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Introdu
tionPart II 
ontinues the des
ription of the numeri
al model of atmospheri
 dy-nami
s, designed as the nonhydrostati
 extension to the hydrostati
 kernelof HIRLAM. The theoreti
al 
on
ept, initiated in Part I, will be brought tonumeri
al 
odes. The anelasti
 hybrid�
oordinate model is formulated bothin the 
ontinuous and dis
rete representations, and the numeri
al 
ode withthe expli
it�Eulerian time stepping s
heme is implemented in the HIRLAMenvironment. The paper ends with numeri
al examples, demonstrating the
apabilities of the model.The numeri
al 
ode is based on the former results, obtained by Xue andThorpe (1991), Miranda and James (1992), and, with respe
t to pressureadjustment, Rõõm (1997). However, there are several modi�
ations in 
om-parison with those papers. Instead of the sigma 
oordinates, the presentmodel makes use of the more general hybrid 
oordinates of HIRLAM. Also,the whole verti
al extent of the atmosphere is in
orporated, and there isno arti�
ial upper boundary in the present approa
h. However, the most1



fundamental di�eren
e is in the level and mode of simpli�
ations. In theabove-
ited papers the Miller-Pear
e variant (Miller and Pear
e, 1974) is ap-plied, whi
h makes use of the ba
kground separation and linearization ofthe energy 
onversion term. We make use of the more general White model(White, 1989) without linearization in that term. At the same time, somelinearization is introdu
ed at surfa
e pressure handling, whi
h is needed forsurfa
e pressure adjustment.In the development of numeri
al 
ode, the main attention is paid to the 
re-ation of the ellipti
 solver for the bari
 geopotential equation. It is di�erentfrom the hydrostati
 semi-impli
it s
heme whi
h makes use of the Helmholtzequation. In this 
ase we have to deal with the Poisson equation. The maindi�eren
e is that the Poisson equation does not have any large diagonal partlike the Helmholtz equation does, and, as a result, the iterative s
heme of thelatter is not appli
able here. The present solution algorithm is based on thes
heme, initiated by Xue and Thorpe (1991), and further elaborated for three-dimensional domain by Miranda and James (1992). The essential quality ofthat s
heme is the appli
ation of fast dis
rete Fourier transformation in hori-zontal with 
onsequent numeri
al inversion of one-dimensional Lapla
ians forea
h Fourier mode in verti
al. The lateral boundary�
ondition treatment intheir approa
h follows Williams (1969). In this approa
h we have gone onestep further, and apply an orthogonal basis in all three 
oordinates, in
ludingthe verti
al hybrid 
oordinate. The nonhomogeneous boundary 
onditionsare handled by introdu
tion of singular sour
es on lateral and bottom bound-aries. Due to su
h a modi�
ation, the developed inversion algorithm be
omesa rather universal tool for solution of Poisson equations in horizontally re
t-angular domains with general boundary 
onditions. At the same time, thes
heme is not more time 
onsuming than the original Xue-Thorpe approa
h.The hybrid-
oordinate representation of the nonhydrostati
 model followsthe notation of the hydrostati
 HIRLAM, presented in the Manual (Källén1996). A few ex
eptions are:(i) instead of ~�h, the notation v will be used for the horizontal wind velo
ity.(ii) instead of RdT� , notation RT (with the "moist" R and true T ) will beused; { = R=
p 
orresponds to moist air.(iii) Spe
ial notation m � �p=�� is used.2



(iv) Energy 
onservation, disregarded by the hydrostati
 s
heme in some mi-nor terms of adiabati
 dynami
s, is restored following Haltiner and Williams(1980).The se
tion and formula numbering is 
ontinued from Part I. The �rst se
tionin this part has number 4; "(3.4.1)" represents referen
e to the formula (3.4.1)in se
tion 3 of Part I, et
.4 Continuous anelasti
 hybrid-
oordinate model4.1 Diagnosti
sThe verti
al �-
oordinate 0 < � < 1 is de�ned via mapping � ! p:p = A(�) +B(�)p0 : (4:1:1)where p0(x; t) is a given (�xed or externally driven) ba
kground surfa
e pres-sure �eld, and A(�) � 0, B(�) � 0 are the appropriate weights, whi
hsatisfy boundary 
onditionsA(0) = A(1) = 0 ; B(0) = 0 ; B(1) = 1 : (4:1:2)Thus, the verti
al domain in the pressure 
oordinates is (3.4.1), and � = 1
orresponds to p = p0.The horizontal domain is a part of the globe with spheri
al 
oordinates f�; �g�� < � < � ; � � < � < � : (4:1:3)However, the horizontal 
oordinates, used at the de�nition of gradient oper-ators, are x = a� and y = a� ; with a as the mean radius of the Earth. thephysi
al di�eren
es along the parallel and meridian aredX = a 
os �d� = hxdx dY = ad� = hydy ; (4:1:4)where hx = 
os � ; hy = 1are the metri
al 
oe�
ients. Thus, the 
urvilinear hybrid 
oordinates arefx ; y ; � g, whereas the velo
ity 
omponents are u = hxdx=dt, v = hydy=dt,_� = d�=dt. 3



The hybrid-
oordinate densitym is related to the pressure-
oordinate densityn via md� = ndp, and for the anelasti
 model with n = 1m = �p�� : (4:1:5)In a

ordan
e with the de�nition (4.1.1), m depends on time (via p0), andthe 
ontinuity equation for it is�m�t +r � (mv) + � _�m�� = 0 ; (4:1:6)where the �-
oordinate "horizontal" divergen
e of ve
tor a = fax; ayg isr � a = 1hxhy ��hyax�x + �hxay�y � : (4:1:7)From the de�nition (4.1.1)! = m _� +B(�)��p0�t + v � rp0� ; (4:1:8)or alternatively ! = m _� + v � rp+ �p�t : (4:1:80)Condition (2.4.3) and (3.4.2') give with the help of (4.1.8) boundary 
ondi-tions for _�: _� = 0 at � = 0 and � = 1 : (4:1:9)As a 
onsequen
e, integration of (4.1.6) in verti
al gives�p0�t + Z 10 r � (mv)d� = 0 ; (4:1:10)whereas integration of (4.1.6) in the the domain [�; 1℄ yieldsm _� = (1� B)�p0�t + Z 1� r � (mv)d� : (4:1:11)Using (4.1.8'), the 
ontinuity equation (4.1.6) 
an be presented in the formĜ+ � v + 1m�!�� = 0 ; (4:1:12)4



where Ĝ+ is the �-
oordinate presentation of the pressure-
oordinate "hori-zontal" divergen
eĜ+ � v � rp � v = 1mr � (mv)� 1m�(v � rp)�� ; (4:1:13)whi
h 
an be simpli�ed toĜ+ � v = r � v � 1m�v�� � rp ; (4:1:130)where the "horizontal" hybrid�
oordinate gradient isr = ix 1hx ��x + iy 1hy ��y : (4:1:14)Thus, (4.1.12) is the hybrid-
oordinate presentation of the anelasti
 
ondition(3.2.5).The "horizontal" pressure-
oordinate gradient is presented asĜ' � rp' = r'� 1m�'��rp : (4:1:15)The operators Ĝ and Ĝ+ are skew symmetri
 
onjugates of ea
h other:ZV dV m'Ĝ+ � a = � ZV dV ma � Ĝ' (4:1:16)for optional �nite a and ', where dV = hxhydxdyd� , and V is the domain ofintegration. This relationship is useful in the dis
rete 
ase for establishmentof proper symmetry of the operators Ĝ and Ĝ+.
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4.2 Dynami
sIn the Eulerian presentation the equations of motion (3.2.3) � (3.2.4) are,after separation of momentum adve
tion terms into the gradient, solenoidaland verti
al parts, �u�t = Fu � bGx� ; (4:2:1)�v�t = Fv � bGy� ; (4:2:2)�T�t = FT ; (4:2:3)where bGx and bGy are the 
omponents of Ĝ:bGx� � 1hx ����x�p = 1hx ����x � 1m �p�x ������ ; (4:2:4a)bGy� � 1hy ����y�p = 1hy ����y � 1m �p�y ������ : (4:2:4b)Fu, Fv and FT are the hydrostati
 tenden
ies, whi
h are those of the hydro-stati
 HIRLAM (with an ex
eption that ' is the thermi
 geopotential ratherthan the hydrostati
 one):Fu = (f + �) v � _��u�� � 1hx �RT � ln p�x + ��x ('+ E)�+ Pu +Ku; (4:2:5)Fv = (f + �)u� _��v�� � 1hy �RT � ln p�y + ��y ('+ E)�+ Pv +Kv; (4:2:6)FT = � uhx �T�x � vhy �T�y � _��T�� + {T!p + PT +KT : (4:2:7)The vorti
ity and energy terms are here� = 1hxhy ��hyv�x � �hxu�y � (4:2:8)E = 12(u2 + v2) ; (4:2:9)6



and Px, Kx represent the tenden
ies from physi
al parametrization and hor-izontal di�usion (the sum Px +Kx 
orresponds to Ax in (3.1.6) - (3.1.7)).The thermi
 geopotential (3.4.4b) is in the hybrid 
oordinates' = gh+ Z 1� RT md�0p : (4:2:10)The verti
al momentum equation (3.2.2), whi
h is required for the dedu
tionof the �-equation, is in hybrid 
oordinates (and in the Eulerian presentation)�!�t = F! � p2mH2 ���� (4:2:11)where F! = A! � v � r! � _��!�� : (4:2:12)Di�erentiation of the 
ontinuity equation (4.1.12) in time, and eliminationof velo
ity tenden
ies with the help of (4.2.1), (4.2.2) and (4.2.11), yields the�-
oordinate form of ellipti
 equation (3.2.7):L� � Ĝ+ � Ĝ�+ 1m ��� � p2mH2 ����� = Av ; (4:2:13a)where the volume-distributed sour
e fun
tion isAv = Ĝ+ � Fv + 1m�F!�� ; (4:2:13b)and Fv = fFu; Fvg.The boundary 
onditions (3.3.4), (3.4.11), and (3.3.6) be
ome����n�� = a�; (4:2:14)r � Z 10 (Ĝ�)md� = r � Z 10 Fvmd� � �2p0�t2 ; (4:2:15)Z 10 j�jmd� <1; if Z 10 jAjmd� <1: (4:2:16)They de�ne the stru
ture of the boundary-distributed singular sour
e fun
-tion, whi
h is the same as (3.3.7)Ab(x; �; t) = 
(x; t)Æ(�; 1) + f(x�; �; t)Æ(x;x�) : (4:2:17)7



5 Dis
rete anelasti
 hybrid-
oordinate modelDis
retization takes advantage of the hydrostati
 HIRLAM framework to fullextent. Some minor 
hanges are introdu
ed into 
omputation of the dis
retethermi
 geopotential with the aim to in
rease smoothness of the sour
e Av,whi
h is a

ompanied with alterations in energy 
onversion term. However,all these 
hanges are not too extensive.The grid is the 
lassi
al staggered (Arakawa C) grid. The surfa
es i =1=2; Nlon + 1=2, and j = 1=2; Nlat + 1=2 are lateral boundaries, k = 1=2
orresponds to the level � = 0 (outer spa
e) and k = Nlev+1=2 
orrespondsto � = 1 (model surfa
e p = p0). It is 
onvenient to 
onsider ea
h small 
ubewith the 
enter at fi; j; kg and fa
ets at fi � 1=2; j; kg, fi; j � 1=2; kg, andfi; j; k � 1=2g, as an elementary pseudo-parti
le. The dis
rete s
alar �elds:temperature T , spe
i�
 humidity q, et
., and bari
 geopotential � are lo
atedin parti
le 
enters: Tijk; �ijk; qijk;whereas the 
omponents of ve
tors u, v, ! (and m _�, w), determining in-and out�ows on the parti
le boundaries, are lo
ated in the 
enters of parti
lefa
ets: ui+1=2jk; vij+1=2k; !ijk+1=2 ; (m _�)ijk+1=2 :Also, the dis
rete pressure is lo
ated in the 
enters of horizontal fa
ets:pijk+1=2;and, 
onsequently, the pressure di�eren
e belongs to s
alars:(��p)ijk = pijk+1=2 � pijk�1=2 :Standard notation is used for averaging and di�eren
e operators, and for�nite di�eren
es:A�l = Al�1=2 + Al+1=22 ; A�l+1=2 = Al + Ai+12 ;(Æ�A)l = Al+1=2 � Al�1=2�l+1=2 � �l�1=2 ; (Æ�A)l+1=2 = Al+1 � Al�l+1 � �l ;(��A)l = Al+1=2 � Al�1=2 ; (��A)l+1=2 = Al+1 � Al ;where � is for x, y, or �. 8



Horizontal averaging over the kth �-level is denoted ashaik = 1NlonNlatXij aijk :5.1 Diagnosti
sThe pressure is pijk+1=2 = Ak+1=2 +Bk+1=2p0ij ; (5:1:1)where Ak+1=2 = A(�k+1=2) ; Bk+1=2 = B(�k+1=2) ; (5:1:2a)A1=2 = ANlev+1=2 = 0 ; B1=2 = 0 ; BNlev+1=2 = 1 : (5:1:2b)The 
oordinate di�eren
es are �x = a��; �y = a��; ��. The physi
aldi�eren
es along the horizontal 
oordinate axes are�Xij = hxij�x ; �Yij = hyij�y : (5:1:3)The horizontal divergen
e, a �nite-di�eren
e analogue of (4.1.7), is(r � a)ijk = 1(hxhy)ij hÆx(hyxax) + Æy(hxyay)iijk ; (5:1:4)whereas the horizontal gradient of a s
alar aijk has 
omponents[(ra)x℄i+1=2jk = 1hxi+1=2j (Æxa)i+1=2jk = ai+1jk � aijkhxi+1=2j�x ; (5:1:5a)[(ra)y℄ij+1=2k = 1hyij+1=2 (Æya)ij+1=2k = aij+1k � aijkhyij+1=2�y : (5:1:5b)In these di�eren
e formulae we have maintained the original, formal, two-dimensional stru
ture of hx and hy, used in HIRLAM (both for better 
o-in
iden
e with the HIRLAM formalism and for larger symmetry), thougha
tually hxij = hxj depends on the meridional index only, whereas hyij = 1.The auxiliary ve
tor V = fUi+1=2jk; Vij+1=2kg is:Ui+1=2jk = (��pxu)i+1=2jk ; Vij+1=2k = ���pyu�ij+1=2k : (5:1:6)9



The dis
rete analogue of (4.1.11) will then be(m _�)ijk+1=2 = (1� Bk+1=2)�p0�t + NlevXk0=k+1(r �V)ijk0 ; (5:1:7)from whi
h the re
urren
e formula (the dis
rete form of (4.1.6)) follows(m _�)ijk�1=2 = (m _�)ijk+1=2 + (r �V)ijk +�Bk �p0ij�t ; (5:1:8a)(m _�)ijNlev+1=2 = 0 : (5:1:8b)The verti
ally integrated mass balan
e 
ondition (4.1.10) be
omes�p0ij�t + NlevXk=1 (r �V)ijk = 0 : (5:1:9)The formula (4.1.8') for omega-velo
ity is!ijk+1=2 = (m _�)ijk+1=2 + (v� � rp)ijk+1=2 + �pijk+1=2�t ; (5:1:10)where we de�ne(v� � rp)ijk+1=2 � 1(hxhy)ij �hyxu�Æxpx + hxyv�Æypy�ijk+1=2 : (5:1:11)For the operator Ĝ+ a dis
rete presentation follows from these de�nitions(Ĝ+ � v)ijk = [r �V���(v� � rp)℄ijk(��p)ijk= 1(��phxhy)ijk hÆx �hyx��pxu���� �hyxu�Æxpx�iijk+ 1(��phxhy)ijk hÆy �hxy��pyv���� �hxyv�Æypy�iijk : (5:1:12)This formula 
an be simpli�ed (Appendix A) to(Ĝ+�v)ijk = 1(hxhy)ij "Æx(hyxu)� hyx(��u)Æxpx���p + Æy(hxyv)� hxy(��v)Æypy���p #ijk ;(5:1:120)10



whi
h is a dis
rete analogue for (4.1.13'). The 
onjugated to (5.1.12) gradientis (for details see Appendix A)(Ĝx�)i+1=2jk = 1hxx "Æx�� (Æxp)���x���px #i+1=2jk ; (5:1:13a)(Ĝy�)ij+1=2k = 1hyy "Æy�� (Æyp)���y���py #ij+1=2k : (5:1:13b)The dis
rete analogue of (4.1.12), 
onsistent with (5.1.8) - (5.1.12), is�Ĝ+ � v + ��!��p�ijk = 0 : (5:1:14)The thermi
 geopotential (4.2.10) is'ijk�1=2 = ghij + NlevXk0=k(RT )ijk0�ijk0 ; (5:1:15)where�ijk = (�� ln p)ijk = ln pijk+1=2 � ln pijk�1=2 ; k 6= 1; and �ij1 = 2 ln 2 :(5:1:16)The thermi
 geopotential 
an be evaluated also from the re
urren
e'ijNlev+1=2 = ghij ;'�ijk = 'ijk+1=2 + 12(RT )ijk�ijk ; (5:1:17)'ijk�1=2 = '�ijk + 12(RT )ijk�ijk :Coe�
ients �ijk are di�erent from those, employed in the 
ommon hydro-stati
 HIRLAM, and thus, the thermi
 geopotential diagnosti
s is di�erent.Su
h a modi�
ation is required for redu
tion of numeri
al noise at the 
om-putation of the divergen
e Ĝ+ �(Ĝ'), whi
h 
onstitutes a major 
ontributionto the sour
e Av in the ellipti
 equation (4.2.13).11



5.2 Dynami
sThe equations of motion (4.2.1) � (4.2.3) are in the dis
rete model�ut+�t � ut��t2�t �i+1=2jk = Fui+1=2jk � ( bGx�)i+1=2jk ; (5:2:1)�vt+�t � vt��t2�t �ij+1=2k = Fvij+1=2k � ( bGy�)i+1=2jk ; (5:2:2)�T t+�t � T t��t2�t �ijk = FT ijk : (5:2:3)The 
omponents of the hydrostati
 velo
ity tenden
y 
orrespond to the timelevel t:Fui+1=2jk = �" 1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !#i+1=2jk�( eGx'�)i+1=2jk + (Pu +Ku)i+1=2jk ; (5:2:4)Fvij+1=2k = �" 1hyy  ZhyxU yx + ÆyE + hym _�y��v���py !#ij+1=2k�( eGy'�)ij+1=2k + (Pv +Kv)ij+1=2k ; (5:2:5)whereZi+1=2j+1=2k = hfhxhyxy + Æx(hyyv)� Æy(hxxu)ii+1=2j+1=2k(hxhy��pxy)i+1=2j+1=2k (5:2:6)Eijk = 12 � 1hy hyxu2x + 1hxhxyv2y�ijk ; (5:2:7)and ( eGx'�)i+1=2jk = 1hxx �Æx'� � Æxp���'x��px �i+1=2jk : (5:2:8a)( eGx'�)ij+1=2k = 1hyy �Æy'� � Æyp���'y��py �ij+1=2k : (5:2:8b)12



The temperature tenden
y isFT ijk = �(âT )ijk + �{T!p �ijk + (PT +KT )ijk ; (5:2:9)where (âT )ijk = [hyUÆxT x + hxV ÆyT y + hxhy(m _�)��T �℄ijk(hxhy��p)ijk (5:2:10)is the dis
rete temperature-adve
tion term, and Pxijk, Kxijk are tenden
iesfrom physi
al parametrization and horizontal di�usion.Note that the horizontal gradient eG in (5.2.8) is di�erent from Ĝ, de�ned in(5.1.13). The modi�
ation 
onsists in the substitution of terms Æxp��'���and Æyp��'��� , in
luding double verti
al averaging, by more simple, verti-
ally diagonal approximations Æxp���'x and Æyp���'y. Su
h modi�
ationgives rise to the numeri
al smoothness of this term, whi
h is substantial athigh resolutions in the steep orography 
ase.The dis
rete presentation of the energy 
onversion term in (5.2.9) is�RT!p �ijk = ��
��'��p�ijk ; (5:2:11a)where
ijk = !�ijk � "hyx�� (Æxp��u)x + hxy�� (Æyp��v)y4hyhx #ijk : (5:2:11b)This formula is 
onsistent with the dis
rete presentation of the thermi
 geopo-tential (5.1.15) and de�nition (5.2.8), whi
h is proved in Appendix B (see(B.5)), where the overall energeti
s of the dis
rete model is 
he
ked. Theterm in the square bra
kets is 
aused by the use of approximation (5.2.8)instead of (5.1.13). This term is a se
ond order small quantity as it is pro-portional to a se
ond order verti
al di�eren
e and tends to zero like (��p)2.Ex
ept for very poor verti
al resolution or drasti
 variations of the horizontalwind with height, it 
an be omitted and the energy 
onversion term 
an besimpli�ed to �{T!p �ijk = !�ijk ({T�)ijk(��p)ijk : (5:2:110)13



5.3 The ellipti
 equation for bari
 geopotentialFor establishment of the proper form of ellipti
 equation we also need thedis
rete analogue of the omega-equation (4.2.11) - (4.2.12). Pro
eeding fromenergy 
onservation, it is 
orre
t to start from the de�nition!ijk+1=2 = ��wspH� �ijk+1=2 ; (5:3:1)where wsijk+1=2 is the hydrostati
 verti
al velo
ity, whi
h does make use of thetenden
y equation (
omes from (3.1.2) with the help of (2.2.1') and (3.2.1))�wst+�t � wst��t2�t �ijk+1=2 = � pH� �����p��ijk+1=2�(âws)ijk+1=2 + (Pw +Kw)ijk+1=2 ; (5:3:2a)with âws representing the transport of verti
al velo
ity(âws)ijk+1=2 = [hyU�Æxwsx + hxV �Æywsy + hxhym _����ws�℄ijk+1=2(hxhy��p�)ijk+1=2 ; (5:3:2b)and Pw and Kw representing the physi
al parametrization and spe
tral dif-fusion terms for ws. The 
orresponden
e of (5.3.2) to energy 
onservation isestablished in Appendix B.Di�erentiation of (5.3.1) in time gives�!t+�t � !t��t2�t �ijk+1=2 = F!ijk+1=2 � "� pH��2 �����p�#ijk+1=2 ; (5:3:3a)whereF!ijk+1=2 = � pH� (âws �Kw � Pw)�ijk+1=2 + � !T �FT ��ijk+1=2 : (5:3:3b)Di�erentiation of the dis
rete 
ontinuity equation (5.1.14) in time, and elim-ination of the velo
ity tenden
ies with the help of (5.2.1), (5.2.2), and (5.3.3)yields the dis
rete form of ellipti
 equation:(L�)ijk = Avijk ;14



where the dis
rete ellipti
 operator is(L�)ijk = (Ĝ+ � Ĝ�)ijk + � 1��p�� � p2(H�)2 �����p���ijk ; (5:3:4a)and the volume-distributed sour
e fun
tion isAvjik = (Ĝ+ � Fv)ijk + ���F!��p �ijk : (5:3:4b)Here Fv = fFui+1=2jk; Fvij+1=2kg. Keeping in mind a solution of thisequation in the orthogonal basis, we will supplement the sour
e fun
tionwith a singular, boundary-distributed sour
e Ab, and 
onsider the equationin the form (L�)ijk = Aijk ; (5:3:4
)where A�ijk = Avjik + Abijk : (5:3:4d)The boundary-distributed sour
e fun
tion is a dis
rete analogue of (4.2.17)Abjik = fxljk
xÆi;1 � fxrjk 
xÆi;Nlon + f ylik 
yÆj;1 � f yrik 
yÆj;Nlat + 
ijÆk;Nlev ; (5:3:4e)where 
x = 2hhxi�x ; dy = 2hhyi�yand Æi;j is the Krone
ker symbol. Note that fun
tions 
xÆi;i0, 
yÆj;j0 representthe dis
rete analogues of the Dira
 delta-fun
tion Æ(x;x�) on the x- andy-walls, respe
tively.The amplitudes of lateral sour
es f and bottom sour
e 
 are determined bynonhomogeneous lateral 
onditions, and verti
al 
ondition, respe
tively.5.3.1 Boundary 
onditions for the ellipti
 equationThe 
ondition of integrability (4.2.16) redu
es in the dis
rete 
ase to arequirement that the solution has no rapidly (exponentially) in
reasing modeat k ! 0. This is a
hieved, employing the eigenfun
tion te
hnique in ��
oordinate. 15



The verti
al 
ondition (mass balan
e 
ondition for �), a dis
rete analogueof (4.2.15), follows, di�erentiating (5.1.9) in time and eliminating the velo
itytenden
ies with the help of (5.2.1) and (5.2.2)(B̂�)ij � NlevXk=1 hÆx �hyx��pxĜx��+ Æy �hxy��pyĜy��iijk = bij ; (5:3:5a)bij = NlevXk=1 hÆx �hyx��pxF̂u� + Æy �hxy��pyF̂v�iijk + �2p0ij�t2 : (5:3:5b)This 
ondition is used for the spe
i�
ation of 
oe�
ients 
ij in the boundarysour
e (5.3.4e).The lateral boundary 
ondition (4.2.14) be
omes in the dis
rete 
ase� 1hxx Æx��3=2;jk = axljk ; � 1hxx Æx��Nlon�1=2;jk = axrjk ; (5:3:6a) 1hyy Æy�!i;3=2;k = aylik ;  1hyy Æy�!i;Nlat�=2;k = ayrik ; (5:3:6b)where 
oe�
ients a are known. These 
onditions will determine the 
oe�-
ients f in the boundary sour
e (5.3.4e).In a parti
ular 
ase of smooth (along boundary) a and largeNlon; Nlat; Nlev,
oe�
ients f in (5.3.4e) are related to the boundary gradients expli
itly (Ap-pendix D) fxljk = axljk ; fxrjk = axrjk ; f ylik = aylik ; f yrik = ayrik : (5:3:7)Consequently, the boundary sour
e (5.3.4e) transforms in the 
ontinuouslimit to (4.2.17) with f(x�; �; t) = �a� ; (5:3:70)where a� represents the given normal boundary gradient of � (see (3.3.4)).5.3.2 Solver for the ellipti
 equationThe general idea is to solve the equation (5.3.4
) in the tree-dimensional or-thogonal basis for given Av and for Ab with optional 
oe�
ients f and 
, andthen determine 
oe�
ients 
 from (5.3.5), and f from (5.3.6). For appli
ation16



of the basis in all three 
oordinates, equation (5.3.4) and 
ondition (5.3.5)have to be represented as the sums of horizontally homogeneous main partsand horizontally nonhomogeneous perturbations. The main ellipti
 operatoris inverted expli
itly, then the solution is substituted into the perturbationterms and a new improved solution is looked for, repeating the pro
edureuntil the required pre
ision is a
hieved. As the metri
 
oe�
ient hx dependson the spheri
al Earth in the latitude �, the planet's roundness is 
onsideredin this algorithm as a perturbation to the plane geometry. This means thattoo large areas will not be a

essible by the model. In pra
ti
e, integrationareas are limited within a square with 5 000 km long side.Equation (5.3.4
) is presented as(L�)ijk = Aijk � (L0�)ijk ; (5:3:8)where (L�)ijk = (Lx�)ijk + (Ly�)ijk + (L��)ijk ; (5:3:9a)Lx,Ly, and L� are the horizontally homogenized, one-dimensional Lapla
ians(Lx�)ijk = � 1hhxiÆx��2ijk ; (Lx�)ijk = � 1hhyiÆy��2ijk (5:3:9b)(L��)ijk = � 1h��pi�� � hpi2hH�i2 �����p���ijk ; (5:3:9
)and L0 is de�ned as L0 = L � L : (5:3:9d)Analogi
al expansion of the integral 
ondition (5.3.5) to the sum of main andperturbation parts gives (B̂0�)ij = bij � (B̂0�)ij ; (5:3:10a)where B̂0 is the horizontally homogenized part of B̂(B̂0�)ij = hhxihhyi"(Lx + Ly)NlevXk=1 h��pik�k#ij (5:3:10b)and perturbation B̂0 is de�ned as(B̂0�)ij = (B̂�)ij � (B̂0�)ij : (5:3:10
)17



The iterative algorithm is�(0)ijk = 0 at t = 0; and [�(0)ijk℄t = [�(final)ijk ℄t��t at t > 0; (5:3:11a)and for l = 1,2,....(L�(l))ijk = Avijk + Ab(l)ijk � (L0�(l�1))ijk � A(l)ijk; (5:3:11b)(B̂0�(l))ij = bij � (B̂0�(l�1))ij � b(l)ij ; (5:3:11
)where Ab(l) is the iterated boundary sour
eAb(l)jik = fxl(l)jk 
xÆi;1 � fxr(l)jk 
xÆi;Nlon + f yl(l)ik 
yÆj;1 � f yr(l)ik 
yÆj;Nlat + 
(l)ij Æk;Nlev(5:3:11d)with the iterated 
oe�
ients f (l), 
(l), whi
h have to be spe
i�ed from theiterated versions of 
onditions (5.3.6):� 1hxx Æx�(l)�3=2;jk = axljk ; � 1hxx Æx�(l)�Nlon�1=2;jk = axrjk ; (5:3:11e) 1hyy Æy�(l)!i;3=2;k = aylik ;  1hyy Æy�(l)!i;Nlat�=2;k = ayrik ; (5:3:11f)and from (5.3.11
), respe
tively.The iterative set of equations (5.3.11) is solved using the three-dimensionalorthogonal basis X 
 Y 
 E, whereX = fXq; q = 1; ::; Nlong = ffXiq; i = 1:::; Nlong; q = 1; :::; Nlong ;Y = fYr; r = 1; ::; NlatgYr = ffYjr; j = 1:::; Nlatg; r = 1; :::; Nlatg ;E = fEs; s = 1; ::; NlevgEs = ffEks; k = 1:::; Nlevg; s = 1; :::; Nlevg ;represent the one-dimensional bases in the x, y and � dimensions, respe
-tively. They are 
hosen as the eigenve
tors of the one-dimensional Lapla-
ians:(LxXq)i = ��xqXiq ; (LyYr)j = ��yrYjr ; (L�Es)k = ���sEks ; (5:3:12)where �xq , �yr , ��s are the 
orresponding eigenvalues.18



For X and Y the dis
rete normalized 
osine bases are employed (see Ap-pendix C), whereas the basis E and eigenvalues �� (they depend on the ver-ti
al temperature distribution in the atmosphere) are spe
i�ed, numeri
allysolving the verti
al eigenvalue problem (ibid).Presenting �(l) in the basis�(l)ijk =Xqrs XiqYjrEks ~�(l)qrs ; (5:3:13)the solution of the equation (5.3.11b) for Fourier 
oe�
ients ~� will be~�(l)qrs = � ~A(l)qrs�xq + �yr + ��s ; (5:3:14a)~A(l)qrs = ~Avqrs � (L̂0�(l�1))qrs+
x ~fxlrs (l)Xq;1 � 
x ~fxrrs (l)Xq;Nlon + 
y ~f ylqs(l)Yr;1 � 
y ~f yrqs (l)Yr;Nlat + ~
(l)qrE�1s;Klev;(5:3:14b)where ~Av, L̂0�(l�1) are the Fourier 
oe�
ients of the volume distributedsour
e and perturbation term~Avqrs =Xijk XqiXrjE�1sk Avijk ; (L̂0�(l�1))qrs =Xijk XqiXrjE�1sk (L0�(l�1))qrs ;and ~f (l), ~
(l) are the Fourier 
oe�
ients of f (l), 
(l):~fxl=r(l)rs =Xjk YrjE�1sk fxl=r(l)jk ; ~f yl=r(l)qs =Xik XqiE�1sk f yl=r(l)ik ; ~
(l)qr =Xij XqiYrj
(l)ij :Substitution of the solution (5.3.14) into the boundary 
onditions (5.3.11e)- (5.3.11f) yields (for details see Appendix D) an iterative algorithm for theFourier 
oe�
ients of the boundary for
e:~fxlrs (l) = ~fxlrs (l�1) + Æ ~fxlrs (l) ; (5:3:15a)~fxrrs (l) = ~fxrrs (l�1) + Æ ~fxrrs (l) ; (5:3:15b)~f ylqs(l) = ~f ylqs(l�1) + Æ ~f ylqs(l) ; (5:3:15
)19



~f yrqs (l) = ~f yrqs (l�1) + Æ ~f yrqs (l) ; (5:3:15d)where the in
rements areÆ ~fxl(l)rs = 1sxrs "~axlrs � ^� 1hx Æx�(l�1)�3=2;r;s# ; (5:3:16a)Æ ~fxr(l)rs = 1sxrs "~axrrs � ^� 1hx Æx�(l�1)�Nlon�1=2;r;s# ; (5:3:16b)Æ ~f yl(l)qs = 1syqs "~aylqs � ^� 1hy Æy�(l�1)�q;3=2;s# ; (5:3:16
)Æ ~f yr(l)qs = 1syqs "~ayrqs � ^� 1hy Æy�(l�1)�q;Nlat�1=2;s# : (5:3:16d)andsxrs = 1Nlon� 1  Nlon�1Xq=2 �xq�xq + �yr + ��s + 2(hhxi�x)2(�xNlon + �yr + ��s)! ;(5:3:17a)syqs = 1Nlat� 1  Nlat�1Xr=2 �yr�xq + �yr + ��s + 2(hhyi�y)2(�xq + �yNlat + ��s)! :(5:3:17b)In the 
ase of smooth boundary 
onditions and for large grids (Nlon; Nlat;Nlev !1), the square bra
kets in formulae (5.3.16) be
ome zero at l = 2,whi
h yields the 
ase (5.3.7) (Appendix D).After the 
oe�
ients ~f are spe
i�ed from (5.3.15), (5.3.16), the sour
e fun
-tion (5.3.14b) still in
ludes unknown 
oe�
ients ~
, whi
h 
an be solved from(5.3.11
). Transforming this relationship into the basis and using represen-tation (5.3.14) (where ~f (l) are spe
i�ed from (5.3.15)), the expli
it formulafor 
 resultse
(l)qr = 1s�qr 24 ~bqr � ^(B0�(l�1))qrhhxihhyi(�xq + �yr) �Xs 
sA
(l)qrs�xq + �yr + ��s35 ; (5:3:18a)
20



where s�qr =Xs 
sE�1s;lev�xq + �yr + ��s ; 
s =Xk h�pikEks ; (5:3:18b)A
(l) = ~Avqrs � (L̂0�(l�1))qrs+
x ~fxlrs (l)Xq;1 � 
x ~fxrrs (l)Xq;Nlon + 
y ~f ylqs(l)Yr;1 � 
y ~f yrqs (l)Yr;Nlat : (5:3:18
)Thus, the solution of the ellipti
 equation at the lth iteration is (5.3.13),where 
oe�
ients ~� are presented by (5.3.14), with ~f (l)) evaluated from(5.3.15) and 
(l) from (5.3.18). The iterative` pro
ess is stopped at l, forwhi
h: hj�(l) � �(l�1)ji < "hj�(l)ji ; (5:3:19)where " depends on the required pre
ision (The typi
al value in appli
ationis " � 10�3 � 10�4).5.4 Boundary and initial �eldsThe nonhydrostati
 s
heme takes advantage of the Davies' boundary relax-ation s
heme (Davies 1976) of hydrostati
 HIRLAM. Modi�
ations, indu
edby the presen
e of nonhydrostati
 for
e are des
ribed in the following.Hydrostati
 evolution from the time level t � �t to the level t + �t, whenthe boundary relaxation zone (BRZ) is present, is des
ribed by the formula(for �eld u, 
ases of v and T are similar)ut+�t = (1� �)~ut+�t + �ut+�tb ; ~ut+�t = ut��t + 2�tFu ;where � is the weight fun
tion, whi
h is zero beyond the relaxation zone,in
reases smoothly in the relaxation zone towards the boundary, and be
omes� = 1 on the boundary �. Field ~ut+�t is the evolution of u to the levelt+�t from the initial state ut��t when BRZ is absent, while Fu presents thehydrostati
 tenden
y (5.2.4). The fun
tion ut+�tb presents the boundary �eld(whi
h represents the surrounding environment), towards whi
h the internal�eld ut+�t is relaxed and whi
h is always rea
hed by ut+�t on the boundarysurfa
e �. From this formula, the e�e
tive ('boundary relaxed') hydrostati
tenden
ies are F̂u = (1� �)Fu + �ut+�tb � ut��t2�t ; (5:4:1a)21



F̂v = (1� �)Fv + �vt+�tb � vt��t2�t ; (5:4:1b)F̂T = (1� �)FT + �T t+�tb � T t��t2�t : (5:4:1
)The 
orresponding modi�
ations of the nonhydrostati
 equations (5.2.1) -(5.2.3) are ut+�ti+1=2jk � ut��ti+1=2jk2�t = F̂ui+1=2jk � ( bGx�)i+1=2jk ; (5:4:2a)vt+�tij+1=2k � vt��tij+1=2k2�t = F̂vij+1=2k � ( bGy�)i+1=2jk ; (5:4:2b)T t+�tijk � T t��tijk2�t = F̂T ijk : (5:4:2
)The BRZ is not applied to !, and its tenden
y remains (5.3.3). Thanks to thein
lusion of the boundary relaxation in the hydrostati
 tenden
y, the bari
geopotential � takes into 
onsideration all for
es and maintains the anelasti
quality of the model in the whole domain, in
luding the relaxation zone.To establish in (5.4.2a) and (5.4.2b) rigid 
onditions ut+�tj� = ut+�tb , vt+�tj� =vt+�tb , the normal gradient of � has to vanish on �, whi
h yields zero valuefor the boundary fun
tion a in (5.3.6):axljk = 0 ; axrjk = 0 ; aylik = 0 ; ayrik = 0 : (5:4:3)Consequently, the boundary sour
e amplitude f in (5.3.4e), (5.3.11d) be-
omes also zero, and the iteration algorithm (5.3.15) - (5.3.16) is not required.Thus, in the 
ase of the Davies' relaxation s
heme, the lateral boundary valueproblem for � redu
es to the homogeneous Neumann problem.An important quality of the Davies' s
heme is approximation of the singularlateral boundary sour
e Ab (see (4.2.17)) of the 
ontinuous model (withoutBRZ) by the volume-distributed sour
e Av, whi
h in the BRZ approa
hesthe singular limit (4.2.17), if the depth of the BRZ tends to zero. To provethis, we will 
onsider the volume distributed sour
e fun
tion Av in the BRZnear the right wall in x-dire
tion:L� d < x < L ; L = a�22



(Dis
ussion is 
on�ned to this parti
ular 
ase. However, results would bethe same at the other walls). For a su�
iently narrow BRZ, when d ! 0,the most rapidly 
hanging fun
tion in the tenden
ies (5.4.1) is the weightfun
tion �, whi
h gradient be
omes large in the BRZ. As a result, the volume-distributed sour
e fun
tion (5.3.4b) 
an be estimated from (5.4.1a) - (5.4.1b)in the BRZ asAv � �a 1hx ���x where a = Fu � ut+�tb � ut��t2�t : (5:4:4)At the limit d ! 0, � approa
hes the Heaviside fun
tion and, 
onsequently,1hx ���x ! Æ(x; x�);whereas a tends to a� in (3.3.5). Thus, Av approa
hes pre
isely the �rst termof the singular boundary sour
e (4.2.17), with f = � a� (see (3.3.7')) wherea� is determined as (3.3.5).As seen from (5.4.4), the sour
e Av is spe
i�ed in the boundary zone by the"hydrostati
 disbalan
e" a. Extreme values of a should be avoided, as large awould 
ause large amplitude of � near lateral boundaries, whi
h would resultin large normal gradients of � and strong spurious tangential 
ir
ulation inthe boundary zone. As a is mainly driven by the boundary �elds ub; vb; Tband p0, the amplitude of a depends how well the boundary �elds, in
ludingp0, mat
h the hydrostati
 evolution model. Espe
ially sensitive is a to the
hoi
e of the mean surfa
e pressure �eld p0.Two main 
hoi
es, requiring di�erent approa
h, are as follows.a. p0(x; y; t) is taken, along with other boundary �elds ub, vb, and Tb, froma 
oarser, hydrostati
 fore
ast model. In this 
ase a is always small, therewould be no problem with large spurious boundary sour
es, and the integra-tion s
heme (5.4.2a) - (5.4.2
) supported by homogeneous 
onditions (5.4.3),is advantageous. In this s
heme, � and p00 will represent �ne, small-s
ale,nonhydrostati
 
ontributions to the hydrostati
 �elds. The des
ribed ap-proa
h is attra
tive be
ause of its simpli
ity, and it is presently applied asthe basi
 s
heme in NH HIRLAM.b. p0 = p̂0(x; y), where p̂0(x; y) is the mean barometri
 ba
kground pressure(2.5.7
). This approa
h assumes prior spe
i�
ation of the mean temperatureT0(p). For given initial velo
ity and temperature �elds, p̂0 is rather di�erent23



from the a
tual hydrostati
 surfa
e pressure. Consequently, the thermi
 andCoriolis for
es are mutually out of balan
e, hydrostati
 tenden
y be
omeslarge everywhere and a in (5.4.4) be
omes also large. To restore the approx-imate geostrophi
 balan
e in the BRZ, a 
ompensating bari
 geopotentialfor
ing must be added to the hydrostati
 tenden
y before the BRZ is ap-plied. The algorithm here is as follows. The bari
 geopotential is presentedas a sum of the steady �eld �
 and transient 
omponent �0� = �
 + �0 : (5:4:5)The steady 
omponent is spe
i�ed as a solution of the ellipti
 equation (5.3.4)in the homogeneous 
ase, a = 0, nonhomogeneous boundary 
onditionsaxljk = Fu;3=2;j;k ; axrjk = Fu;Nlon�1=2;j;k ; aylik = Fv;i;3=2;k ; ayrik = Fv;i;Nlat�1=2;k ;(5:4:6)
orresponding to the a
tual hydrostati
 tenden
y Fv on the boundary. Thefor
ing �Ĝ�
 is then added to the hydrostati
 tenden
y with the resultingequations of motionut+�ti+1=2jk � ut��ti+1=2jk2�t = F̂ui+1=2jk � ( bGx�0)i+1=2jk ; (5:4:7a)vt+�tij+1=2k � vt��tij+1=2k2�t = F̂vij+1=2k � ( bGy�0)i+1=2jk ; (5:4:7b)where F̂u = (1� �)(Fu � bGx�
) + �ut+�tb � ut��t2�t ; (5:4:7
)F̂v = (1� �)(Fv � bGy�
) + �vt+�tb � vt��t2�t : (5:4:7d)The transient 
omponent �0 is 
omputed at ea
h t from the ellipti
 equation(5.3.4) with A, 
orresponding to the e�e
tive tenden
ies (5.4.7
), (5.4.7d),and with the homogeneous boundary 
onditions (5.4.3). For
es in roundbra
kets in (5.4.7
) -(5.4.7d) 
ompensate ea
h other, mainly, and the result-ing e�e
tive tenden
y F̂v remains restri
ted in the BRZ. The major 
om-pensation is a
hieved due to the appli
ation of nonhomogeneous boundary
onditions (5.4.6). These 
onditions supply the solution �
 with a long-wave
omponent, whi
h 
ompensates the initial large Fv, restoring the approxi-mate geostrophi
 balan
e and providing the initial tenden
y to be moderate.24



In this respe
t, substitution of Fv to Fv � Ĝ�
 gives an e�e
t, similar to theba
kground surfa
e pressure �eld initialization from the 
oarser model. Con-sequently, the 
onditions (5.4.6) are rather essential, and the proper spe
i�-
ation of the normal 
omponent of hydrostati
 tenden
y Fv on the boundary� is of great signi�
an
e. Fortunately, the thermi
 and Coriolis for
ings, bothbeing reliably 
omputable from the temperature and wind distributions, aremajor 
ontributors to this tenden
y.The temperature and ! tenden
ies are not a�e
ted by the des
ribed modi�-
ation (5.4.5) - (5.4.7d), and remain (5.4.2
), and (5.3.3), respe
tively.Though the des
ribed s
heme with p̂0 in the role of lower model surfa
eis more rigorous in 
omparison with the former one, its advantage is, thatit provides some lowering of numeri
al noise, if p̂0 is 
hosen appropriatelysmooth. Along with the appli
ation of p̂0, and when the ba
kground tem-perature T0(p) is introdu
ed into 
onsideration, it is advantageous to applyone more noise-lowering modi�
ation, whi
h 
onsists in the prior separationof the ba
kground thermi
 geopotential in (3.4.4b)'(x; y; p; t) = '0(p) + '0(x; y; p; t) : (5:4:8a)The mean 
omponent depends on the ba
kground temperature only'0(p) = gh(x; y) +Rd Z p0(x;y)p T0(p0)p0 dp0 ; (5:4:8b)where Rd is the gas 
onstant of the dry air, whereas the �u
tuative part is afun
tion of the �u
tuative part of RT'0(x; y; p; t) = Z p0(x;y)p (RT )0(x; y; p0; t)p0 dp0= Z p0(x;y)p (RT )(x; y; p0; t)� RdT0(p0)p0 dp0 : (5:4:8
)Can
ellation of '0 dependen
e on x; y o

urs due to the barometri
 formula(2.5.7
). Due to this 
an
ellation, the hydrostati
 tenden
y will not in
ludethe large ba
kground geopotential '0, whi
h will enhan
e smoothness of thenumeri
ally 
omputed Fv. 25



When applied in the dis
rete s
heme, the tenden
ies (5.2.4), (5.2.5) are mod-i�ed toFui+1=2jk = �" 1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !#i+1=2jk�( eGx'0�)i+1=2jk + (Pu +Ku)i+1=2jk ; (5:4:9a)Fvij+1=2k = �" 1hyy  ZhyxU yx + ÆyE + hym _�y��v���py !#ij+1=2k�( eGy'0�)ij+1=2k + (Pv +Kv)ij+1=2k ; (5:4:9b)where '0 is 
omputed from the re
urren
e (whi
h is a modi�
ation of (5.1.17))'0ijNlev+1=2 = 0 ;'0�ijk = '0ijk+1=2 + 12(RT )0ijk�ijk ; (5:4:10)'0ijk�1=2 = '0�ijk + 12(RT )0ijk�ijk :Note that there is no linearization in 
onne
tion with the separation (5.4.8a),and the equation for the full temperature remains (5.4.2
).
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6 Expli
it Eulerian time s
heme6.1 Time s
hemeIntegration of equations (5.4.2a) � (5.4.2
) (or (5.4.7a), (5.4.7b), (5.4.2
),respe
tively, when the separation (5.4.5) is applied) is implemented as theexpli
it-Eulerian leapfrog time-stepping s
heme, whi
h is a parallel optionto the ordinary, hydrostati
 expli
it-Eulerian integration s
heme. Nonhydro-stati
 integration is swit
hed on with the logi
al key nhdyn. The integrationblo
k�s
heme in the nonhydrostati
 regime is presented in Fig. 6.1.1.
PHCALL

HDIFF4

HSDYN:
F u

t+dt t+dt

, F , , F v TF ω

ELLIPT :
φ

BNDREL

HDIF, VDIF4

NHEULER

HS  INITIALIZATION

NH  INITIALIZATION:

GEMINI

COSTI, PGRAD, COEF, NDUV

ncor

du/dt,dv/dt,dT/dt

th time-step)
PGRAD,COEF, NDUV  (every  

t+dtu v T

Fig. 6.1.1

In the main routine GEMINI, subrou-tines COSTI, PGRAD, COEF, andNDUV are 
alled after general initial-ization. The subroutine COSTI ini-tializes 
oe�
ients for fast 2D 
osine-Fourier transformation. The sub-routine PGRAD 
omputes p0, whi
hin the present realization is the ini-tial a
tual hydrostati
 surfa
e pres-sure, and prepares di�eren
e arrays��p, �xp. The subroutine COEFprepares 
oe�
ients for the ellipti
solver, in
luding the mean temper-ature < T >k, mean pressure <p >k+1=2, and verti
al eigenve
torsand eigenvalues of the mean ellipti
operator. The routine NDUV 
he
ksthe balan
e (5.1.9) of the verti
allyintegrated mass and restores the bal-an
e if there exists any initial depar-ture.The restoration algorithm is as follows. The imbalan
ed =  �p0�t + NlevXk=1 (r �V)k!(in) (6:1:1)27



is 
omputed and then a gradiental 
orre
tion is introdu
ed into the velo
ity�eld: v(fin)k = v(in)k �r� ; (6:1:2)where � is the solution of the equationr � (p0r�) = d: (6:1:3)This equation is inverted iteratively with fast 
osine-Fourier transformation.The 
orre
ted velo
ity �eld (6.1.2) satis�es the balan
e 
ondition (5.1.9).The re
al
ulation of boundary pressure �eld p0 in PGRAD, 
oe�
ients inCOEF and restoration of the mass balan
e with NDUV is applied repeatedlyafter ea
h n
or time-step.In the main Eulerian time-stepping routine NHEULER, whi
h represents amodi�
ation of the hydrostati
 subroutine EULER, the subroutine HSDYN(represents a modi�
ation of DYN) is 
alled, whi
h 
omputes the hydrostati
tenden
ies Fu; Fv; FT , and F! in a

ordan
e with (5.2.4), (5.2.5), (5.2.9), and(5.3.3b). Thereafter, the expli
it horizontal spe
tral smoothing (optional)for u; v; ; T; and humidity q is 
arried out in HDIFF4 whi
h is followed byphysi
al parametrization in PHCALL. The expli
it smoothing and physi
alparametrization are 
ommon with the hydrostati
 model. After that thereis another bran
hing: instead of the impli
it smoothing with DIFFH, in thenonhydrostati
 
ase a spe
tral smoothing is performed by subroutines HDIFand VDIF4. The subroutine HDIF represents an impli
it di�usive spe
tral�lter of variable order. It makes use of the 
osine-Fourier transformation anda
ts on the Fourier amplitude ~ ijk of the �eld  (in the role of  are u; v,and T 0) as follows( ~ ijk)(fin) = ~ (in)ijk1 + 
hk [(�xi + �yj )=(�xNlon=2 + �yNlat=2)℄qk : (6:1:4a)Here 
hk and qk are the level-dependent smoothing parameters, and �x; �yrepresent the eigenvalues of one-dimensional horizontal Lapla
ians (see (5.3.12),and Appendix C, (C.1
)). The default value for 
hk is 1, though in the short-s
ale domain (dx; dy < 10 km) 
k must be in
reased to avoid buoyan
y wavere�e
tion at the top. The parameter q varies with the height a

ording toqk = 2� exp[�(k � 1)2=k2h℄ ; (6:1:4b)28



the default value for kh is 5. Thus, in the majority of the atmosphere, qk = 2and the �lter has fourth order, whereas at the top, where qk ! 1, it steadilytransforms to a se
ond order �lter.The expli
it verti
al 4th order �lter VDIF4 performs smoothing (Mirandaand James 1992) finijk = (1� 
vk) inijk � 
vk ( ijk+2 +  ijk�2 � 4 ijk+1 � 4 ijk�1)in : (6:1:5a)The parameter 
vk is a pie
ewise linear fun
tion of the level index
vk = � 
vmin if k > kv,
vmin + (
vmax � 
vmin)kv�kkv�1 if k � kv. (6:1:5b)The default values of the parameters are kv = Nlev, 
vmin = 0.0, 
vkax =0.0625. Note that 
v = 0.0625 yields total elimination of the 2-grid-lengthwaves. TABLE 6.1.1The nonhydrostati
 tuning parameters inthe namelist NAMRUN and 
ommon COMNHDName Type Default Referen
elnhdyn logi
al .false. NH swit
hln
or logi
al .false. Swit
hfor COEF and NDUVn
or integer 50 Period in time-stepsfor COEF and NDUVlhdif logi
al .false. Swit
h for (6.1.4)rkh real 5.0 kh in (6.1.4b)lvdif4 logi
al .false. Swit
h for (6.1.5)nkv integer Nlev kv in (6.1.5b)gvmin real 0.0 
vmin in (6.1.5b)gvmax real 0.0625 
vmax in (6.1.5b)epsell real 5.e-4 " in (5.3.4e)Smoothing is followed by the boundary relaxation in BNDREL, whi
h isan ordinary boundary relaxation subroutine of the hydrostati
 HIRLAM.29



Thereafter, the hydrostati
 tenden
ies are passed to the subroutine ELLIPT,in whi
h the bari
 geopotential is 
omputed. Finally, NHEULER is �n-ished by the tenden
y updating with nonhydrostati
 
ontributions and bythe next time level prognosti
 �eld 
omputation. The tuning parameters ofthe nonhydrostati
 model are presented in Table 6.1. In the program theyare des
ribed in the 
ommon COMNHD.INC with default initialization inthe routine NAMEIN, and they 
an be initialized expli
itly in the namelistNAMRUN.6.2 Numeri
al testsThe developed NH model is tested in two di�erent regimes: (A) nonhydro-stati
 fore
ast on low-resolution ("hydrostati
") grids with realisti
 initialdata and with the physi
s in
luded. These simulations should be 
onsideredas preliminary experiments, whi
h will be extensively 
ontinued after 
odeparallelization. (B) nonhydrostati
 simulations on high-resolution grids inthe adiabati
 regime without the physi
s, with arti�
ial initial and boundarydata and model orography.Modeling is performed in the single-pro
essor environment on Pentium II.The time step �t is in all experiments 
hosen maximal for that parti
ularresolution. It is determined by the Courant-Friedri
hs-Lewy stability 
ondi-tion �t < �x=(U + C) ; (6:2:1)where �x is the horizontal grid-step, U is the dominant horizontal wind-speed, and C is the typi
al phase speed of buoyan
y waves. As the externalwaves are ex
luded, C represents the internal buoyan
y wave phase speed.It is � 100 � 150 m/s at large s
ales but diminishes rapidly as the horizontals
ale de
reases. The typi
al time-step is 90 s at the 22 km resolution, 60s at the 11 km resolution, 50 s at the 2.2 km resolution (for U = 25m/s),and 30 s at the 1 km resolution (for U = 25 m/s). Presumably, at thehigh-resolution limit (�x;�y � 5 km), where C << U , the expli
it s
hemerea
hes theoreti
al upper limit �x=U .A. Low�resolution tests with physi
sExperiments in the realisti
 
onditions are 
arried through at the 22 and 11km resolutions. Integration is performed with the non-hydrostati
 extension30



(a) hydrostati
 model (b) nonhydrostati
 modelFig.6.2.1 6h fore
ast of surfa
e pressure with the expli
it hydrostati
 (a)and nonhydrostati
 model (b). 194�140 grid, 31 levels, 22 km resolution.of HIRLAM 4.6.0, and thus, the physi
al pa
kage represents the physi
s ofversion 4.6.0.The purpose of 22-km-resolution experiments is to 
he
k the in�uen
e of thesurfa
e pressure adjustment and to demonstrate, that this does not redu
emodel quality in the hydrostati
 domain. Another purpose is to show that theplane approximation in the main part of ellipti
 operator does not in�uen
emodel performan
e in the 
ase of moderate (square side less than 5000 km)integration area. Integration is performed with the 31 level, 194x140 points(4300 km � 3100 km) model. The time step is 90 s, and the default spe
tralsmoothing is applied. The results of 6h fore
asts of the sea-level pressureare shown in Fig. 6.2.1, where the nonhydrostati
 model is 
ompared withthe expli
it (20 s time-step), hydrostati
 Eulerian s
heme. As seen fromthe example, results by NH model are 
lose to the 
orresponding results ofthe hydrostati
 s
heme, though not identi
al. The 
omparison shows also,that there is no systemati
 distortion of nonhydrostati
 pressure fore
ast tothe edges of the area due to the quasi-plane approximation of the ellipti
equation.The results of 24 hour fore
ast with the 11 km resolution on the 114�100points grid (1210 km�1100 km) for the sea-level pressure are shown in Fig.31



6.2.2, and for the verti
al 
ross-se
tion of u-wind and temperature, in Fig.6.2.3. The time step in these experiments is 60 s. The fore
asts by the NHmodel and semi-impli
it Eulerian hydrostati
 model are 
ompared with theanalysis for the same time. The sea-level surfa
e pressure distributions (Fig.6.2.2) of hydrostati
 and nonhydrostati
 models show reasonable 
oin
iden
e.Spe
tral smoothing in the NH model is redu
ed in 
omparison with the de-fault standard to the values: 
hk = 0:5, 
vmin = 0, and 
vmax = 0.01. In spiteof that, the NH s
heme produ
es smoother wind distribution in the middletroposphere than the hydrostati
 model (Fig. 6.2.3). At the same time, thenonhydrostati
 s
heme exhibits wind anomaly at the top, whi
h is 
aused by

(a) hydrostati
 model (b) nonhydrostati
 model

(
) analysis
Fig. 6.2.2. 24 h fore
ast ofsurfa
e pressure with the hydro-stati
 model (a), and nonhydro-stati
 model (b); (
) - analysis forthe same time. Grid size 114�100points, 31 levels, 11 km resolution.
32



residual buoyan
y-wave re�e
tion on the upper boundary and whi
h showsthat the level of spe
tral smoothing is too low in the top region. However, the
lose 
o-in
iden
e of the two models during a rather 
ontinuous run showsthat the NH kernel does work and produ
es reliable results.

(a) hydrostati
 model (b) nonhydrostati
 model

(
) analysis
Fig. 6.2.3. The 24 h verti
al 
rossse
tions (along the meridian 14E onthe lo
al grid) of temperature andu-
omponent of wind. (a) - hydro-stati
 model, (b) - nonhydrostati
model, (
) - analysis. Grid size114�100 points, 31 levels, 11 kmresolution.

B. High�resolution adiabati
 testsHigh-resolution experimentation in the adiabati
 mode has been the maintool for model debugging and nonhydrostati
 kernel quality testing. Fol-lowing examples aim at demonstrating the quality of the model in a
tuallynonhydrostati
 
onditions and 
learing up its high-resolution limit. Theseare experiments with arti�
ial orography and initial state of the atmosphere.33
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X, kmFig. 6.2.4 Verti
al velo
ity waves in the 
ase of the stationary �ow overone-dimensional isolated mountain. a = 10 km, h0 = 300 m, U = 25 m/s.Isoline step �w = 0.1 m/s. Grid 65�49, resolution 2.2 km, �t = 40 s;Nstep = 240; u; v : 
hk = 2.5; T: 
hk = 7.5, nbdpts = 6.Orography is presented by an isolated bell-shape mountainh(x; y) = h0[1 + (x=ax)2 + (y=ay)2℄s ; (6:2:1)where ax, ay represent half-widths of the hill along x and y axes, and nondi-mensional parameter s � 1 (usually 1 or 1.5). The spe
ial 
ase of one-dimensional orography is modeled with the formulah(x; y) = h01 + (x=a)2 : (6:2:10)The initial state is 
hara
terized with the sea-level temperature T = 280K, Väisälä frequen
y N(p), and wind U , whi
h is taken initially 
onstantand then transformed to the mass-balan
ed wind with the help of formu-lae (6.1.1) - (6.1.3). The 
orresponding mean surfa
e pressure �eld p0 is
omputed from the barometri
 formula. Consequently, the algorithm withthe ba
kground bari
 geopotential separation (5.4.5) is employed along with34
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X, kmFig. 6.2.5 Nonhydrostati
 steady �ow over one-dimensional isolated moun-tain, a

ording to HIRLAM (panels a - 
) and the analyti
al model (panel d).a = 5 km, h0 = 200 m, U = 25 m/s, N = 0.01 1/s. Grid 100�50, resolution2.2 km, �t = 50 s, Nstep = 216, 
hk = 4 for u; v, and 
hk = 8 for T , nbdpts= 8.the temperature and thermi
 geopotential splittings (3.5.1), and (5.4.8). Theboundary-relaxed time integration s
heme is (5.4.2
) (5.4.7a), and (5.4.7b) inthis 
ase. Boundary 
onditions are presented by the boundary �elds, whi
h
oin
ide with the ba
kground �elds: ub = U , vb = 0 , Tb = T0(p).The di�eren
e between the one and two dimensional orography in boundaryhandling 
onsists in the BRZ treatment. In the 
ase of two-dimensional hill(6.2.1), the boundary �elds are spe
i�ed on all boundary walls, whereas in the
ase of one-dimensional orography (6.2.1'), boundary relaxation is applied onthe west wall i = 1 and east wall i = Nlon. In the 
ase of one-dimensionalorography, there is no relaxation at the south and north boundaries, whi
his equivalent to a 
ontinuation of the domain of integration to �1 in the35
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al velo
ity waves in the 
ase of the stationary �ow overone-dimensional isolated mountain. a = 2 km, h0 = 100 m, U = 15 m/s, N= 0.005 1/s, isoline step �w = 0.02 m/s. Grid 257�49, resolution 0.4 km,�t = 20 s, Nstep = 500, 
hk = 25 for u, v, and 
hk = 50 for T , nbdpts = 20.y�dire
tion. Evolution of the atmosphere is modeled from the initial stateuntil the stationary �ow regime is rea
hed with required pre
ision. The �nalwind, temperature, and surfa
e pressure �elds are 
ompared with the semi-analyti
al solutions of the linearized equations where available.A series of stationary two-dimensional �ows over one-dimensional orography(6.2.1') in di�erent 
onditions is presented in Figures 6.2.4 - 6.2.7. The mainnonhydrostati
 �ow 
hara
teristi
, nondimensional parameter aN=U , variesfrom 7.4 in Fig. 6.2.4, whi
h 
orresponds to the hydrostati
 �ow regime,to 0.66 in Figs. 6.2.5 and 6.2.6, whi
h represents 
ompletely nonhydrostati
�ows. The main attribute of the nonhydrostati
 behavior is the leewardshift of the wave sequen
e with height. At the relatively long nonhydrostati
s
ales a = 10 and 5 km (Figs. 6.2.4, 6.2.5), the shift is small and be
omesevident at the higher levels only, whereas at the shorter s
ale a = 2 km, allwaves are leeward shifted. The resolution (grid-step) is 2.2 km (Figs. 6.2.4and 6.2.5), 1 km (Fig. 6.2.6), and 0.4 km (Figs. 6.2.6 and 6.2.7). Alongwith the de
rease of the horizontal s
ale (determined by the mountain half-width) and stability parameter N , the horizontal smoothing parameter 
kk in(6.1.4a) should be in
reased to avoid numeri
al noise and re�e
tion at thetop. Theoreti
ally, there is no re�e
tion for 
onstant N in the 
ontinuousmodel. However, due to the �nite verti
al resolution and �u
tuations of N ,the re�e
tion does exist in the numeri
al model, and a sponge layer, modeled36



by spe
tral �lters (6.1.4) and (6.1.5), is ne
essary at the top. Parameter
hk 
an be varied in a broad interval. Its enlargement 
auses the in
reaseof smoothing rate and redu
tion of the wave amplitude, whereas redu
tion
auses larger noise and spurious wave re�e
tion near the top, and for
es atime step de
rease. Verti
al di�usive smoothing (6.1.5) is the default one inall experiments, as the model is relatively insensitive to the small variationof 
vk , while the large variation is not supported by the expli
it �lter.Experimentation with one-dimensional orography is a sensitive indi
ator ofmodel quality. Verti
al os
illations of the atmosphere are strongest in this
ase, as the atmosphere 
an not �ow around the obsta
le, yet is for
ed toget over it. Both wave amplitudes and verti
al extent of wave pattern areredu
ed in the 
ase of two-dimensional obsta
le. An experiment with two-dimensional orography (6.2.1), ax = ay = 1 km, h0 = 200 m, s = 1.5 is shownin Fig. 6.2.8. As seen, verti
al �ow disturban
es are restri
ted below the 800hPa level (though modeling is performed for the 
omplete verti
al extent ofthe atmosphere).The general 
on
lusion from the presented experiments is that the model is
apable of nonhydrostati
 simulation. In 
omparison with the linear modelthere is some redu
tion of wave amplitude and narrowing of wave wings dueto spe
tral di�usion (espe
ially manifested near the top of the atmosphere)but both the general wave pattern and the nonhydrostati
 lee-ward shift arereprodu
ed authenti
ally.As experimentation shows, the grid-point extent nbdpts of the BRZ mustbe in
reased along with the resolution. In Fig. (6.2.4), and (6.2.5) with�x;�y = 2.2 km, bndpts = 6 and 8, respe
tively. In the high-resolution(0.4 km) experiment with two-dimensional hill in Fig. 6.2.8, this parameteris nbdpts = 8 (whi
h is yet not too extreme), while in the experiments withone�dimensional mountains with the same resolution (Figs. 6.2.6 and 6.2.7),bndpts = 20 and 16, respe
tively. The reason for the large grid-point ex-tent of the BRZ is the potential buoyan
y wave re�e
tion in narrower BRZs.The re�e
tion would be mu
h stronger in the 
ase of one-dimensional orog-raphy, as wave amplitudes are larger in this 
ase and they do not de
reasesigni�
antly during propagation from the mountain to the boundary. Thisexplains larger nbdpts in one-dimensional experiments. However, the situa-tion would be similar for a small-s
ale two-dimensional hill, pla
ed near theouter boundary. For pra
ti
al reason of rapidly in
reasing 
omputational
ost, the reasonable value of nbdpts is restri
ted within nbpts = 10, and even37
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X, kmFig. 6.2.7 Verti
al velo
ity waves in the 
ase of the stationary �ow overone-dimensional isolated mountain. a = 1 km, h0 = 200 m, U = 15 m/s, N= 0.01 1/s, isoline step �w = 0.05 m/s. Grid 257�49, resolution 0.4 km;�t = 20 s; Nstep = 300; 
hk = 35, nbdpts = 16.in extreme situations it should not go beyond 15 - 20. This limitation sets, fora nonhydrostati
 model with the BRZ, the pra
ti
al upper limit of horizontalresolution at 0.5 - 1 km.7 Con
lusionsIn this part the theoreti
al 
on
ept of the nonhydrostati
, pressure-
oordinate,anelasti
 model of atmospheri
 dynami
s has been brought to the numeri
al
ode. Preliminary experimentation with the new 
ode has shown its abilityto produ
e reliable results both in hydrostati
 and nonhydrostati
 regions.It is premature, of 
ourse, to make far-rea
hing 
on
lusions before thoroughand 
areful testing of the new routine. However, the model has shown itspotential in these preliminary runs, and some 
on
lusions 
an be alreadymade.The present maximum horizontal resolution of the model is approximately0.5 km. This limit is set by gravity wave re�e
tion at the lateral boundaries.To a
hieve the 0.5 km resolution without meaningful re�e
tion, the boundaryrelaxations zone depth must be 15 - 20 points. For higher resolutions, eitherthis depth should be in
reased even more (whi
h is non-realisti
), or lateralboundaries should be made transparent to buoyan
y waves.38
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X, kmFig. 6.2.8 Distributions of u and w 
omponents of wind at the stationary�ow over the 
ir
ular hill. ax = ay = 1 km, h0 = 200 m, U = 15 m/s, N= 0.005 1/s. Grid 129�97, resolution 0.4 km, �t = 20 s, Nstep = 300;u; v; T : 
hk = 20, nbdpts = 8. Isoline interval 0.01 m/s.(a) � u at the level p = 860 hPa, (b) � u at the verti
al plane y = 0, (
) � wat the level p = 860 hPa, (d) � w at the verti
al plane y = 0.
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The model is e
onomi
al in terms of verti
al resolution requirements. Thestandard 31-level eta-grid provides su�
ient resolution for adiabati
 dynam-i
s at all horizontal s
ales. However, mu
h higher verti
al resolution may beneeded by diabati
 pro
esses. So far, tests with the �ner verti
al grid aremissing.Due to the appli
ation of surfa
e pressure adjustment, the a

essible timestep is rather large and makes the model appli
able in high-resolution simu-lations already in its present expli
it�mode realization. In the high-resolutiondomain (�x < 5 km), the time step rea
hes the theoreti
al upper limit andmost likely 
an not be signi�
antly in
reased with the help of a semi�impli
its
heme. At larger s
ales, where the main limiting fa
tor is the internal buoy-an
y wave speed, the impli
it s
heme would approximately double the presenttime-step.The pra
ti
al advantage of the model is that it supports instant in
lusionof existing physi
s. Still, at �ner s
ales, beginning with 11 km resolution,physi
al parametrization should be revised.A
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Appendix APressure gradient Ĝ and divergen
e Ĝ+ in the dis
rete modelIntegration of divergen
e (5.1.12) givesZ dV mĜ+ � v �Xijk �x�y(��phxahyĜ+ � v)ijk= �x�yXijk hÆx �hyx��pxu���� �hyu�Æxpx�+Æy �hxy��pyv���� �hxv�Æypy�iijk : (A:1)Due to the full di�eren
es in the square bra
kets, this integral transforms to a sur-fa
e integral (disappears for �nite u and v). Thus, (5.1.12) de�nes the divergen
e,indeed.To get the alternative form (5.1.12'), the identity[Æ�(s�v)℄i = (sÆ�v)i + (vÆ�s�)i (A:2)is required. With the help of this identity, the �rst term in the �rst square bra
ketof (5.1.12) 
an be modi�edÆx �hyx��pxu� = ��pÆx(hyxu) + hyxuÆx��px ;41



whereas the se
ond term (with � in the role of �) 
an be presented�� �hyxu�Æxpx� = hyxuÆx��px + hyx(��u)Æxpx� :Analogi
al identities hold for the se
ond square bra
ket. As a result, (5.1.12')follows.To derive the operator Ĝ skew 
onjugate to Ĝ+, the integral relationship (4.1.16)has to be used, whi
h for the �-
omponent isXijk (hxhy��p'Ĝ+x u)ijk = �Xijk (hxxhyx��pxuĜx')i+1=2jk : (A:3)Using de�nition (5.1.12), left side here isXijk (hxhy��p'Ĝ+x u)ijk =Xijk 'ijk hÆx �hyx��pxu���� �hyxu�Æxpx�iijk (A:4)To the �rst term in the sum an identity is appliedXi ai(Æxb)i = �Xi bi+1=2(Æxa)i+1=2 ;where �nite fun
tions are assumed. Further, this identity is denoted shortly asai(Æxb)i � �bi+1=2(Æxa)i+1=2 : (A:5)Thus "�" means "equivalent at the summation over �nite fun
tions". Analogi
alidentity is applied to the se
ond term in (A.4)ak(��b)k � �bk+1=2(��a)k+1=2 ; (A:6)along with (a�)k+1=2(b)k+1=2 � (a)k(b�)k : (A:7)This results in the formula Xijk (hxhy��p'Ĝ+x u)ijk =�Xijk (hxxhyx��px)i+1=2jkui+1=2jk " 1hxx Æx'� 1hxx��px (Æxp)��'x�#i+1=2jk ;from whi
h presentation (5.1.13) follows for Ĝx and Ĝy.42



In further appli
ations, the following equivalen
es (whi
h pro
eed from the de�ni-tions of Ĝ and Ĝ+) are also useful:(hxhy��p'Ĝ+x u)ijk � �(hxxhyx��pxuĜx')i+1=2jk ; (A:8a)(hxhy��p'Ĝ+y v)ijk � �(hxyhyy��pyvĜy')ij+1=2k : (A:8b)The �rst one represents (A.3), the se
ond is its y-
oordinate analogue.In a small domain, when j tan �j < 1, divergen
e (5.1.12) 
an be simpli�ed, 
on-sidering the metri
al 
oe�
ients hx = 
os � and hy = 1 
onstants(Ĝ+ � v)ijk = " 1hx Æx(u)� (��u)Æxpx�hx��p + 1hy Æy(v)� (��v)Æypy�hy��p #ijk ; (A:8)whi
h means a plane approximation for Ĝ+. This approximation was applied ininitial versions of the nonhydrostati
 model (Rõõm and Männik 1999). Yet itdoes not yield mu
h simpli�
ation in 
omparison with more pre
ise representation(5.1.12') and is not applied in the re
ent versions.Appendix BEnergeti
s in the dis
rete modelTotal energy of the dis
rete model isE = �x�yg Xijk Eijk ; (B:1)where Eijk is the energy, asso
iated with the 
ell with indexes fi; j; kg:Eijk = Evijk +Ewijk +ET ijk ;Evijk = 12 ��hxxhyx��pxu2�i+1=2jk + �hxyhyy��pyv2�ij+1=2k�Ewijk = 12 �hxhy��p� (ws)22 �ijk+1=2 ;ET ijk = [hxhy(��p)
pT ℄ijk :Applying to Eijk di�erentiation in time yields with the use of equations (5.2.1),(5.2.2), (5.2.3), and (5.3.3) (dissipative P - and K-terms are omitted)�Eijk�t = bzijk � bEijk � bTijk � bwijk + b'ijk + b�ijk (B:2)43



wherebzijk = �hyxUZhxyV xy�i+1=2jk ��hxyV ZhyxUyx�ij+1=2k (B:3a)bEijk = hhyx �UÆxE + uhxm _�x��u��ii+1=2jk+ hhxy �V ÆyE + vhym _�y��v��iij+1=2k (B:3b)bTijk = (hxhy��p
pâT )ijk= n
p[hyUÆxT x + hxV ÆyT y + hxhy(m _�)��T �℄oijk (B:3
)bwijk = [hxhy��p�ws(âws)℄ijk+1=2 =[hyU�Æxwsx + hxV �Æywsy + hxhym _����ws�℄ijk+1=2 (B:3d)b'ijk = ��hxxhyxU eGx'��i+1=2jk � �hxyhyyV eGy'��ij+1=2k+(hxhy��p)ijk�RT!p �ijk (B:3e)b�ijk = ��hxxhyxUĜx��i+1=2jk � �hxyhyyV Ĝy��ij+1=2k+�hxhy wpH�����ijk+1=2 (B:3f)For energy 
onservation, the right hand terms in (B.2) should at the summationeither transform to surfa
e integrals as full di�eren
es or mutually annihilate inneighboring nodes.In (B.3a), an equivalen
e holds (equivalen
e "�" is de�ned in Appendix A) for the�rst term �hyxUZhxyV xy�i+1=2jk � �hyxUyZhxyV x�i+1=2j+1=2kand analogous equivalen
e holds for the se
ond term. As a result, (B.3a) transformsto a surfa
e integral.In (B.3b), equivalen
es are valid�hyxuhxm _�x��u��i+1=2jk � �hyxhxm _�xu���u�i+1=2jk+1=2 =44



�hyxhxm _�x�� u22 �i+1=2jk+1=2 � "hxhym _���  1hy hyxu22 x!#ijk+1=2 :Analogi
ally,�hxyvhym _�y��v��ij+1=2k � "hxhym _���  1hxhxy v22 y!#ijk+1=2 :Thus,bEijk � �hyxUÆxE�i+1=2jk + �hxyV ÆyE�ij+1=2k + (hxhym _���E)ijk+1=2 ��hyxUÆxEx + hxyV ÆyEy + hxhym _���E��ijk :Addition to this relationship of the identity 0 = (E D)ijk, whereDijk � hÆx �hyxU�+ Æy �hxyV �+�� (hxhym _�)iijk = 0 (B:4)is equal to zero due to (5.1.8), results inbEijk � hÆx �hyxExU�+ Æy �hxyEyV �+�� �hxhyE�m _��iijk :The dis
rete divergen
e of a ve
tor on the right side will give at the summation asurfa
e integral.Analogi
al addition of identity 0 = 
pTD to (B.3
) yieldsbTijk = hÆx �hyx
pT xU�+ Æy �hxy
pT yV �+�� �hxhy
pT �m _��iijk :Quite similar is also transformation of (B.3d) to a divergent form. First, with thehelp of (A.7) bwijk �(U�hxywsxÆxws)i+1=2jk+1=2+(V �hyxwsyÆyws)ij+1=2k+1=2+(hxhym _��ws���ws)ijk= �U�hxyÆx (ws)22 �i+1=2jk+1=2+�V �hyxÆy (ws)22 �ij+1=2k+1=2+�hxhym _���� (ws)22 �ijk�  UhxyÆx (ws)2�2 !i+1=2jk+ V hyxÆy (ws)2�2 !ij+1=2k+ hxhym _��� (ws)2�2 !ijk+1=2 :45



A full divergen
e results from this relationship after addition of identity 0 =D(ws)2�=2.The relation (B.3e) 
an be used for spe
i�
ation of dis
rete representation of theenergy 
onversion term RT!=p. First, (B3.e) is presented in the formb'ijk = b1ijk + b2ijk ;whereb1ijk = ��hxxhyxUĜx'��i+1=2jk��hxyhyyV Ĝy'��ij+1=2k+(hxhy��p)ijk�RT!p �ijk
orresponds to the exa
t gradient Ĝ, andb2ijk = ��hxxhyxU( eGx � Ĝx)'��i+1=2jk � �hyxhyyV ( eGy � Ĝy)'��ij+1=2k =� hhyxu�Æxp��'�x� � Æxp���'x�ii+1=2jk�hhxyv �Æyp��'�y� � Æyp���'y�iij+1=2krepresents a modi�
ation due to approximation Ĝ ! eG.Appli
ation of the equivalen
es (A.8) to b1ijk results inb1ijk � �hxhy(��p)�'Ĝ+ � v + RT!p ��ijk ;whi
h 
an be presented with the help of (5.1.14) asb1ijk � �hxhy ��'���! + (��p)RT!p ��ijk :Using equivalen
es (A.7) and (A.5), the �rst term 
an be transformed further:� (hxhy'���!)ijk � � (hxhy'��!�)ijk+1=2 � (hxhy!���')ijk :Thus, b1ijk � �hxhy �!���'+ (��p)RT!p ��ijk :The term b2ijk 
an be transformed, applying to the �rst terms in the round bra
ketsequivalen
e (A.7) twi
e in respe
t of �:b2ijk � � hhyx �u�Æxp� � uÆxp����'xii+1=2jk�hhxy �v�Æyp� � vÆyp����'yiij+1=2k46



= �"hyx4 �� (Æxp��u)��'x#i+1=2jk � "hxy4 �� (Æyp��v)��'y#ij+1=2k� �14 h�hyx�� (Æxp��u)x + hxy�� (Æyp��v)y���'iijk :Thus, b'ijk � �hxhy �!���'+ (��p)RT!p ��ijk�14 h�hyx�� (Æxp��u)x + hxy�� (Æyp��v)y���'iijk :This expression 
annot be simpli�ed further, and for energy 
onservation the rightside should vanish to give �RT!p �ijk = ��
��'��p�ijk (B:5a)where 
ijk = !�ijk � "hyx�� (Æxp��u)x + hxy�� (Æyp��v)y4hyhx #ijk : (B:5b)Finally, with the help of (A.8) and (5.2.12), an equivalen
e follows for (B.3f):b�ijk � (hxhy)ij n[�(��p)Ĝ+ � v℄ijk � (!���)ijk+1=2o ;whi
h 
an be further transformed with the help of (A.7) tob�ijk � (hxhy���p)ijk�Ĝ+ � v + ��!��p�ijk :Due to (5.1.14), expression in the large round bra
kets is zero.Thus, we have shown that energy is 
onserved in the employed dis
retizations
heme. A single non-trivial additional relationship, required for energy 
onser-vation, is the expression (B.5) for the energy-
onversion term.
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Appendix COrthogonal basesHorizontal bases X and YFor X and Y the dis
rete normalized 
osine bases are employed,Xiq = 8>>><>>>: 1p2(Nlon�1) ; q = 12 
os[�(i�1)(q�1)=(Nlon�1)℄p2(Nlon�1) ; q = 2; :::Nlon� 1(�1)i�1p2(Nlon�1) ; q = Nlon (C:1a)
Yjr = 8>>><>>>: 1p2(Nlat�1) ; r = 12 
os[�(j�1)(r�1)=(Nlat�1)℄p2(Nlat�1) ; r = 2; :::Nlat � 1(�1)j�1p2(Nlat�1) :r = Nlat (C:1b)They are solutions of the eigen-problems (see (5.3.12))(LxXq) = ��xqXq ; (LyYr) = ��yrYr ;where and �xq , �yr are�xq = 4hhxi2�x2 sin2��2 q � 1Nlon� 1� �yr = 4hhyi2�y2 sin2��2 r � 1Nlat� 1� : (C:1
)Two su

essive 
osine transformations perform the identity transformation: XX = I,Y Y = I, whi
h means that the inverse transformations 
oin
ide with the dire
ttransformations X�1 = X ; Y �1 = Y : (C:2)Verti
al basis.The eigenvalue-problem for verti
al Lapla
ian (see (5.3.12)) isXk0 (L�)kk0Ek0s = ���sEks ; (C:3)with L�, presented by (5.3.9
). With the help of transformationEks = eks=ph�pis; (C:4)48



The equation (C.3) 
an be presented in the symmetri
al formk+1Xk0=k�1Mk;k0ek0s = ���seks ; k; s = 1; :::; Nlev ; (C:5)where M is a symmetri
al tridiagonal matrixMkk = ��k�1=2 + �k+1=2h�pik ; Mk;k+1 = Mk+1;k = �k+1=2(h�pikh�pik+1)1=2 ;(C:6a)�k+1=2 = hpi2k+1=2hH�i2k+1=2h�pi�k+1=2 ; (C:6b)for k = 1; ::::; Nlon � 1,and MNlev;Nlev = �MNlev�1;Nlev : (C:6
)This is a negative semi-de�nite matrix: it has one (with index s = 1 by agreement)null�eigenvalue ��1 = 0with the 
orresponding eigenve
toreks = 
ph�pis;where 
 is 
onstant, whereas other eigenvalues are real and positive ��s > 0,s = 2; :::; Nlon.Inverse to e is the matrix e�1kl = elkand thus, inverse of E in a

ordan
e with (C.4) isE�1ks =ph�pikeks : (C:7)Ex
ept the �rst one, eigenve
tors and eigenvalues must be solved from (C.3) nu-meri
ally. There exist multiple re
ipes and ready free-ware for 
omputation ofeigenve
tors and eigenvalues of symmetri
, tri-diagonal, negative/semi-negativematrixes. In the NH HIRLAM the routine tqli from Re
ipes (Press et al, 1992)is applied. 49



Appendix DIterative algorithm for lateral boundary for
es fThe derivation of iterative equations (5.3.15), (5.3.16) is similar for all four groupsof 
oe�
ients ~fxl(l), ~fxr(l), ~fyl(l), ~fyr(l), and we will follow in detail the derivationof ~fxl(l) from the �rst 
ondition in (5.3.11e). Applying to this relationship theFourier transformation in x and � 
oordinates, Y �1E�1, and using (5.3.13) forpresentation of �, we get 1hhxi�xXq (X2q �X1q)~�(l)qrs = ~axlrs : (D:1)Let us present ~� in (5.3.14) with expli
itly exposed fxl(l):~�(l)qrs = � 
x ~fxl(l)Xq;1�xq + �yr + ��s + ~�xl(l)qrs ; (D:2)where the last term represents the remaining part of (5.3.14), in
luding all otherboundary 
oe�
ients fxr(l), fyl(l), fyr(l), and ~
(l). Substitution of (D.2) into (D.1)and making use of 
x = 2=(hhxi�x) results in~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�xl(l)qrs ! ; (D:3)where sxrs = � 2(hhxi�x)2 Xq (X2q �X1q)Xq;1�xq + �yr + ��s :The expli
it presentation of sxrs with the help of (C.1a) yields (5.3.17a).The equation (D.3) in
ludes unknown 
oe�
ients f and 
 also on the right side, andthus, for the spe
i�
ation of boundary 
oe�
ients, similar equations are needed forf on other lateral walls, and for 
, and the arising system should be 
onsidered andsolved in 
orpore. However, the se
ond, summation term on the right hand of (D.3)is small for smooth �xl(l), whi
h assumes smoothness of the volume-distributedsour
e Av and boundary gradients a. In Fourier terms, smoothness of � meansthat the 
oe�
ients ~�xl(l) are essentially di�erent from zero for small indexes qonly(1). For very small q; r; s whi
h assume a very narrow spe
trum ~a of normal1It is worth of pointing out, that for small q, the �rst term in the right hand sumapproximates the derivative of the 
ontinuous 
osine at the zero, whi
h is the 
ontinuoussine at the zero, whi
h is zero. 50



gradients (i.e., extreme smoothness of a), and for Nlon;Nlat ! 1, whi
h means
ontinuous limit of the model, one hassxrs; ! 1 ; X2q �X1qhhxi�x ! 0 ;and, as a 
onsequen
e, ~fxl(l) ! ~axlrs ; (D:4)whi
h yields the �rst relationship in (5.3.7).For smooth Av and a, but for �nite Nlon;Nlat;Nlev, the se
ond term in (D.3) isstill small, and it 
an be approximated in the iterative s
heme from the previousiteration (l � 1): ~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�xl(l�1)qrs ! : (D:5)Presenting in (D.4) ~fxl(l) = ~fxl(l�1) + Æ ~fxl(l) ; (D:6)we obtain Æ ~fxl(l) = 1sxrs  ~axlrs �Xq X2q �X1qhhxi�x ~�(l�1)qrs ! : (D:7)(Note the full 
oe�
ient of the previous iteration ~�(l�1) on the right side). Thisequation is the equation (5.3.16a), written in a di�erent way.The �rst iterative solution of (D.6) - (D.7) is~fxlrs(1) = ~axlrs=sxrs ; (D:8)whi
h already takes into a

ount the �nite resolution of the model. As 0 < sxrs; syqs< 1 for �nite Nlon;Nlat, the spe
tral 
oe�
ients (D.8) are larger than predi
tedby the smooth approximation (D.4).
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