Aij1k — Dijk
Va),li: =——(d,a);; — ik wx 5.1.5b
[( )y] j+1/2k hyij+1/2( y ) j+1/2k hyz’j+1/2Ay ( )

In these difference formulae we have maintained the original, formal, two-
dimensional structure of h, and h,, used in HIRLAM (both for better co-
incidence with the HIRLAM formalism and for larger symmetry), though
actually h,;; = hy; depends on the meridional index only, whereas h,;; = 1.

The auxiliary vector V. = {U;11/2jk, Vij41 26} is:

S e—

Uii12jk = (A,,p u)z’—l—l/?jk o Vigriyoe = (Anpyu)iﬁl/% . (5.1.6)



The discrete analogue of (4.1.11) will then be

‘ 8]_) Nlev
(mn)ijr+1/2 = (1 — Bk+1/2)8—t0 + ) (V- V)i (5.1.7)
k'=k+1

from which the recurrence formula (the discrete form of (4.1.6)) follows

ODoij

(mﬁ)ijk,l/Q = (mﬁ)iij/Q + (V : V)l]k + ABk 6t s (518@)
(mn)ijnievt172 =0 . (5.1.80)
The vertically integrated mass balance condition (4.1.10) becomes
Do +J§(V-V)~ =0 (5.1.9)
It ijk = . .
k=1
The formula (4.1.8") for omega-velocity is
: — Opij
Wijk+1/2 = (M) ijrt172 + (1 VD)ijkt1/2 + %1/2 : (5.1.10)
where we define
1 — r = y
V- Vphijerie = o (By @0p + BT, ) S (511
(v D)ijht1/2 () U u0,p + hy 0"0yp o ( )

For the operator G+ a discrete presentation follows from these definitions

. .V = A (V7 - g
(G*-v)ijr = V-V 2 (V" V)i
(Ayp)ijn
1 —r—0 e
[ — — Ul
(Ayphyhy )ik [&E <hy AP u) By (hy worp )Lgk
1 TR =i Y
+ m {(Sy (hx Anp U) — An (hx v 5yp >]z]k . (5.1.12)
This formula can be simplified (Appendix A) to
—z, . .. ——————Yn
R 1 Y hy (Ayu)d,p —y he' (A0)6,p
G v)ijp = 77— |02(hy u) — ——— + 0y (hs v) — e ;
( )Jk (hxhy)z] [ ( Yy ) Anp y( ) Anp o

(5.1.12")
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which is a discrete analogue for (4.1.13). The conjugated to (5.1.12) gradient
is (for details see Appendix A)

_ —
A 1 0xp) A
(Gat)it1/2k = = 0z — (pA)TZEd) : (5.1.13a)
ToL nP dit1/25k
L[ A
A p
(Gy@)ij41/2k = ™ Oy — ZJATZ (5.1.13b)
v L P ik

The discrete analogue of (4.1.12), consistent with (5.1.8) - (5.1.12), is

(G*-v+%> =0. (5.1.14)
Ayp ijk

The thermic geopotential (4.2.10) is

Nlev

k'=k

where

ijk = (AgInp)ijr =Inpijpiie —Inpijg_1/2, k#1, and o =2In2 .
(5.1.16)
The thermic geopotential can be evaluated also from the recurrence

PijNlev+1/2 = ghz’j ,
— 1
Pijk = Pight1/2 + g(RT)ijkaijk ; (5.1.17)

. 1
Pijk—1)2 = SO?jk + i(RT)ijkaijk :

Coefficients «;j;;, are different from those, employed in the common hydro-
static HIRLAM, and thus, the thermic geopotential diagnostics is different.
Such a modification is required for reduction of numerical noise at the com-
putation of the divergence GT-(G), which constitutes a major contribution
to the source A" in the elliptic equation (4.2.13).
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5.2 Dynamics

The equations of motion (4.2.1) — (4.2.3) are in the discrete model

<ut+At _ ut—At) R
YV = Fuivi2jk — (G2®)iv1/2jk (5.2.1)
2At i+1/2jk ’ !
<vt+At _ vtAt) R
— oAr = Fuijriyon — (Gy®)iv1)24k (5.2.2)
24t ij+1/2k ’ ! g
Tt+At _ TtAt)
= Friji - (5.2.3)

The components of the hydrostatic velocity tendency correspond to the time
level ¢:

-
1 —. hymn Apu
Fuivi/26 = — [ﬁ (—thyV + 6, E + 777,57’)]
i+1/2jk

z App
—(GoBis1y25k + (Pu+ Ku)iv1 /251 (5.2.4)
———
1 — " h myA v
Foijvror = — [ﬁ (Zhy U +46,F+ yAnTy")]
Y nP ij+1/2k
_(éywn)ijﬂ/% + (Py + Ky)ijr1/2n (5.2.5)
where
[fhl.hy"”y + o) -3, (h_m”“’u)} +1/2j+1/2
Zi1/2j41/2k = — - (5.2.6)
A (hxhyAnp y)i+1/2j+1/2k
1 (1= 1 =
Bip == —h, w2 + —h, 0?2 , 5.2.7
* 2<hyyu +hx ’ )z’jk ( )
nd 1 N TAWNTL
(Ga®")it1/2ik = =5 [(59@" - M] (5.2.8a)
ha Ayp i+1/24k
~ 1 . ) ]—jnA @y
(Ga®")ijr1/2n = =5 [dycp” - %} (5.2.80)
hy nP ij+1/2k
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The temperature tendency is

»Tw

FTijk = _(dT)ijk + <T> + (PT + KT)ijk , (529)
ijk

where

[, U8T" + 7V, T + hohy (mi) A,T iy
(hahyAp)ije

is the discrete temperature-advection term, and Py, K, are tendencies

from physical parametrization and horizontal diffusion.

Note that the horizontal gradient G in (5.2.8) is different from G, defined in

(5.1.13). The modification consists in the substitution of terms 6$pA,,¢”An

(aT)iji = (5.2.10)

and %pA,@”an , including double vertical averaging, by more simple, verti-
cally diagonal approximations 6,p"A, %" and §,p"A, @Y. Such modification
gives rise to the numerical smoothness of this term, which is substantial at
high resolutions in the steep orography case.

The discrete presentation of the energy conversion term in (5.2.9) is

(%> S <Q%> , (5.2.11a)
D Jijk App ijk
where
f— X —_— Y
h," A, (6,pA he' A, (8,pA
Qijp = Wiy, — | = 0 (0op "u)4h+h 2 (0P 2v) (5.2.11b)
yre ijk

This formula is consistent with the discrete presentation of the thermic geopo-
tential (5.1.15) and definition (5.2.8), which is proved in Appendix B (see
(B.5)), where the overall energetics of the discrete model is checked. The
term in the square brackets is caused by the use of approximation (5.2.8)
instead of (5.1.13). This term is a second order small quantity as it is pro-
portional to a second order vertical difference and tends to zero like (A,p)?.
Except for very poor vertical resolution or drastic variations of the horizontal
wind with height, it can be omitted and the energy conversion term can be

simplified to
<—%T“> _ g Uik (5.2.11)
P Jijk 5 (Ayp)ijk
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5.3 The elliptic equation for baric geopotential

For establishment of the proper form of elliptic equation we also need the
discrete analogue of the omega-equation (4.2.11) - (4.2.12). Proceeding from
energy conservation, it is correct to start from the definition

wp
Wijk+1/2 = — <— ) : (5.3.1)
’ H" ) ki
where w?$

fikt1/2 is the hydrostatic vertical velocity, which does make use of the
tendency equation (comes from (3.1.2) with the help of (2.2.17) and (3.2.1))

(wst-I-At _ wst—At) B <i Aﬂ¢ >
=\ F
2At ijk+1/2 H" App ijk+1/2

—(dws)ijk+1/2 + (Pw + Kw)ijk—l—l/? , (5.3.2@)

with aw?’ representing the transport of vertical velocity

[hyUnéstw + hzvnéyi—l— hzhym—hnAnwsn]iij/Q
(hzhyAnpn)ijk+1/2

and P, and K, representing the physical parametrization and spectral dif-
fusion terms for w®. The correspondence of (5.3.2) to energy conservation is
established in Appendix B.

Differentiation of (5.3.1) in time gives

<M) s <£>2An¢

where

, (5.3.20)

(dws)ijk+1/2 =

. (5.3.3q)

ijk+1/2

A g W —
Foijkrrj2 = {—in (aw® — Ky — Pw):| + <_—,7FT"> . (5.3.3b)
H ijk+1/2 ijk+1/2

Differentiation of the discrete continuity equation (5.1.14) in time, and elim-
ination of the velocity tendencies with the help of (5.2.1), (5.2.2), and (5.3.3)
yields the discrete form of elliptic equation:

(L£e)ijk = A »
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where the discrete elliptic operator is

A N 1 P> Ao

L) =(GT-G +[ A<_ _”ﬂ , 5.3.4a
(Le)ijk = ( )ik A,p n (Hn)g Anpn ” ( )

and the volume-distributed source function is

« A, F,

ik = G Fy)j +( ! w) . 5.3.4b
Jik ( ) jk Anp - ( )
Here Fy = {Fuit12j6s Fuij+1/2¢}. Keeping in mind a solution of this

equation in the orthogonal basis, we will supplement the source function
with a singular, boundary-distributed source A, and consider the equation
in the form

(LP)ijk = Aijk (5.3.4c)

where
Agijr = Ay, + A} (5.3.4d)

ijk -

The boundary-distributed source function is a discrete analogue of (4.2.17)
Aby = FRRe™0in — 3 CSinion + [l 050 — [ Y65 Niat + Vi Ok view » (5.3.4¢)

where
2 2

013: dy:

(he)Az (hy)Ay
and 6; ; is the Kronecker symbol. Note that functions ¢*d;;/, c¥d; ;o represent
the discrete analogues of the Dirac delta-function 6(x,xr) on the z- and
y-walls, respectively.

The amplitudes of lateral sources f and bottom source v are determined by
nonhomogeneous lateral conditions, and vertical condition, respectively.

5.3.1 Boundary conditions for the elliptic equation

The condition of integrability (4.2.16) reduces in the discrete case to a
requirement that the solution has no rapidly (exponentially) increasing mode
at & — 0. This is achieved, employing the eigenfunction technique in 7—
coordinate.
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The vertical condition (mass balance condition for ¢), a discrete analogue
of (4.2.15), follows, differentiating (5.1.9) in time and eliminating the velocity
tendencies with the help of (5.2.1) and (5.2.2)

(Bo)i; = % [590 (h—yxA—meéx¢> + 6, (Eymy@y@hk = b, (5.3.50)
k=1
b = % [5 (h_xA—IF ) +6 (h_yA—yF )] 1 PPy (5.3.5b)
ij - x y DD L'y y z Anp L'y ik a2 ..

This condition is used for the specification of coefficients v;; in the boundary
source (5.3.4e).

The lateral boundary condition (4.2.14) becomes in the discrete case

1 1
<:x(51¢> = a]x]lc , <:x(51¢> = a]k s (536&)
hx 3/2,jk hx Nlon—1/2,jk

1 1 ,
(ﬁ(sw) = a} , (ﬁ%cﬁ) = ay, (5.3.6b)
v i,3/2,k v i,Nlat—/2,k

where coefficients a are known. These conditions will determine the coeffi-
cients f in the boundary source (5.3.4e).
In a particular case of smooth (along boundary) a and large Nlon, Nlat, Nlev,

coefficients f in (5.3.4e) are related to the boundary gradients explicitly (Ap-
pendix D)

fkl_afilc: yk_a]k’fk_azkﬂfk_azk' (5.3.7)
Consequently, the boundary source (5.3.4e) transforms in the continuous
limit to (4.2.17) with

fxr,m,t) = —ar (5.3.7')

where ar represents the given normal boundary gradient of ¢ (see (3.3.4)).

5.3.2 Solver for the elliptic equation

The general idea is to solve the equation (5.3.4c) in the tree-dimensional or-
thogonal basis for given A% and for A” with optional coefficients f and 7, and
then determine coefficients v from (5.3.5), and f from (5.3.6). For application
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of the basis in all three coordinates, equation (5.3.4) and condition (5.3.5)
have to be represented as the sums of horizontally homogeneous main parts
and horizontally nonhomogeneous perturbations. The main elliptic operator
is inverted explicitly, then the solution is substituted into the perturbation
terms and a new improved solution is looked for, repeating the procedure
until the required precision is achieved. As the metric coefficient h, depends
on the spherical Earth in the latitude 6, the planet’s roundness is considered
in this algorithm as a perturbation to the plane geometry. This means that
too large areas will not be accessible by the model. In practice, integration
areas are limited within a square with 5 000 km long side.

Equation (5.3.4c) is presented as

(LY)ijk = Aije — (L'D)ijk (5.3.8)
where B
(LD)ijk = (Lad)ije + (Ly®)iji + (Lyd)ijk (5.3.9a)
Ly.Ly, and L, are the horizontally homogenized, one-dimensional Laplacians
1 ? 1 2
Lod)ije = <—6x¢> ; (Lad)ijr = (—6 qb) 5.3.9b
e = \y0) o o= y™e) o O3
1 ()* Ayo
Ly0)ii :[ A<_ — , 5.3.9¢
o = [ma S \are s ), o
and L' is defined as B
L'=L-L. (5.3.9d)

Analogical expansion of the integral condition (5.3.5) to the sum of main and
perturbation parts gives

(B%¢)i; = by — (B'e)y; . (5.3.10a)

where B is the horizontally homogenized part of B

Nlev

(B°6)ij = (ha)(hy) [(Lo+ L£y) Y (Ayp)edn (5.3.100)
k=1 ij
and perturbation B’ is defined as
(B'¢)ij = (Bo)ij — (B9)y; - (5.3.10¢)
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The iterative algorithm is

o =0 at t=0, and [¢{}] =[s" A at t>0,  (5.3.11a)

ijk ijk
and for [ — 1,2,....
(LoD)ig = ALy, + ALY — (L8 )i = AL (5.3.110)
(BO¢(l))z’j = by — (B'¢(l_1))ij = bz(';') : (5.3.11¢)

where A*® is the iterated boundary source

A?SQ = fjxkl(l)czéi,l - fjx]:(l)cxéi,Nlon + i]ﬁ(l)cy(sj,l - g:(l)cy(sj,Nlat + 71‘(;‘)516,Nlev
(5.3.11d)
with the iterated coefficients £, ¥, which have to be specified from the
iterated versions of conditions (5.3.6):

1 1
<ﬁ51¢(l)> = af}g ; <ﬁ51¢(l)> = ajy, (5.3.11¢)
z 3/2,5k x Nlon—1/2,jk

1 1 ,
y i,3/2,k Yy i,Nlat—/2,k

and from (5.3.11c), respectively.

The iterative set of equations (5.3.11) is solved using the three-dimensional
orthogonal basis X ® Y ® E, where

X ={X,q=1,..,Nlon} = {{X;p,i =1...,Nlon},q =1, ..., Nlon} ,
Y ={Y,,r=1,.,Nlat}Y, = {{Y},,j =1...,Nlat},r = 1,..., Nlat} ,

E={F,;s=1,..,Nlev}E; = {{Eks, k = 1..., Nlev},s =1, ..., Nlev} ,

represent the one-dimensional bases in the x, ¥ and n dimensions, respec-
tively. They are chosen as the eigenvectors of the one-dimensional Lapla-
cians:

(LaXg)i = =X Xiq , (LyV2)j = =NV, (LyEo)e = —AEgs . (5.3.12)

q

- . .
where A7, A, A7 are the corresponding eigenvalues.
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For X and Y the discrete normalized cosine bases are employed (see Ap-
pendix C), whereas the basis F and eigenvalues A" (they depend on the ver-
tical temperature distribution in the atmosphere) are specified, numerically
solving the vertical eigenvalue problem (ibid).

Presenting ¢(!) in the basis

l]k ZX“J JT’EkS¢qrs ) (5313)

qrs

the solution of the equation (5.3.11b) for Fourier coefficients ¢ will be

() — “Nl‘(ll)
= i 5h.3.14
Dars AT+ M4\ ( a)

"4 = Agrs (Eld)(l_l))qrs-'_
(1) () o ) )
C .’El Xq,l —C Tq?sf‘ Xq,NlOTL + Cyfgsl }/7',1 - Cyfé;s Y;“,Nlat + f}/(g%r)Es’[l(levﬂ
(5.3.14b)
where A?, L£'¢(~1 are the Fourier coefficients of the volume distributed
source and perturbation term

qrs ZXQZ sklAzgk ’ ([”¢l 1 QTS ZXQZ sk ‘C ¢l K )QTS ’

ijk ijk

and f®, 50 are the Fourier coefficients of f, 4®:

x r :z:l r r l/r ~ l
l/ E :YMEsk i yl/ E :quEsk s a élr) = E :Xqiyrﬂi(j)-
ij
Substitution of the solution (5.3.14) into the boundary conditions (5.3.11e)

- (5.3.11f) yields (for details see Appendix D) an iterative algorithm for the
Fourier coefficients of the boundary force:

0 s, (=1) 0

o= o f (5.3.150)
O = Y 5@ (5.3.15b)
ORI G BN

no=fu e (5.3.15¢)
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~ (1 ~ (1-1 sl
i) _ =D 5@ (5.3.15d)

where the increments are

§frih) = ix a®l — <i6x¢(l—1)> , (5.3.16a)
Srs h’l‘ 3/2,r,s
5o = — |aln - <_5z¢(ll>> , (5.3.16b)
s hy Nlon—1/2,r,s
5 1. 1
5f$/£(l) =5 [agi - <h_5y¢(l—1)> ] , (5.3.16¢)
qs Y q,3/2,s
SfL O — 7 [az’s (h_5y¢(l—1)> ] . (5.3.164d)
qs Yy ¢,Nlat—1/2,s

and

Nlon—1 T
T 1 )‘q + 2
ST‘S = T T ’
Nlon — 1 Zq:2 N A A+ AT ((ha) A2)2 (N + M+ AD)
(5.3.17a)

Nlat—1 y
Y — o Z Ay 2
%~ Niat — 1 A+ N+ N ((hy) Ay)2(AZ 4+ X0 + AY)

r=2

(5.3.17D)
In the case of smooth boundary conditions and for large grids (Nlon, Nlat,
Nlev — 00), the square brackets in formulae (5.3.16) become zero at [ = 2,

which yields the case (5.3.7) (Appendix D).

After the coefficients f are specified from (5.3.15), (5.3.16), the source func-
tion (5.3.14b) still includes unknown coefficients 4, which can be solved from
(5.3.11c). Transforming this relationship into the basis and using represen-
tation (5.3.14) (where f®) are specified from (5.3.15)), the explicit formula
for ~ results

O O L U Z s Al (5.3.180)
Tar = g <h><h>(Aw+Ay N AN i
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where

s lev
SZ’" - Z )\x + )\y + AT Cs = ;<Ap>kEks ) (5318b)

—_

A Aer (£'¢(l_1))qrs+

z V) z e y e y fyr)

& rs Xq,l —C rs Xq,Nlon + & qu }/T',l —C qu Y;“,Nlat . (5'3'180)
Thus, the solution of the elliptic equation at the [th 1terat10n is (5.3.13),
where coefficients ¢ are presented by (5.3.14), with f®) evaluated from
(5.3.15) and 4 from (5.3.18). The iterative’ process is stopped at [, for
which:

(lo® — D)y < e(jg)) (5.3.19)

where ¢ depends on the required precision (The typical value in application
ise ~ 1073 — 107%).

5.4 Boundary and initial fields

The nonhydrostatic scheme takes advantage of the Davies’ boundary relax-
ation scheme (Davies 1976) of hydrostatic HIRLAM. Modifications, induced
by the presence of nonhydrostatic force are described in the following.

Hydrostatic evolution from the time level ¢ — At to the level t + At, when
the boundary relaxation zone (BRZ) is present, is described by the formula
(for field u, cases of v and T are similar)

~t+AL

WA = (1 - a)a

+aubtAt gt Al = =M L ONLE,

where « is the weight function, which is zero beyond the relaxation zone,
increases smoothly in the relaxation zone towards the boundary, and becomes
a = 1 on the boundary I'. Field @/*2* is the evolution of u to the level
t+ At from the initial state u~2* when BRZ is absent, while F}, presents the
hydrostatic tendency (5.2.4). The function u}™*! presents the boundary field
(which represents the surrounding environment) towards which the internal
field uft2¢ is relaxed and which is always reached by u!*2* on the boundary
surface I'. From this formula, the effective ("boundary relaxed’) hydrostatic

tendencies are

ut+At ut—At

F 1—a)F, L
= ( a)F, + « SA ,

(5.4.1a)
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. v£+At _ At

F,b=(1-a)F,+at—FF 5.4.1b

(1-a)F, +at—— (5.4.10)
R Tt-I—At o thAt

Fr=(1-a)F b 4.1
= a)Fr + « SA7 (5.4.1¢)

The corresponding modifications of the nonhydrostatic equations (5.2.1) -
(5.2.3) are

ut<+1A/t2 i utflA/tQk
+ + - ~
— 2At 5 = Fupji — (Gad)ivijin (5.4.2a)
pitAt At
ij+1/2k 1i+1/2k ~ R
] /my]/ = Fuijijon = (Gyd)itryoje » (5.4.2b)
THAL At
ijk o ijk — FT’ijk . (5426)

The BRZ is not applied to w, and its tendency remains (5.3.3). Thanks to the
inclusion of the boundary relaxation in the hydrostatic tendency, the baric
geopotential ¢ takes into consideration all forces and maintains the anelastic
quality of the model in the whole domain, including the relaxation zone.

To establish in (5.4.2a) and (5.4.2b) rigid conditions w4 = ul T4 p!+A! L =
v,fJ’At, the normal gradient of ¢ has to vanish on T', which yields zero value
for the boundary function a in (5.3.6):

alf =0,a5 =0 ,a=0,a% =0. (5.4.3)

Consequently, the boundary source amplitude f in (5.3.4e), (5.3.11d) be-
comes also zero, and the iteration algorithm (5.3.15) - (5.3.16) is not required.
Thus, in the case of the Davies’ relaxation scheme, the lateral boundary value
problem for ¢ reduces to the homogeneous Neumann problem.

An important quality of the Davies’ scheme is approximation of the singular
lateral boundary source A° (see (4.2.17)) of the continuous model (without
BRZ) by the volume-distributed source A”, which in the BRZ approaches
the singular limit (4.2.17), if the depth of the BRZ tends to zero. To prove
this, we will consider the volume distributed source function A” in the BRZ
near the right wall in z-direction:

L—-d<x<L, L=alA
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(Discussion is confined to this particular case. However, results would be
the same at the other walls). For a sufficiently narrow BRZ, when d — 0,
the most rapidly changing function in the tendencies (5.4.1) is the weight
function o, which gradient becomes large in the BRZ. As a result, the volume-
distributed source function (5.3.4b) can be estimated from (5.4.1a) - (5.4.1b)
in the BRZ as

1 da ultAL g t=At
A~ —a ——— h =F-t—— 5.4.4
a o where a AT ( )
At the limit d — 0, o approaches the Heaviside function and, consequently,
1 Oa
h—m% — 6(25, l‘r),

whereas a tends to ar in (3.3.5). Thus, A” approaches precisely the first term
of the singular boundary source (4.2.17), with f = — ar (see (3.3.77)) where
ar is determined as (3.3.5).

As seen from (5.4.4), the source A" is specified in the boundary zone by the
"hydrostatic disbalance" a. Extreme values of a should be avoided, as large a
would cause large amplitude of ¢ near lateral boundaries, which would result
in large normal gradients of ¢ and strong spurious tangential circulation in
the boundary zone. As a is mainly driven by the boundary fields uy, vy, Tj
and p,, the amplitude of a depends how well the boundary fields, including
Do, match the hydrostatic evolution model. Especially sensitive is a to the
choice of the mean surface pressure field pj.

Two main choices, requiring different approach, are as follows.

a. Po(z,y,t) is taken, along with other boundary fields uy, vy, and T, from
a coarser, hydrostatic forecast model. In this case a is always small, there
would be no problem with large spurious boundary sources, and the integra-
tion scheme (5.4.2a) - (5.4.2¢) supported by homogeneous conditions (5.4.3),
is advantageous. In this scheme, ¢ and pj will represent fine, small-scale,
nonhydrostatic contributions to the hydrostatic fields. The described ap-
proach is attractive because of its simplicity, and it is presently applied as
the basic scheme in NH HIRLAM.

b. Do = po(z,y), where pg(x,y) is the mean barometric background pressure

(2.5.7¢). This approach assumes prior specification of the mean temperature
To(p). For given initial velocity and temperature fields, py is rather different
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from the actual hydrostatic surface pressure. Consequently, the thermic and
Coriolis forces are mutually out of balance, hydrostatic tendency becomes
large everywhere and a in (5.4.4) becomes also large. To restore the approx-
imate geostrophic balance in the BRZ, a compensating baric geopotential
forcing must be added to the hydrostatic tendency before the BRZ is ap-
plied. The algorithm here is as follows. The baric geopotential is presented
as a sum of the steady field ¢, and transient component ¢’

¢=d.+¢" . (5.4.5)

The steady component is specified as a solution of the elliptic equation (5.3.4)
in the homogeneous case, a = 0, nonhomogeneous boundary conditions

aﬁ = Fugak » 4 = FuNion-1/2,4k Ll = Foigjag 0 = FuiNia—1/2 »
(5.4.6)
corresponding to the actual hydrostatic tendency Fy on the boundary. The
forcing —Gqﬁc is then added to the hydrostatic tendency with the resulting
equations of motion

t+At t—At

Uy i = Ui . . .
+1/27k2At 2k wit1/25k — (G2 )iv1/24k (5.4.7a)
pitAt AL
ij+1/2k — Yij+1/2k 2 ~
PR — Py = @i . (54TD)
where
~ N ui"’At _ utht “ 4o
Fu =(1- Fu - G:r c A 4.
(1—a)( fc) +a——+ (5.4.7¢)
. N vz-I—At _ At
Ey = (1= a)(F, = Gyoe) + o= (5.4.7d)

The transient component ¢’ is computed at each ¢ from the elliptic equation
(5.3.4) with A, corresponding to the effective tendencies (5.4.7¢), (5.4.7d),
and with the homogeneous boundary conditions (5.4.3). Forces in round
brackets in (5.4.7c) -(5.4.7d) compensate each other, mainly, and the result-
ing effective tendency F, remains restricted in the BRZ. The major com-
pensation is achieved due to the application of nonhomogeneous boundary
conditions (5.4.6). These conditions supply the solution ¢, with a long-wave
component, which compensates the initial large F,, restoring the approxi-
mate geostrophic balance and providing the initial tendency to be moderate.
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In this respect, substitution of Fy to Fy — G, gives an effect, similar to the
background surface pressure field initialization from the coarser model. Con-
sequently, the conditions (5.4.6) are rather essential, and the proper specifi-
cation of the normal component of hydrostatic tendency F, on the boundary
[ is of great significance. Fortunately, the thermic and Coriolis forcings, both
being reliably computable from the temperature and wind distributions, are
major contributors to this tendency.

The temperature and w tendencies are not affected by the described modifi-
cation (5.4.5) - (5.4.7d), and remain (5.4.2c), and (5.3.3), respectively.

Though the described scheme with py in the role of lower model surface
is more rigorous in comparison with the former one, its advantage is, that
it provides some lowering of numerical noise, if py is chosen appropriately
smooth. Along with the application of py, and when the background tem-
perature Ty(p) is introduced into consideration, it is advantageous to apply
one more noise-lowering modification, which consists in the prior separation
of the background thermic geopotential in (3.4.4b)

p(,y,p,t) = ¢o(p) + ¢'(2,y,p, 1) . (5.4.8a)

The mean component depends on the background temperature only

ﬁo(mzy) T !
po(p) = ghlz,y) + Rd/ Og )dp' : (5.4.8b)
p

where R, is the gas constant of the dry air, whereas the fluctuative part is a
function of the fluctuative part of RT

Pole) (RT)'(w,y,p', t
@’(fr,y,p,t)z/ ( )(p, )dp’
p

Po(®:) (RT) (l‘, yap’: t) - RdTU (pl)
P

Cancellation of ¢y dependence on z,y occurs due to the barometric formula

(2.5.7¢). Due to this cancellation, the hydrostatic tendency will not include

the large background geopotential ¢,, which will enhance smoothness of the
numerically computed F.

dp' . (5.4.8¢)
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When applied in the discrete scheme, the tendencies (5.2.4), (5.2.5) are mod-
ified to

T

—
1 — Y hy A
Fuiv1)2jk = — [ﬁ (—thyv + 0, £ + anu)]
i+1/2jk

x Anp
_(éxan)Hl/ij + (Pu + Ku)i+1/2jk , (5.4.9&)
- =
1 — " hymn’ A, v
Fyijijon = — [ﬁ (Zhy U +6,E+ ”A"Ty")]
Y nP ij+1/2k
_(éyan)ijﬂ/?k + (Py + Ky)ijei/2n (5.4.9)

where ¢’ is computed from the recurrence (which is a modification of (5.1.17))

! —
PijNlev+1/2 = 0,

1
‘Pl?jk = 50;’jk+1/2 + §(RT);jkaijk ) (5.4.10)
! an 1 !
Pijk—1/2 = ¥ ijk + §(RT)ijkO‘ijk .

Note that there is no linearization in connection with the separation (5.4.8a),
and the equation for the full temperature remains (5.4.2¢).
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6 Explicit Eulerian time scheme

6.1 Time scheme

Integration of equations (5.4.2a) — (5.4.2¢) (or (5.4.7a), (5.4.7b), (5.4.2¢),
respectively, when the separation (5.4.5) is applied) is implemented as the
explicit-Eulerian leapfrog time-stepping scheme, which is a parallel option
to the ordinary, hydrostatic explicit-Fulerian integration scheme. Nonhydro-
static integration is switched on with the logical key nhdyn. The integration
block—scheme in the nonhydrostatic regime is presented in Fig. 6.1.1.

[ cemin_| In the main routine GEMINI, subrou-
\HSINITI?LIZATION\ tines COSTI, PGRAD, COEF, and

NH INITIALIZATION: .
COSTI, PGRAD, COEF, NDUY ‘ NDUYV are called after general initial-

| ization. The subroutine COSTI ini-

NHEULER L . .
tializes coeflicients for fast 2D cosine-
HSDYN: Fourier transformation. The sub-

Fu, Ry, Fr. Fe

HDIFF4
PHCALL

routine PGRAD computes p,, which
in the present realization is the ini-
tial actual hydrostatic surface pres-
sure, and prepares difference arrays

Ayp, Agp.  The subroutine COEF
prepares coefficients for the elliptic
ELLIPT - solver, including the mean temper-

ature < T >, mean pressure <

du/dt,dv/dt,dT/dt P >py1/2, and vertical eigenvectors

u
|
[

‘ TR and eigenvalues of the mean elliptic
operator. The routine NDUV checks

1 .
PGRAD,COEF, NDUV (every the balance (5.1.9) of the vertically

noorth time-step) integrated mass and restores the bal-

ance if there exists any initial depar-
Fig. 6.1.1 ture.

The restoration algorithm is as follows. The imbalance
op Nlev (in)
Po
d=|—+- -V 6.1.1
(2 Xw v @1
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is computed and then a gradiental correction is introduced into the velocity
field: ‘ ‘
v — i _ g (6.1.2)

where ( is the solution of the equation
V- (p,V() = d. (6.1.3)

This equation is inverted iteratively with fast cosine-Fourier transformation.
The corrected velocity field (6.1.2) satisfies the balance condition (5.1.9).

The recalculation of boundary pressure field p, in PGRAD, coefficients in
COEF and restoration of the mass balance with NDUYV is applied repeatedly
after each ncor time-step.

In the main Eulerian time-stepping routine NHEULER, which represents a
modification of the hydrostatic subroutine EULER, the subroutine HSDYN
(represents a modification of DYN) is called, which computes the hydrostatic
tendencies F,, F,, Fr, and F, in accordance with (5.2.4), (5.2.5), (5.2.9), and
(5.3.3b). Thereafter, the explicit horizontal spectral smoothing (optional)
for u, v, ,T, and humidity ¢ is carried out in HDIFF4 which is followed by
physical parametrization in PHCALL. The explicit smoothing and physical
parametrization are common with the hydrostatic model. After that there
is another branching: instead of the implicit smoothing with DIFFH, in the
nonhydrostatic case a spectral smoothing is performed by subroutines HDIF
and VDIF4. The subroutine HDIF represents an implicit diffusive spectral
filter of variable order. It makes use of the cosine-Fourier transformation and
acts on the Fourier amplitude @ijk of the field ¢ (in the role of ¢ are u, v,
and T") as follows

i
(fin) _ ik
1+ fyl}cl[()\;r + )\ZJJ)/()\:]EVlon/2 + )\Z]J\flat/2)]qlC

Here 4! and ¢; are the level-dependent smoothing parameters, and A%, A
represent the eigenvalues of one-dimensional horizontal Laplacians (see (5.3.12),
and Appendix C, (C.1¢)). The default value for 4% is 1, though in the short-
scale domain (dz, dy < 10 km) 7, must be increased to avoid buoyancy wave
reflection at the top. The parameter ¢ varies with the height according to

q, =2 — exp[—(k — 1)*/k}] , (6.1.4b)
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the default value for kj, is 5. Thus, in the majority of the atmosphere, g, — 2
and the filter has fourth order, whereas at the top, where ¢, — 1, it steadily
transforms to a second order filter.

The explicit vertical 4th order filter VDIF4 performs smoothing (Miranda
and James 1992)

Ul = (L= )0 — W (Wijksz + igk-o — ijnn — dbie—1)™ . (6.1.50)
The parameter «; is a piecewise linear function of the level index

if k> k,,

v o 771”}11171
Tk = {’ygnm + (’ygnaz - ,ygmn)lizz:llg if k S kv- (615b)

The default values of the parameters are k, — Nlev, vr., — 0.0, Vi, —
0.0625. Note that v = 0.0625 yields total elimination of the 2-grid-length
waves.

TABLE 6.1.1
The nonhydrostatic tuning parameters in
the namelist NAMRUN and common COMNHD

Name Type Default Reference
Inhdyn logical false. NH switch
Incor logical false. Switch
for COEF and NDUV
ncor integer 50 Period in time-steps
for COEF and NDUV
lhdif logical false. Switch for (6.1.4)
rkh real 5.0 kp in (6.1.4Db)
lvdif4 logical false. Switch for (6.1.5)
nkv integer Nlev k, in (6.1.5b)
gvmin real 0.0 Yo i (6.1.5b)
gvmax real 0.0625 Ve 1 (6.1.5b)
epsell real 5.e-4 e in (5.3.4e)

Smoothing is followed by the boundary relaxation in BNDREL, which is
an ordinary boundary relaxation subroutine of the hydrostatic HIRLAM.
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Thereafter, the hydrostatic tendencies are passed to the subroutine ELLIPT,
in which the baric geopotential is computed. Finallyy, NHEULER is fin-
ished by the tendency updating with nonhydrostatic contributions and by
the next time level prognostic field computation. The tuning parameters of
the nonhydrostatic model are presented in Table 6.1. In the program they
are described in the common COMNHD.INC with default initialization in
the routine NAMEIN, and they can be initialized explicitly in the namelist
NAMRUN.

6.2 Numerical tests

The developed NH model is tested in two different regimes: (A) nonhydro-
static forecast on low-resolution ("hydrostatic") grids with realistic initial
data and with the physics included. These simulations should be considered
as preliminary experiments, which will be extensively continued after code
parallelization. (B) nonhydrostatic simulations on high-resolution grids in
the adiabatic regime without the physics, with artificial initial and boundary
data and model orography.

Modeling is performed in the single-processor environment on Pentium II.
The time step At is in all experiments chosen maximal for that particular
resolution. It is determined by the Courant-Friedrichs-Lewy stability condi-
tion

At < Az/(U +C) (6.2.1)

where Az is the horizontal grid-step, U is the dominant horizontal wind-
speed, and C' is the typical phase speed of buoyancy waves. As the external
waves are excluded, C represents the internal buoyancy wave phase speed.
It is ~ 100 — 150 m/s at large scales but diminishes rapidly as the horizontal
scale decreases. The typical time-step is 90 s at the 22 km resolution, 60
s at the 11 km resolution, 50 s at the 2.2 km resolution (for U = 25m/s),
and 30 s at the 1 km resolution (for U = 25 m/s). Presumably, at the
high-resolution limit (Az, Ay < 5 km), where C' << U, the explicit scheme
reaches theoretical upper limit Az /U.

A. Low-resolution tests with physics

Experiments in the realistic conditions are carried through at the 22 and 11
km resolutions. Integration is performed with the non-hydrostatic extension
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(a) hydrostatic model (b) nonhydrostatic model

Fig.6.2.1 6h forecast of surface pressure with the explicit hydrostatic (a)
and nonhydrostatic model (b). 194x140 grid, 31 levels, 22 km resolution.

of HIRLAM 4.6.0, and thus, the physical package represents the physics of
version 4.6.0.

The purpose of 22-km-resolution experiments is to check the influence of the
surface pressure adjustment and to demonstrate, that this does not reduce
model quality in the hydrostatic domain. Another purpose is to show that the
plane approximation in the main part of elliptic operator does not influence
model performance in the case of moderate (square side less than 5000 km)
integration area. Integration is performed with the 31 level, 194x140 points
(4300 km x 3100 km) model. The time step is 90 s, and the default spectral
smoothing is applied. The results of 6h forecasts of the sea-level pressure
are shown in Fig. 6.2.1, where the nonhydrostatic model is compared with
the explicit (20 s time-step), hydrostatic Eulerian scheme. As seen from
the example, results by NH model are close to the corresponding results of
the hydrostatic scheme, though not identical. The comparison shows also,
that there is no systematic distortion of nonhydrostatic pressure forecast to
the edges of the area due to the quasi-plane approximation of the elliptic
equation.

The results of 24 hour forecast with the 11 km resolution on the 114x100
points grid (1210 kmx1100 km) for the sea-level pressure are shown in Fig.
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6.2.2, and for the vertical cross-section of u-wind and temperature, in Fig.
6.2.3. The time step in these experiments is 60 s. The forecasts by the NH
model and semi-implicit Eulerian hydrostatic model are compared with the
analysis for the same time. The sea-level surface pressure distributions (Fig.
6.2.2) of hydrostatic and nonhydrostatic models show reasonable coincidence.
Spectral smoothing in the NH model is reduced in comparison with the de-
fault standard to the values: v = 0.5, 72,, = 0, and 72,, = 0.01. In spite
of that, the NH scheme produces smoother wind distribution in the middle
troposphere than the hydrostatic model (Fig. 6.2.3). At the same time, the
nonhydrostatic scheme exhibits wind anomaly at the top, which is caused by
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residual buoyancy-wave reflection on the upper boundary and which shows
that the level of spectral smoothing is too low in the top region. However, the
close co-incidence of the two models during a rather continuous run shows
that the NH kernel does work and produces reliable results.
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u-component of wind. (a) - hydro-
static model, (b) - nonhydrostatic
model, (c¢) - analysis. Grid size
114%x100 points, 31 levels, 11 km
resolution.

(c) analysis

B. High-resolution adiabatic tests

High-resolution experimentation in the adiabatic mode has been the main
tool for model debugging and nonhydrostatic kernel quality testing. Fol-
lowing examples aim at demonstrating the quality of the model in actually
nonhydrostatic conditions and clearing up its high-resolution limit. These
are experiments with artificial orography and initial state of the atmosphere.
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Fig. 6.2.4 Vertical velocity waves in the case of the stationary flow over
one-dimensional isolated mountain. a = 10 km, hy = 300 m, U = 25 m/s.
Isoline step Aw = 0.1 m/s. Grid 65%x49, resolution 2.2 km, At = 40 s;
Nstep = 240; u,v: v = 2.5; T: A" = 7.5, nbdpts = 6.

Orography is presented by an isolated bell-shape mountain

ho
[1+ (z/a0)* + (y/ay)?]"
where a,, a, represent half-widths of the hill along z and y axes, and nondi-

mensional parameter s ~ 1 (usually 1 or 1.5). The special case of one-
dimensional orography is modeled with the formula

h(z,y) = (6.2.1)

ho

TG (6.2.1)

h(z,y) =

The initial state is characterized with the sea-level temperature T = 280
K, Viisild frequency N(p), and wind U, which is taken initially constant
and then transformed to the mass-balanced wind with the help of formu-
lae (6.1.1) - (6.1.3). The corresponding mean surface pressure field p, is
computed from the barometric formula. Consequently, the algorithm with
the background baric geopotential separation (5.4.5) is employed along with
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(a) Temperature T, AT =0.1 K (b) Wind u, Au =0.25 m/s
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Fig. 6.2.5 Nonhydrostatic steady flow over one-dimensional isolated moun-
tain, according to HIRLAM (panels a - ¢) and the analytical model (panel d).
a=>5km, hg =200 m, U =25 m/s, N = 0.01 1/s. Grid 100x 50, resolution
2.2 km, At = 50 s, Nstep = 216, v = J for u, v, and v = 8 for T, nbdpts
= 8.

the temperature and thermic geopotential splittings (3.5.1), and (5.4.8). The
boundary-relaxed time integration scheme is (5.4.2c¢) (5.4.7a), and (5.4.7b) in
this case. Boundary conditions are presented by the boundary fields, which
coincide with the background fields: u, = U, v, = 0, T, = Ty(p).

The difference between the one and two dimensional orography in boundary
handling consists in the BRZ treatment. In the case of two-dimensional hill
(6.2.1), the boundary fields are specified on all boundary walls, whereas in the
case of one-dimensional orography (6.2.1’), boundary relaxation is applied on
the west wall 7 — 1 and east wall # = Nlon. In the case of one-dimensional
orography, there is no relaxation at the south and north boundaries, which
is equivalent to a continuation of the domain of integration to oo in the
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Fig. 6.2.6 Vertical velocity waves in the case of the stationary flow over
one-dimensional isolated mountain. @ = 2 km, hg = 100 m, U = 15 m/s, N
= 0.005 1/s, isoline step Aw = 0.02 m/s. Grid 257x 49, resolution 0.4 km,
At = 20 s, Nstep = 500, v = 25 for u, v, and v} = 50 for T, nbdpts = 20.

y—direction. Evolution of the atmosphere is modeled from the initial state
until the stationary flow regime is reached with required precision. The final
wind, temperature, and surface pressure fields are compared with the semi-
analytical solutions of the linearized equations where available.

A series of stationary two-dimensional flows over one-dimensional orography
(6.2.17) in different conditions is presented in Figures 6.2.4 - 6.2.7. The main
nonhydrostatic flow characteristic, nondimensional parameter aN/U, varies
from 7.4 in Fig. 6.2.4, which corresponds to the hydrostatic flow regime,
to 0.66 in Figs. 6.2.5 and 6.2.6, which represents completely nonhydrostatic
flows. The main attribute of the nonhydrostatic behavior is the leeward
shift of the wave sequence with height. At the relatively long nonhydrostatic
scales ¢ = 10 and 5 km (Figs. 6.2.4, 6.2.5), the shift is small and becomes
evident at the higher levels only, whereas at the shorter scale a = 2 km, all
waves are leeward shifted. The resolution (grid-step) is 2.2 km (Figs. 6.2.4
and 6.2.5), 1 km (Fig. 6.2.6), and 0.4 km (Figs. 6.2.6 and 6.2.7). Along
with the decrease of the horizontal scale (determined by the mountain half-
width) and stability parameter N, the horizontal smoothing parameter ¢ in
(6.1.4a) should be increased to avoid numerical noise and reflection at the
top. Theoretically, there is no reflection for constant N in the continuous
model. However, due to the finite vertical resolution and fluctuations of IV,
the reflection does exist in the numerical model, and a sponge layer, modeled
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by spectral filters (6.1.4) and (6.1.5), is necessary at the top. Parameter
7 can be varied in a broad interval. Tts enlargement causes the increase
of smoothing rate and reduction of the wave amplitude, whereas reduction
causes larger noise and spurious wave reflection near the top, and forces a
time step decrease. Vertical diffusive smoothing (6.1.5) is the default one in
all experiments, as the model is relatively insensitive to the small variation
of v¢, while the large variation is not supported by the explicit filter.

Experimentation with one-dimensional orography is a sensitive indicator of
model quality. Vertical oscillations of the atmosphere are strongest in this
case, as the atmosphere can not flow around the obstacle, yet is forced to
get over it. Both wave amplitudes and vertical extent of wave pattern are
reduced in the case of two-dimensional obstacle. An experiment with two-
dimensional orography (6.2.1), a, = a, = 1 km, hy = 200 m, s = 1.5 is shown
in Fig. 6.2.8. As seen, vertical flow disturbances are restricted below the 800
hPa level (though modeling is performed for the complete vertical extent of
the atmosphere).

The general conclusion from the presented experiments is that the model is
capable of nonhydrostatic simulation. In comparison with the linear model
there is some reduction of wave amplitude and narrowing of wave wings due
to spectral diffusion (especially manifested near the top of the atmosphere)
but both the general wave pattern and the nonhydrostatic lee-ward shift are
reproduced authentically.

As experimentation shows, the grid-point extent nbdpts of the BRZ must
be increased along with the resolution. In Fig. (6.2.4), and (6.2.5) with
Ax, Ay — 2.2 km, bndpts — 6 and 8, respectively. In the high-resolution
(0.4 km) experiment with two-dimensional hill in Fig. 6.2.8, this parameter
is nbdpts = 8 (which is yet not too extreme), while in the experiments with
one—dimensional mountains with the same resolution (Figs. 6.2.6 and 6.2.7),
bndpts = 20 and 16, respectively. The reason for the large grid-point ex-
tent of the BRZ is the potential buoyancy wave reflection in narrower BRZs.
The reflection would be much stronger in the case of one-dimensional orog-
raphy, as wave amplitudes are larger in this case and they do not decrease
significantly during propagation from the mountain to the boundary. This
explains larger nbdpts in one-dimensional experiments. However, the situa-
tion would be similar for a small-scale two-dimensional hill, placed near the
outer boundary. For practical reason of rapidly increasing computational
cost, the reasonable value of nbdpts is restricted within nbpts — 10, and even
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Fig. 6.2.7 Vertical velocity waves in the case of the stationary flow over
one-dimensional isolated mountain. @ = 1 km, hg =200 m, U = 15 m/s, N
= 0.01 1/s, isoline step Aw = 0.05 m/s. Grid 257%x 49, resolution 0.4 km;
At = 20 s; Nstep = 300; v = 35, nbdpts = 16.

in extreme situations it should not go beyond 15 - 20. This limitation sets, for
a nonhydrostatic model with the BRZ, the practical upper limit of horizontal
resolution at 0.5 - 1 km.

7 Conclusions

In this part the theoretical concept of the nonhydrostatic, pressure-coordinate,
anelastic model of atmospheric dynamics has been brought to the numerical
code. Preliminary experimentation with the new code has shown its ability
to produce reliable results both in hydrostatic and nonhydrostatic regions.
It is premature, of course, to make far-reaching conclusions before thorough
and careful testing of the new routine. However, the model has shown its
potential in these preliminary runs, and some conclusions can be already
made.

The present maximum horizontal resolution of the model is approximately
0.5 km. This limit is set by gravity wave reflection at the lateral boundaries.
To achieve the 0.5 km resolution without meaningful reflection, the boundary
relaxations zone depth must be 15 - 20 points. For higher resolutions, either
this depth should be increased even more (which is non-realistic), or lateral
boundaries should be made transparent to buoyancy waves.
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Fig. 6.2.8 Distributions of u and w components of wind at the stationary
flow over the circular hill. a, = a, = 1 km, hg = 200 m, U = 15 m/s, N
= 0.005 1/s. Grid 129x 97, resolution 0.4 km, At = 20 s, Nstep = 300;
u,v, T : vy = 20, nbdpts = 8. Isoline interval 0.01 m/s.

(a) — u at the level p = 860 hPa, (b) — u at the vertical plane y = 0, (¢) —w
at the level p = 860 hPa, (d) — w at the vertical plane y = 0.
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The model is economical in terms of vertical resolution requirements. The
standard 31-level eta-grid provides sufficient resolution for adiabatic dynam-
ics at all horizontal scales. However, much higher vertical resolution may be
needed by diabatic processes. So far, tests with the finer vertical grid are
missing.

Due to the application of surface pressure adjustment, the accessible time
step is rather large and makes the model applicable in high-resolution simu-
lations already in its present explicit-mode realization. In the high-resolution
domain (Az < 5 km), the time step reaches the theoretical upper limit and
most likely can not be significantly increased with the help of a semi-implicit
scheme. At larger scales, where the main limiting factor is the internal buoy-
ancy wave speed, the implicit scheme would approximately double the present
time-step.

The practical advantage of the model is that it supports instant inclusion
of existing physics. Still, at finer scales, beginning with 11 km resolution,
physical parametrization should be revised.
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Appendix A

Pressure gradient G and divergence Gt in the discrete model

Integration of divergence (5.1.12) gives

/dvmé+ v R Y AzAy(Aypheah, GT V)i
ijk
= AxAyZ [6:,3 (h_yIAnpxu> - Ay (hyﬂﬂémpx>
ijk
+6y (h_xyAnpyv> - Ay (hgﬁ”éypyﬂ
Due to the full differences in the square brackets, this integral transforms to a sur-

face integral (disappears for finite v and v). Thus, (5.1.12) defines the divergence,
indeed.

To get the alternative form (5.1.12’), the identity

(A.1)

ijk

(06 (550)); = (s0¢v); + (03¢s"); (4.2)

is required. With the help of this identity, the first term in the first square bracket
of (5.1.12) can be modified

5. (7B ) = Aypb (g0 + Ty by
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whereas the second term (with 7 in the role of £) can be presented

Ay (B @0up ) = By udyAgp + By (Byu)igp

Analogical identities hold for the second square bracket. As a result, (5.1.12")
follows.

To derive the operator G skew conjugate to G, the integral relationship (4.1.16)
has to be used, which for the A-component is

Z(hxhyAnp‘PG;ru)ijk =— Z(h_xxh_yIAnp:CUGﬂP)iﬂ/ij : (A.3)
ijk ijk

Using definition (5.1.12), left side here is
A " =T
Z;(hxhyAnp(PG;ru)ijk = Z;‘Pijk [590 (hy Anp U) - An (hy uyp )ij (A.4)
i v

To the first term in the sum an identity is applied

Z a;(05b)i = — Z bz’+1/2(5xa)i+1/2 )

)

where finite functions are assumed. Further, this identity is denoted shortly as

az((sxb)z ~ —bi+1/2(5xa)i+1/2 . (A5)

Thus "~" means "equivalent at the summation over finite functions". Analogical
identity is applied to the second term in (A.4)

ar(Apb)k ~ —bpy1/2(Ana)py1)2 (A.6)
along with ~
(@) k41720 kg1/2 ~ (@)k(®") - (A.7)
This results in the formula
Z(hxhyAnp‘Pé;u)ijk =
ijk
LT TR T 1 1 —z'l
—Z(hz hy" App )i+1/2jk“i+1/2jk ﬁfsaﬂp - W((SzP)AMP ;
o T x BqpP i+1/2jk

from which presentation (5.1.13) follows for G, and éy
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In further applications, the following equivalences (which proceed from the defini-
tions of G and G™) are also useful:

(hzhyAnp‘Pé;“)ijk ~ _(h_:rxh_yxAanUéz‘P)Hlﬂjk ; (A.8a)
(hxhyAnp(PG;_U)ijk ~ _(h_xyh_yyAnpvaAy‘P)ij+l/2k ‘ (A.8b)

The first one represents (A.3), the second is its y-coordinate analogue.

In a small domain, when |tan| < 1, divergence (5.1.12) can be simplified, con-

sidering the metrical coefficients h, = cosf and h, = 1 constants
A 1 (A, uw)op 1 (A, 0)6,p""

G v)jjp=|—96 T Y - A8

( V) ]k hz J?(u) hIAnp + hy y(v) hyAnp 9 ( )

ijk

which means a plane approximation for G*. This approximation was applied in
initial versions of the nonhydrostatic model (R66m and Ménnik 1999). Yet it
does not yield much simplification in comparison with more precise representation
(5.1.12’) and is not applied in the recent versions.

Appendix B
Energetics in the discrete model

Total energy of the discrete model is

Az A
E = p yZEijk, (B.1)

ijk
where FE;j, is the energy, associated with the cell with indexes {1, j, k}:

Eijk = Eviji + Ewijk + ETijk

o 1| (2252 > 7 97 YA Y.,2
Evijr, = 2 [<hx iy B >i+1/2jk + (hm iy Bapv >ij+1/2k

(w*)?

)

1 -
Ewijk = 5 [hxhyAnpn :|
ijk+1/2
Erij, = [hxhy(Anp)CpT]ijk .
Applying to E;j; differentiation in time yields with the use of equations (5.2.1),
(5.2.2), (5.2.3), and (5.3.3) (dissipative P- and K-terms are omitted)

OFE; 1,
8:53 = b, — bl — bl — D + 5 + b0, (B.2)
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where
P £ T T -
= (P UZRV IV Zhy, U (B.3a)
i+1/2jk ij+1/2k
_ —
b{?k = [hyx (U%E + uhxmnmAnu >L+1/2jk
+ A (o, + uhymﬁyAnv")LjH/% (B.3b)

blik = (hohyAgpeyaT),

= { )R UBT" + IV + by () A, T }Jk (B.3c)
by, = [hahy Dpp"w® (aw®)]ijs1 /2 =
[y U600 + b Vo0 + byl Agw® i1 o (B.3d)
b;’}k - (h_"’“’xh_nyéﬁn>i+1/2jk - <h_zyh_nyéy¢n>ij+1/2k

+ (hahyAgp) i1 <@> (B.3e)

P/ ik

bf}’“ T (h_xxh_meém)m/ij a <h_"’“’yh_nyéy¢> ij+1/2k
+ <hzhy%An¢> ) (B.3f)
ijk+1/2

For energy conservation, the right hand terms in (B.2) should at the summation
either transform to surface integrals as full differences or mutually annihilate in
neighboring nodes.

In (B.3a), an equivalence holds (equivalence "~" is defined in Appendix A) for the
first term
R 2 — Y —
(hmethyvz ) ~ (hU" 2RV
i+1/2jk i+1/25+1/2k
and analogous equivalence holds for the second term. As a result, (B.3a) transforms
to a surface integral.

In (B.3b), equivalences are valid

(P uhormi” Ay’ ~ (R @ Ay -

i+1/2jk i+1/2jk+1/2
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— u2 l — UQI
<hy hymn An_> ~ |hghymnAy | —hy" — :
2 i+1/25k+1/2 hy 2 ijk+1/2

Analogically,

—
(h_yvh mi’ A vn> ~ |hzh,mnA ih_xyﬁ .
v T 12k v "\hy "2 -
ijk+1/2

Thus,

B 7T 7Y .
bijn ~ (hy Ué‘”E)iH/ij + (h"” V%E) ij+1/2k + (hohymnAnE)jy1/5 ~

(b USE + Vo, + ohymid ) y
ij

Addition to this relationship of the identity 0 = (E D);;, where

Dige = (8 (AU) +8, (A'V) + Ay (hahymi)] =0 (B.4)

is equal to zero due to (5.1.8), results in

bk~ [0 (R E°U) + 8, (RVE'V) + &y (hahy B'mi) |
ij

The discrete divergence of a vector on the right side will give at the summation a

surface integral.

Analogical addition of identity 0 = ¢,T'D to (B.3c) yields

i = (00 ("G T°0) 43, (A6 T"V) + 8, (hahyi Tmi)|

Quite similar is also transformation of (B.3d) to a divergent form. First, with the
help of (A.7)

w
bijk

(U"he"w™" 60w® i1 jik41 2+ (V Ry w5 8yw® )i 1 jok 1 2 + (hahymi) ™" Ayw®) i

5\2
_ (Unh—my 5, (w?)

> 5)2
2 i+1/25k+1/2

(w

+<V"h—;(sy ) :
ij+1/2k+1/2

5\2
+ (hxhym—ﬁnAn (W)

)z’jk

_ )2 — 5\2" )2
~ (thyax (w 2) ) +<Vhy 5y%) +<hzhym7'7An (w 2) ) .
i+1/2jk ij+1/2k ijk+1/2
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A full divergence results from this relationship after addition of identity 0 =
D(w®)2" /2.

The relation (B.3e) can be used for specification of discrete representation of the
energy conversion term RTw/p. First, (B3.e) is presented in the form

o _ g1 2
bk = bij + b
where

. . — — . A RTw
bl = — (B, 7, UG, " — (1 1, VG, P hohyApp), 0 | ——

corresponds to the exact gradient G, and
b?jk = - (h_th_ny(éz - @x)¢") - (h_yxh_yyv(éy - Gy)@”) =

i+1/2jk ijr1/2k

— [ (oapBge™ = 5" B0")| [ (0pBe™ 50 B )|

i+1/25k ij+1/2k

represents a modification due to approximation G > G.

Application of the equivalences (A.8) to biljk results in

o RTw
bzljk ~ [hxhy(Anp) <<PG+ "V + —>] ;
p ijk

which can be presented with the help of (5.1.14) as
RTw
bijk ~ [hmhy (—@an + (Anp)—>] .
p ijk

Using equivalences (A.7) and (A.5), the first term can be transformed further:

- (hlhywnAﬂw)ijk ~ T (hxhy‘PAnwn)iij/Q ~ (hzhywnAﬂ(p)ijk :

Thus,
_ RTw
o oty (78,0 4 22|
p ijk

The term b?jk can be transformed, applying to the first terms in the round brackets
equivalence (A.7) twice in respect of :
b~ = By (T00" - udep”) By — B (FTop" - v3,p") By
L Y =P wP) Sn® iv1/2ik L0 yP yb ) Sn¥ ij+1/2k
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hy" o hy' v
TAH (6zpApu) App TAn (6ypAyv) Ay

i+1/2jk ij+1/2k

1 — &L — £
~ =7 (7B GapBgu)” + ha" By (0,pA0)") Ay "
Thus,

_ RTw
b;.pjk ~ [hxhy <w”An<p + (Anp)7>] » —
ij

!

4 [(h_yxA" wsz”Uy + h_fL’yAn (5ypAnv)y> AH‘P}

ik
This expression cannot be simplified further, and for energy conservation the right
side should vanish to give

<@> :_<QM> (B.5q)
D Jijk App ijk
where
Ty Ay (OupBgtt) + hia’ Ay (8,p000)
Qijr = Wiy — Lol e 4hyhx Ale (B.5b)
v ijk

Finally, with the help of (A.8) and (5.2.12), an equivalence follows for (B.3f):

bf;k ~ (hahy)ij {[¢(Anp)é+ “V]ijk — (WAn¢)ijk+1/2} ;
which can be further transformed with the help of (A.7) to

A Apw
b%k ~ (hahydAnp)ijk <G+ v+ AL) ‘
nP / ijk

Due to (5.1.14), expression in the large round brackets is zero.

Thus, we have shown that energy is conserved in the employed discretization
scheme. A single non-trivial additional relationship, required for energy conser-
vation, is the expression (B.5) for the energy-conversion term.
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Appendix C
Orthogonal bases

Horizontal bases X and Y

For X and Y the discrete normalized cosine bases are employed,

( m sq=1
\ % ,q = Nlon
(v "=
Y, = 2605[”(]';};((;2/_(?“71” 7 =2,..Nlat — 1 (C.1h)
| \/%T;il) .r = Nlat

They are solutions of the eigen-problems (see (5.3.12))
(Each) = _>\qu ) (Eer) = _>\Zr/Yr )

where and X2, A/ are

4 T qg—1 4 ™ r—1
M=o sin? (2 ) - sin? () (i
T ()2 Aa? (2 Nzon—1> T (hy)2Ay? <2 Nlat—l) (G1e)

Two successive cosine transformations perform the identity transformation: XX = I,
YY = I, which means that the inverse transformations coincide with the direct
transformations

X'=x, v'l=v. (C.2)

Vertical basis.

The eigenvalue-problem for vertical Laplacian (see (5.3.12)) is

Z(ﬁn)kk'Ek's = =M Egs , (C.3)
k/

with £, presented by (5.3.9c). With the help of transformation
Eys = eks/ V <Ap>57 (04)
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The equation (C.3) can be presented in the symmetrical form

k+1
Z My pers=—Nlegs, k, s = 1,..,Nlev, (C.5)
k'=k—1

where M is a symmetrical tridiagonal matrix

Br—1/2 + Brt1/2 Brt1/2
M — — .M - M — ,
H (Ap) R T (A (Ap) k) 2
(C.6a)
<p>i+1/2
Brr1/2 = —= —— , (C.6b)
<Hn>z+1/2<Ap>k+1/2
fork = 1,....,Nlon — 1,
and

MNlev,Nlev = _MNle'ufl,Nlev . (060)

This is a negative semi-definite matrix: it has one (with index s = 1 by agreement,)
null-eigenvalue
N =0

with the corresponding eigenvector

ers = c\/ (Ap)s,
where ¢ is constant, whereas other eigenvalues are real and positive A1 > 0,
s = 2,...,Nlon.
Inverse to e is the matrix
-1
€ — €k

and thus, inverse of E in accordance with (C.4) is
B! = Bphier, (1)

Except the first one, eigenvectors and eigenvalues must be solved from (C.3) nu-
merically. There exist multiple recipes and ready free-ware for computation of
eigenvectors and eigenvalues of symmetric, tri-diagonal, negative/semi-negative
matrixes. In the NH HIRLAM the routine tgli from Recipes (Press et al, 1992)
is applied.
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Appendix D

Iterative algorithm for lateral boundary forces f

The derivation of iterative equations (5.3.15), (5.3.16) is similar for all four groups
of coefﬁcients fal®) - fer@®) gyl fyr() and we will follow in detail the derivation
of f70) from the ﬁrst cond1t1on in (5.3.11e). Applying to this relationship the
Fourier transformation in z and 7 coordinates, Y 'E !, and using (5.3.13) for
presentation of ¢, we get

A Z - X190 =a7; - (D.1)
Let us present ¢ in (5.3.14) with explicitly exposed f=H!)

5 cxf'xl(l)X 1 —_
M =~ 3T gon e (D-2)
a MY RP VD VR

where the last term represents the remaining part of (5.3.14), including all other
boundary coefficients f2r(), ful)  gur) and 4. Substitution of (D.2) into (D.1)
and making use of ¢ = 2/((h;)Az) results in

- 1 X X
zl(1) - ~xl 2g — g 7 D.3
f 8%5 (ars zq: <hx>A qurs ) ( )
where (x X1, X1
x _ 29 — lq
s =T 22 NN AT

The explicit presentation of s, with the help of (C.1a) yields (5.3.17a).

The equation (D.3) includes unknown coefficients f and 7 also on the right side, and
thus, for the specification of boundary coefficients, similar equations are needed for
f on other lateral walls, and for -y, and the arising system should be considered and
solved in corpore. However, the second, summation term on the right hand of (D.3)
is small for smooth ¢*'(®), which assumes smoothness of the volume-distributed
source A” and boundary gradients a. In Fourier terms, smoothness of ¢ means
that the coefficients szl(l) are essentially different from zero for small indexes ¢
only(!). For very small ¢,r, s which assume a very narrow spectrum & of normal

Tt is worth of pointing out, that for small ¢, the first term in the right hand sum
approximates the derivative of the continuous cosine at the zero, which is the continuous
sine at the zero, which is zero.
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gradients (i.e., extreme smoothness of a), and for Nlon, Nlat — oo, which means
continuous limit of the model, one has

Xog — Xyg

hde 0

and, as a consequence, N
foLl) gt (D.4)

which yields the first relationship in (5.3.7).

For smooth A" and a, but for finite Nlon, Nlat, Nlev, the second term in (D.3) is
still small, and it can be approximated in the iterative scheme from the previous
iteration (I — 1):

~ 1 Xog — Xig ~
() — = | zwl _ § : 2q 1q 7xi(1-1) D
f S%s <ars - <hI>AZE ¢qrs ) : ( 5)
Presenting in (D.4)
f'zl(l) _ le(lfl) + 6fxl(l) ’ (DG)
we obtain
e 1 Xo, — X, ~
zl(l) — = | xxl § : 2q 1g 7(1-1)
5f 372«:5 (a’rs - (hI>AZE ¢qrs ) . (D7)

(Note the full coefficient of the previous iteration ¢(:"Y on the right side). This
equation is the equation (5.3.16a), written in a different way.

The first iterative solution of (D.6) - (D.7) is

SISO R

w=ag/sy (D-8)
which already takes into account the finite resolution of the model. As 0 < s%,, s7s

< 1 for finite Nlon, Nlat, the spectral coefficients (D.8) are larger than predicted
by the smooth approximation (D.4).
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