
NON-HYDROSTATIC ADIABATICKERNEL FOR HIRLAMPart IIISemi�impliit Eulerian shemeRein Rõõm, Aarne MännikTartu University, EstoniaRein.Room�ut.ee, Aarne.Mannik�ut.ee1 IntrodutionIn this paper, the adiabati kernel of the nonhydrostati HIRLAM with thesemi-impliit Eulerian integration sheme is presented. The present inves-tigation ontinues the work, initiated in the Part I by Rõõm (2001) andPart II by Männik and Rõõm (2001), where the fundamentals of nonhydro-stati atmospheri dynamis in pressure�related oordinates were presented,and on that basis, the nonhydrostati, expliit-Eulerian version of HIRLAMwas developed.The new development supplements the nonhydrostati Eulerian sheme witha semi-impliit integration option. In this respet, the new model repre-sents a nonhydrostati extension of the hydrostati semi-impliit EulerianHIRLAM (Kállen, 1996). However, by ideology, the parent model is theexpliit-Eulerian nonhydrostati sheme with ompletely anelasti pressure-oordinate dynamis, developed in Part I and Part II.The semi-impliit method of integration in atmospheri dynamis was pro-posed by Robert (1969). Soon this method beame a general approah inmost numerial models of large-sale atmospheri dynamis. It is also ap-plied in the hydrostati HIRLAM. As is well-known, the main advantage ofthe semi-impliit sheme is the enhanement of the omputational e�ieny1



of the model via the enlargement of the time-step. This is ahieved throughthe redution of the speed of sound and buoyany wave motions in the mod-eled atmosphere. In mathematial sense, the semi-impliit sheme makes thenumerial algorithm unonditionally stable with respet to the fast linearwave sub-system.In the anelasti approximation used in the expliit version of the nonhy-drostati HIRLAM, the sound waves are �ltered prior to the disretization,and the time-step is limited by the fastest internal buoyany waves with thephase speeds of 100 m/s approximately. Due to this, the time-step of theexpliit model is relatively large (approximately 1 minute at 10 km resolu-tion), and the further time-step enhanement by a semi-impliit sheme isnot so dramati as in an elasti model or in the hydrostati HIRLAM (wherethe time-step inrease due to transition from the expliit Eulerian to thesemi-impliit Eulerian sheme is of the order of two magnitudes). However,approximately a doubling of the time-step is ahieved at 10 to 5 km resolu-tions. It is essential to note that the time-step inrease is ahieved at no extraomputational ost, as the semi-impliit extension uses, in essene, the samebasi integration algorithm as the expliit nonhydrostati sheme. Therefore,the semi-impliit sheme will give rise to the numerial e�ieny in ompar-ison with the expliit model, even when the anelasti approximation is used,and onsequently, this sheme is worth developing.In the �rst half of the paper (setion 2 and 3), the theoretial foundationof the semi-impliit model on the base of anelasti hybrid-oordinate modelis presented. In the seond half, after a minor disussion of numerial im-plementation details, modeling results with both the arti�ial �ows over abell-shaped mountain and with the realisti initial and boundary data arepresented (Setion 4). The main quality benhmark is the oinidene withthe modeling results from the expliit version. A entral parameter of thenonhydrostati semi-impliit sheme is the Brunt-Väisälä frequeny N . Oneof the entral issues, addressed in this paper, is the proper hoie of thisquantity.
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2 Semi-impliit equations2.1 Initial equations with expliit separation of linearand nonlinear partsWe proeed from the disrete equations of motion in setion 5, Part II. Theindexing fi; j; kg will be omitted, where appropriate, and a short notationfor vertial di�erentiation will be usedÆpa : (Æpa)ijk+1=2 = � ��a��p��ijk+1=2 ; Æ+p b : (Æ+p b)ijk = ���b��p�ijk :Time di�erening is denoted as Æt:Ætu = ut+�t � ut��t2�t :After expliit separation of linear terms in the tendenies Fu; Fv, FT , andF!, equations (5.1.14), (5.2.1) � (5.2.3), (5.3.3a), (5.1.17) an be presentedin the form Ĝ+ � v + Æ+p ! = 0 ; (2:1:1a)Ætv = �Ĝ(�+ '�) + fv ; (2:1:1b)Æt! = �� pH��2 Æp�+ F! ; (2:1:1)ÆtT = S!� + fT ; (2:1:1d)��' = ��RT ; ��'� = ��RT � ; (2:1:1e)where, Ĝ+ and Ĝ are de�ned by formulae (5.1.12) and (5.1.13) in Part II,fv = ffu; fvg and fT represent the nonlinear parts of the momentum andtemperature tendenies at time level t:fui+1=2jk = "�1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !+ Pu +Ku#i+1=2jk(2:1:2a)fvij+1=2k = "�1hyy  ZhyxUyx + ÆyE + hym _�y��v���py !+ Pv +Kv#ij+1=2k(2:1:2b)3



where U , V are de�ned by (5.1.6), and Z, E are de�ned by (5.2.6) and (5.2.7),and fT = FT � S!� = �â(T ) + !���T ���p + PT +KT ; (2:1:2)with â(T ) de�ned by (5.2.10) and FT by (5.2.9).The vertial momentum foring F! oinides with (5.3.3b), whih is om-pletely nonlinear (does not inlude any linear term). The strati�ation termS in the temperature equation isSijk =  {�T ���T ���p !ijk : (2:1:3)2.2 Semi-impliit disrete equationsThe semi-impliit form of equations follows, when in the equations of motion(2.1.1b) � (2.1.1d) linear terms, responsible for wave-like motion, are treatedimpliitly:Ĝ(�+ '�) ! Ĝ(�t + '�t) ; � pH��2 Æp�! � pH��2 Æp�t ; S!� ! S!�twhere at means the temporal averaging of the �eld a in respet to the timelevel t: at = at+�t + at��t2 ; where at � a(t)and the short notation is used for double averaging a�t � a�t. However, theaveraged �eld �t is, like � in the expliit sheme, a diagnosti �eld, whihwill be evaluated from an expliit equation (the ellipti equation, see further),and there is no need to �nd or operate with its expliit and impliit parts(�t and �tt�) separately. Therefore, without being ambiguous, we will usethe following notation � � �t :The semi-impliit form of equations (2.1.1a) � (2.1.1d) is thenĜ+ � vt + Æ+p !t = 0 ; (2:2:1a)Ætv = �Ĝ(�+ '�t) + fv ; (2:2:1b)4



Æt! = �� pH��2 Æp�+ F! ; (2:2:1)ÆtT = S!�t + fT ; (2:2:1d)��'t = �(�RT )t ; ��('�)t = �(�RT �)t : (2:2:1e)The nonlinear forings fv; F!; fT , as well as the oe�ients H, S, and thepressure p in linear terms are treated expliitly, i.e., they are given at the timelevel t. Diagnosti relationships (2.2.1a), (2.2.1e) also are expliit equations.Applying to '�t in (2.2.1b) and !�t in (2.2.1d) the following identityX t = X t +�ttX ;where �ttX is de�ned as�ttX = 12(X t+�t +X t��t)�X t ;equations (2.2.1b) and (2.2.1d) an be presented asÆtv = �Ĝ�� Ĝ�tt'� + Fv ; (2:2:1b0)ÆtT = S�tt!� + FT : (2:2:1d0)As the tendenies F in equations (2.2.1b'), (2.2.1), and (2.2.1d') are evalu-ated at time t and oinide with those of the expliit Eulerian sheme (seeformulae (5.2.4), (5.2.5), (5.2.8), and (5.3.3b)), the obtained system di�ersfrom the expliit sheme by the presene of terms with the seond orderdi�erenes �tt� and �tt!.As (2.2.1a) holds at every time-level, it yields derivative relationshipsĜ+ � vt + Æ+p !t = 0 ; (2:2:1a0)Ĝ+ � Ætv + Æ+p Æt! = 0 : (2:2:1a00)3 Integration of the semi-impliit systemIn this setion, the ellipti equation for � is derived. It is a generalization ofthe ellipti equation for �t of the expliit sheme.The equation inludes anellipti main part and a small perturbation term. When solved iteratively,the algorithm draws bak to the expliit ase with an exeption that thehorizontal Laplaian in the ellipti equation is inreased by the fator 1 +�t2N2, N being the Brunt-Väisälä frequeny.5



3.1 The ellipti equation for bari geopotentialElimination of time di�erenes in (2.2.1a�) with the help of (2.2.1b') and(2.2.1) yields equation̂G+ � Ĝ ��+�tt'��+ bL� = A� ; (3:1:1a)where bL� = Æ+p � p2(H�)2 Æp�� (3:1:1b)and A� = (Ĝ+ � Fv) + Æ+p F! : (3:1:1)The mass balane ondition for � (Part II, equation (5.3.5)) beomesbB(�+�tt'�) = b ; (3:1:1d)where bBis given by (5.3.5a) andbij = NlevXk=1 hÆx �hyx��pxF̂u� + Æy �hxy��pyF̂v�iijk+(hxhy)ij "�2p0�t2 +r � �p0�t NlevXk=1 (��B)kvk!#ij : (3:1:1e)Note that the formula for bij is orreted here, it is di�erent from the oldformula (5.3.5b), whih was erroneous1.Exept the term with the seond order di�erene (�tt'�), equation (3.1.1a)oinides with ellipti equation (5.3.4) of the expliit sheme. Due to thisadditional term, equation (3.1.1a) is not losed and it must be omplementedwith an additional relationship between (�tt'�) and �. To obtain suh arelationship, we rewrite the omega and temperature equations (2.2.1) and(2.2.1d') in the form �tt! = ��t� pH��2 Æp�+ �! ; (3:1:2a)1However, this di�erene has no signi�ane in pratie, as it is almost negligible inatual atmospheri onditions. 6



�ttT = �tS�tt!� + �T ; (3:1:2b)where �! = �tF! � !t + !t��t ; �T = �tFT � T t + T t��t : (3:1:2)Elimination of ! in (3.1.2b) with the help of (3.1.2a) yields�ttT = ��t2S� pH�2 Æp�� + �T +�tS�!� : (3:1:2d)Further, the integrated presentation for the thermi geopotential is needed. Itproeeds from (2.1.1e) with the help of the boundary ondition 'ijNlev+1=2 = ghij'�ijk = ghij + [M̂(�RT )℄ijk ; (3:1:3)[M̂(a)℄ijk = NlevXk0=k+1 aijk0 + 12aijk : (3:1:4)Applying here the operator �tt, assuming that � and R are (approximately)onstant2 , and using (3.1.2d), the wanted relationship results:�tt'� = �Q(�) +Q0 (3:1:5a)where Q(�) = �t2M̂ "�RS � pH��2 Æp��# ; (3:1:5b)Q0 = M̂ [�R (�T +�tS�!�)℄ : (3:1:5)It is advantageous to modify the sum in the right hand side of (3.1.5b), usingidentity[M̂(ab�)℄k = NlevXk0=k+1(a�b)k0�1=2 + 12aNlevbNlev+1=2 � 14ak(��b)k :2Atually, the weights of levels �ijk depend on time via bakground surfae pressure ps ,and R is time dependent in the moist air. However, in the present ase, these dependeniesare marginal and an be omitted in the relationship (3.1.5a).7



The result of the transformation is1�t2Qk(�) = NlevXk0=k+1(N2���)k0�1=2+12(�RS)Nlev � p2(H�)2 Æp��Nlev+1=2 � 14 �(�RS)�� � p2(H�)2 Æp���k ; (3:1:6a)where N is a disrete presentation for the Brunt-Väisälä frequenyN2k�1=2 = " �RS�p2(H�)2��p�#k�1=2 : (3:1:6b)Omitting from (3.1.6a) the last two terms, whih present, respetively, the�rst- and seond-order small ontributions to the sum, and using presentationNlevXk0=k+1(N2���)k0�1=2 = N2Nlev+1=2�Nlev �N2k+1=2�k � NlevXk0=k+1�k0(��N2)k0 ;the �nal presentation for Qk follows:Qk(�) = �2Nlev�Nlev � �2k�k � NlevXk0=k+1�k0���2k0�1=2 ; (3:1:7)where the non-dimensional parameter � is�2ijk = �t2N2ijk+1=2 : (3:1:8)Using (3.1.5a) and (3.1.7), the term � + �tt'� an be presented as�k +�tt'�k = (1 + �2k)�k � �2Nlev�Nlev + NlevXk0=k+1�k0���2k0�1=2 +Q0k : (3:1:9)This is the desired relationship whih loses the system (3.1.1).Thus, in the ase of semi-impliit model, the time-integration problem (i.e..,the one-step-foreast problem) draws, in essene, bak to the solution of thebari geopotential � from the ellipti problem desribed by equations (3.1.1a),(3.1.1d) and (3.1.9). The situation is rather analogous to the expliit ase,8



where it was neessary to solve an analogous ellipti problem for the expliitomponent of the bari geopotential �t. The most important quality of thepresented semi-impliit model is that there is no need to solve the elliptiequation for the expliit and impliit omponents �t and �tt� separately3 ,as it is su�ient to have the solution for the sum � = �t + �tt�.3.2 Solution of the ellipti equationEquations (3.1.1a), (3.1.1d) are rather similar to the orresponding equationsof the expliit model (Eq. (5.3.4) and (5.3.5) in Part II) and approah theexpliit ase in the limit �t ! 0. It is advantageous then to redue thesolution algorithm to the orresponding sheme of the expliit model.In the following, the onstant Brunt-Väisälä frequeny approximationNijk � N� = onst, �ijk = � = �tN� = onst (3:2:1)is used in the solution of the ellipti equation. The reason is that when thevertial derivative �N=�p is loally large, the iterative algorithm will notonverge. The non-iterative algorithm would be omputationally expensive.Meanwhile, it is not lear either, whether the non-iterative solution is sta-ble. At the same time, the algorithm with the onstant N is non-expensive,omputationally stable, and, as it will be demonstrated later in numerialexperiments, approximation (3.2.1) does not a�et the solution's preision.The use of simpli�ed bakground state in the semi-impliit adjustment pro-edure is not a spei� feature of the urrent algorithm, but a rather generalproperty of all semi-impliit shemes, whih deal with the regularization ofthe internal wave mode. The need to treat the referene state isothermallywas �rst disussed by Simmons et al (1978). The isothermal bakgroundreferene temperature (yielding, by the way, the onstant Brunt-Väisälä fre-queny), is also implemented in the hydrostati HIRLAM, both in the Eule-rian and Semi-Lagrangian integration shemes (Källén, 1996).For the onstant N , (3.1.9) simpli�es to�k +�tt'�k = (1 + �2)�k � �2�Nlev +Q0k: (3:2:2)The inversion algorithm will use an orthogonal basis. In this ase, it isobligatory to supplement the soure funtion with a singular term ijÆkNlev3However, the derivation of suh equations is possible and straightforward.9



to satisfy ondition (3.1.1d)4. It is also onvenient to treat �ij = �2�ijNlevas an additional variable. The ellipti problem (3.1.1) reads then (only thevertial index k is shown expliitly):(1 + �2)(Ĝ+ � Ĝ�)k + (bL�)k = A�;k � (Ĝ+ � ĜQ0)k + (Ĝ+ � Ĝ)k�+ ÆkNlev ;(3:2:3a)where ij and �ij have to be spei�ed from equationsbB[(1 + �2)�� �℄ = b� bB[Q0℄ ; (3:2:3b)� = �2�Nlev : (3:2:3)The obtained system is lose to the expliit ase. The two di�erenes are,�rst, the additional onstant multiplier (1 + �2) in front of the 'horizontal'Laplaian Ĝ+ � Ĝ, and, seondly, the additional variable � and equation forit (3.2.3). The solution algorithm of equations (3.2.3) is as follows.� As the �rst step, all operators in (3.2.3) are presented as the sums ofhorizontally homogeneous main parts and non-homogeneous perturbationsĜ+ � Ĝ = (Lx + Ly) + [Ĝ+ � Ĝ℄0 ;L = L� + L0 ; bB = bB0 + bB0 ; (3:2:4)Horizontal mean operators Lx, Ly, L�, and bB0 are de�ned in Part II (formulae(5.3.9b),(5.3.9), (5.3.10b)).Using separation (3.2.4), system (3.2.3) is replaed with the iterative set ofequations(1 + �2)(Lx + Ly)�(l)k + (L��(l))k = A(l)k + (Lx + Ly)�(l) + ÆkNlev (3:2:5a)bB0[(1 + �2)�(l) � �(l)℄ = b(l) ; (3:2:5b)�(l) = �2�(l)Nlev ; (3:2:5)where f�(l); �(l); (l)g represent the lth iteration to the exat solution f�; �; gfor iterated souresA(l)k = A�;k�(Ĝ+ �ĜQ0)k�f[(1+�2)(Ĝ+ �Ĝ)0+bL0℄�(l�1)gk+[Ĝ+ �Ĝ℄0k�(l�1) ;(3:2:5d)4It would also be neessary to introdue analogous singular soures on lateral bound-aries while solving the ellipti equation with non-homogeneous lateral boundary onditions.However, as the onsideration is restrited to the model with Davies' boundary relaxationzone, the solution will be sought with homogeneous boundary onditions, and the lateralsingular soures will not appear. 10



b(l) = b� bBQ0 � (1 + �2) bB0�(l�1) + bB0�(l�1) : (3:2:5e)� As the seond step, the equation (3.2.5a) is solved for �(l) and for the op-tional right hand side, using three-dimensional orthogonal basis fXiqYkrElsg(Part II, Appendix C), where X, Y and E represent the eigenvetors of theone-dimensional Laplaians Lx, Ly, and L�, with eigenvalues ��xq , ��yr , and���s , respetively. For X and Y the normalized disrete osine-Fourier basesare used with eigenvalues given in (C.1) of Part II. For E, the eigenvetorproblem, given in(C.3) of Part II is solved numerially.Using notation~�qrs =Xijk XqiYrjE�1sk �(l)ijk ; ~Aqrs =Xijk XqiYrjE�1sk A(l)ijk ;~qr =Xij XqiYrj(l)ij ; ~�qr =Xij XqiYrj�(l)ij ~bqr =Xij XqiYrjb(l)ij :s =Xk h�pikEks ; ds =Xk E�1sk ;the solution of (3.2.5a) in the basis is~�qrs = (�xq + �yr)ds~�qr � ~qrE�1sNlev � ~Aqrs(1 + �2)(�xq + �yr) + ��s : (3:2:6)� As the third step, the oe�ients  and � are spei�ed. For this, thesolution (3.2.6) is substituted into equations (3.2.5b) and (3.2.5). As theresult, a two-dimensional set of linear algebrai equations follows for eahpair of oe�ients ~qr, ~�qr (repetitive indexes q, r are omitted everywhere)m11~� +m12~ = n1 ; (3:2:7a)m21~� +m22~ = n2 ; (3:2:7b)wherem11 = (�x + �y)Xs sds(1 + �2)(�x + �y) + ��s � hpiNlev+1=2(1 + �2) ; (3:2:8a)m12 = �Xs sE�1s;Nlev(1 + �2)(�x + �y) + ��s ; (3:2:8b)11



m21 = 1� �2(�x + �y)Xs ENlev;sds(1 + �2)(�x + �y) + ��s ; (3:2:8)m22 = �2Xs ENlev;sE�1s;Nlev(1 + �2)(�x + �y) + ��s ; (3:2:8d)n1 =Xs s ~As(1 + �2)(�x + �y) + ��s � ~b(1 + �2)hhxihhyi(�x + �y) ; (3:2:8e)n2 = ��2Xs ENlev;s ~As(1 + �2)(�x + �y) + ��s : (3:2:8f)After (3.2.7) is solved, solutions ~, ~� are replaed into (3.2.6) and the resultingiterative solution is summed up�(l)ijk =Xqrs XiqYjrEks ~�qrs : (3:2:9)
4 Numerial testsThe nonhydrostati semi-impliit sheme desribed in the previous setionsis realized numerially as the extension of the expliit-Eulerian HIRLAM.The pre- and post-proessing failities are ompletely those of the hydro-stati HIRLAM, also the lateral boundary treatment is the same (Davies'boundary relaxation sheme). The numerial ode inludes all hydrostati(Eulerian expliit, Eulerian semi-impliit, Lagrangian semi-impliit) and non-hydrostati (expliit and semi-impliit Eulerian) sub-models as options whihmay be swithed on/o�. The numerial ode has a parallel realization on theLinux-luster (Tartu Observatory, Estonia) and on the Cray T3E (FMI).In the following, some provisional results are presented, the purpose of whihis to demonstrate the omputational e�ieny and preision harateristisof the model.
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4.1 Flow over arti�ial orographyThe �rst group of test experiments ontains a high-resolution adiabati simu-lations with arti�ial orography and an arti�ial initial state. For orographyserves, as usual, the 'With of Agnesi'-type isolated hill provides the orogra-phy h(x; y) = h0[1 + (x=ax)2 + (y=ay)2℄s ; (4:1)where h0 is the mountain height and ax; ay are the half-widths of the hillalong oordinate axes. We use s = 1.5 when examining �ow over an isolatedmountain and s = 1 when looking at one dimensional �ow with ay = 1.The initial state is haraterized with the referene temperature T0(p), andwind U , whih is initially taken a onstant in x-diretion and then trans-formed to the mass-balaned wind (see formulae (6.1.1) - (6.1.3) in Part II).The mean surfae pressure �eld p0 is spei�ed from orography h(x; y), usingthe barometri formula and a small orretion Æp0(y)=�(p0=RT0(p0))fUy,hanging linearly in y-diretion, is added to it to balane the bakgroundCoriolis fore fU . Boundary onditions are presented by the boundary�elds, whih oinide with the bakground �elds: ub = U , vb = 0 , Tb =T0(p). Temperature Brunt-Väisälä frequeny
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Fig. 1 The temperature pro�les and the orresponding Brunt-Väisälä fre-quenies used in the model experiments with arti�ial orography. The 're-alisti' temperature distribution Treal orresponds to the mean (horizontallyaveraged) atual temperature distribution over Norway on Marh 21, 2001.N�real and N�lin are the onstant values for the e�etive frequeny N� in theellipti solver, orresponding to Nreal and Nlin, respetively.13



The vertial resolution in the following tests is either 31 level (the standardase) or 60 level ECMWF �-levels.The temperature pro�le is hosen di�erently in di�erent experiments. Theused temperature pro�les T0(p) and the orresponding Brunt-Väisälä pro�lesN(p) are shown in Fig. 1.E�et of the time-step size on buoyany wavesThe �rst group of experiments is aimed at the study of the in�uene of time-step size on the buoyany wave behavior. As is well-known, the exessivelylarge time-step in the semi-impliit sheme auses systemati distortions ofbuoyany waves (Haltiner and Williams 1980, Laprise and Peltier 1989).a) Expliit, dt = 40 s b) Impliit, dt = 40 s
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Fig. 2Vertial veloity w and poten-tial temperature � for station-ary �ow regime over irularhill with ax = ay = 4.4 km, h= 300 m. The mean �ow isfrom left to right. Isoline in-tervals are �w = 0.1 m/s, ��= 2 K.As an example, the vertial veloity w and the potential temperature � areshown in Fig. 2 for stationary �ow over the irular hill with ax = ay =14



4.4 km, h = 300 m. The temperature pro�le is Treal (see Fig. 1), and U =20 m/s. In this experiment there are 114�100 grid-points with 2.2 km grid-step, and the vertial resolution is 31 levels. The expliit sheme with dt =40 s (panel a), the semi-impliit sheme with the same time-step (panel b),and the semi-impliit sheme with dt = 80 s (panel ) are ompared. Thisexample shows the general feature of the semi-impliit integration: whenthe time-step is muh larger than the maximum ahievable time-step of theorresponding (aoustially �ltered) expliit sheme, the modeled waves willhave a strong spurious down-stream shift.a) Expliit, dt = 60 s b) Impliit, dt = 90 s
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Fig. 3 Vertial veloity w for sta-tionary �ow regime over 2D ridgewith ax = 30 km, ay =1, h = 350m. The mean �ow is from left toright. Isoline intervals are �w =0.05 m/s.This is the onsequene of the redution of the buoyany wave propagationspeed by the impliit sheme, whih results in the down-stream drift of sta-tionary waves. A small distortion from the semi-impliit sheme is evidentalso at the moderate time-step, ompare panel b with panel a in Fig. 2.15



However, a strong distortion is seen for an 80 s time-step, see panel  of Fig.2.The down-stream drift is a physial e�et in the ase of short-sale orography,ax; ay < 10 km, as the buoyany wave propagation speed is naturally smallhere. The problem is that for large time-steps the semi-impliit shemeredues this speed even more, and makes the down-stream drift stronger thanit atually should be. The false down-stream drift e�et an beome apparentalready in the hydrostati domain ax; ay > 10km, where the semi-impliitsheme, when used with a very large time-step, turns the �ow apparentlynonhydrostati.a) Expliit b) Impliit, exat N
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Fig. 4 Stationary �ow over ir-ular hill with linear N(p) (orre-sponds to Nlin in Fig. 1). Ex-pliit ase (a) represents the test-solution; (b) � modeling with theexat treatment of N in the ellip-ti solver; () � 'mainstream' mod-eling with the onstant N = N�.An example of suh behavior is presented in Fig. 3 for a model �ow with16



ax = 30 km, ay = 1, h0 = 350 m, U = 30 m=s, T0 = 280 K and N =0.018 1=s (isothermal atmosphere), grid 114�100, grid-step 11 km, 31 levels.As it an be seen, the use of the 5 minute time-step auses the systematiobservable down-stream shift of the wave enters, whih inreases with theheight. In addition, the wave pattern is systematially distorted. However,the distortions due to ultimately large time-steps are not so drasti, as theywere for ax = 4.4 km. For strong winds (50 - 70 m/s in the jet stream), thedistorting e�et beomes less, whih is mainly the result of the omparativelysmall ahievable time-step at these large material speeds. Another limitingase, where the distortions due to the large time-step have no e�et, is theshort-sale end of orography with ax, ay � 0.5 km, as here the time-step ofthe semi-impliit sheme will approximately oinide with the time-step ofthe expliit sheme (see further disussion).Anyway, when attention is paid to the buoyany waves, the time-step in thesemi-impliit integration mode should not exeed too far over the maximumtime-step of the (aoustially �ltered) expliit one.E�et of the Brunt-Väisälä frequeny approximationAnother group of experiments with arti�ial �ows was designed to study thein�uene of approximation N(p) ! N�, (3.2.1), used in the ellipti solver.In the 'mainstream' algorithm, desribed in setion 2.2, this approximationis used everywhere. The numerial values slightly exeeding the maximumof N(p) are used for N� (see Fig. 1). However, for heking whether theappliation of the atual N(p) instead of the e�etive N� would inreasethe model preision, a speial modi�ation of the semi-impliit sheme wasmodi�ed to use N(p) instead of onstant N�. In these experiments N(p) wasmodeled with the T0(p), linear with the height (see Tlin in Fig. 1), to whihorresponds an approximately linear pro�le of N (Nlin; ibid).As an example, in Fig. 4, the results of the simulation of stationary �owover a 2D irular hill with ax = ay = 1.5 km, h = 200 m, U = 20 m/s,grid 114�100, grid-step 0.5 km, vertial resolution 60 levels are presented.The modeling result with the linear N (orresponding to Nlin in Fig. 1) ispresented in panel b. It is ompared to the expliit�mode integration (panela) and to the 'mainstream' semi-impliit integration sheme, whih makesuse of the onstant N� (panel ).As it an be seen from this omparison, the more detailed (exat in thispartiular ase) treatment of N , instead of the onstant-N -approximation,17



atually does not add any re�nement into the modeling results, but on theontrary, introdues some additional distortion.Atually, there is no hoie in the ase of the real strati�ation (like Nreal inFig. 1), beause the ellipti solver does not onverge for the strong variabilityof the Brunt-Väisälä frequeny. However, as the experiene of modelingwith the onstant-N -approximation and omparison with the expliit shemehas shown, the onstant-N -approximation enables reasonable auray alongwith the numerial stability.4.2 Real data testsIn these experiments, the real observational initial and boundary data areused. The sub-grid physial parameterization is swithed on, it representsthe HIRLAM 5.0.0 standard physial pakage. In the impliit mode, the ap-proximation of the onstant Brunt-Väisälä frequeny (3.2.1) is used in semi-impliit omputations. Typially, for the e�etive Brunt-Väisälä frequenyvalue N� = 1.2 Max(N) is used.Foreast experiment over �at regionSome examples of modeling with the new sheme are presented in Fig. 5a(surfae pressure) and Fig. 5b (vertial ross-setions of wind and tempera-ture �elds). The 24h foreast on the 0.1 degree resolution, 114�100 point,31 level grid is presented. Modeling area is the 'Estonian site', whih rep-resents a rather �at geographial region. The time steps in the expliit andsemi-impliit nonhydrostati shemes are 90 and 150 s, respetively. The�gures demonstrate a very lose oinidene of the semi-impliit and expliitnonhydrostati algorithms. This is observable despite the large di�erenein the integration time-steps. The impliit sheme is not distorted by theexessively large time-step, whih was observable in the experiments with anarti�ial isolated mountain and a uniform bakground stream. The abseneof distorting e�ets in the ase of the semi-impliit shemes an be explainedwith the small amplitude of buoyany disturbanes. Also, a lose oinidenebetween the nonhydrostati shemes and the semi-impliit hydrostati modelis observable, though the nonhydrostati model gives a slightly deeper depres-sion minimum in the enter of the ylone. In this example, the resolutionbelongs to the ompletely hydrostati region, thus, there should be no sig-ni�ant di�erenes between the hydrostati and nonhydrostati simulations,anyway. 18



Expliit non-hydrostati Semi-impliit non-hydrostati

Hydrostati
Fig. 5a 24h MSL pressure fore-ast with the expliit non-hydrostati,semi-impliit non-hydrostati, andsemi-impliit hydrostati shemes.

Foreast experiment over mountainous regionAn example of a 24 h foreast over Norwegian site with the nonhydrostatisemi-impliit, nonhydrostati expliit, and hydrostati models are presentedin Fig. 6a (surfae pressure), and Fig. 6b (vertial ross-setions of U -wind).Resolution is 0.05 degrees, grid size 156�156 points, vertial resolution is31 levels. Time steps are 80 and 40 s, respetively. Despite of rather highorography, there is still a very lose oinidene between the expliit and19



semi-impliit nonhydrostati shemes. This oinidene shows that the semi-impliit sheme produes adequate results.Expliit non-hydrostati Semi-impliit non-hydrostati

Hydrostati Fig. 5b 24h foreast for the ver-tial ross-setions (�= 14E) of theU-wind and temperature with the ex-pliit non-hydrostati, semi-impliitnon-hydrostati, and semi-impliithydrostati shemes.The onlusion is that even in the ase of high orography, the distortingmehanism due to a large time-step has no e�et in real �ow onditions.The lak of distortions an be explained by di�erent fators, like the smallamplitude of short-sale buoyany waves, non-uniformity of wind, e�ets ofsub-grid physis, or by the ombination of all of these fators.In this ase, the nonhydrostati simulation gives not large, but distinguish-ably di�erent result from the hydrostati model. In the large sale pattern,the predited �elds are rather similar. However, in �ne details, the nonhy-drostati and hydrostati models di�er signi�antly. That means that the20



nonhydrostati e�ets an beome evident at 5-km resolution, if the orogra-phy has a substantial height.Semi-impliit non-hydrostati Expliit non-hydrostati

Hydrostati
Fig. 6a 24h mean sea-level pres-sure foreast with the non-hydrostatisemi-impliit, non-hydrostati ex-pliit, and hydrostati shemes.

4.3 Computational e�ienyAn essential benhmark of a numerial sheme is the ahievable time-step,whih is restrited by the Courant-Friedrihs-Lewy stability ondition. As-suming that the �ow is predominantly horizontal, this ondition states for21



expliit shemes �t < q�X=maxjv + j (4:2)Semi-impliit non-hydrostati Expliit non-hydrostati

Hydrostati Fig. 6b 24h foreast for thevertial ross-setions (�= 1E) ofU-wind and temperature with thesemi-impliit non-hydrostati, ex-pliit non-hydrostati, and hydro-stati shemes.where �X is the horizontal grid step, maxjv + j is the absolute maximum ofthe geometrial sum of material speed v and wave speed  in the medium, andthe geometrial fator q = 1 , and q = 1/p2, for one- and two-dimensional�ows, respetively. In the aoustially non-adjusted ase,  stands for thesound speed, and the maximum time-step is rather restrited. In the aousti-ally adjusted model, the aousti mode is ompletely eliminated (inludingthe external wave), and  represents the internal buoyany wave speed. Thespeed of internal waves is dispersive and has a strong dependene on thedominant horizontal wave-length a, dereasing proportionally with a. In thease of orographially indued buoyany waves, a is of the same order of the22



horizontal sale of orography. Thus, shorter orography indues slower waves.As a result of the smaller wave speeds, the adjusted model supports muhlarger time-steps in omparison with the non-adjusted ase.In the semi-impliit sheme, the wave omponent is unonditionally stable,and the Courant-Friedrihs-Lewy ondition applies to the material motionwith the maximum veloity maxjvj:�t < q�X=maxjvj : (4:3)Consequently, the semi-impliit model supports a larger time-step than theexpliit one does. This advantage should be observable at long sales, whenthe ativated internal buoyany waves have long wavelengths, and shoulddisappear at shorter sales.In the Table 1, the maximum time-steps for the expliit and semi-impliitshemes are presented for �ow over isolated mountain ridge (ay = 1 in (4.1)and q = 1 in (4.1) - (4.3)). The modeling is arried out for two bakgroundwind speeds, U = 30 m=s, and U = 100 m=s. As for a linear �ow regime,modeled in these experiments, the veloity disturbane v0 = v � U i issmall and satis�es ondition maxjv0j << U , the bakground value U anbe approximately used for estimation of the maximum value maxjvj in theCourant-Friedrihs-Lewy onditions (4.2) and (4.3). TABLE 1Maximum time-step �t for expliit and semi-impliit shemes�X ax U �X=U �texpliit �timpliit(km) (km) (m=s) (s) (s) (s)11 30 30 367 60 3405.5 10 30 183 40 1800.55 10 30 18.3 14 170.55 2.5 30 18.3 16 1811 30 100 110 50 1005.5 10 100 55 30 500.55 10 100 5.5 4 50.55 2.5 100 5.5 4 523



As expeted, the semi-impliit sheme has the time-step lose to the theoret-ial estimate �X=max(jvj) � �X=U j). Also it is seen that for U = 30 m/s,the semi-impliit sheme provides in omparison with the expliit adjustedase the time-step enlargement 340/60 � 5.7 times at the 11 km resolution,and 180/40 = 4.5 times at the 5.5 km resolution. For the strong wind U= 100 m=s, the gain in the time step is muh modest. However, doublingat the 11 km resolution and enlargement by the fator 50/30 � 1.7 at 5.5km resolution is ahieved. The ase of the strong bakground wind U = 100m=s is important for pratial appliations, as high wind speeds are oftentreated in the mighty jet-streams. As the �gures of Table 1 demonstrate,approximate doubling at 11 km resolution and enlargement by the fator 1.7at 5.5 km resolution is expeted even in the most unfavorable onditions ofa strong jet-stream.At higher resolutions, where the speed of buoyany waves dereases, the dif-ferene between the expliit and semi-impliit time-steps diminishes rapidly.At 0.55 km resolution, the di�erene is negligible for U = 30 m=s and on-stitutes about 1.2 times for U = 100 m=s.The time-onsumption rate (omputation time per one time-step) of the semi-impliit model is slightly lower than in the expliit ase. The integrationalgorithm in both shemes is basially the same, and this explains the similartime onsumption rate. The slight additional eonomy in the semi-impliitase is ahieved due to the smaller (in average over many time-steps) numberof iterations at the solution of the ellipti problem (3.2.5), whih, in its turn,is determined by the smoothing e�et of the semi-impliit sheme (whih israther analogous to the smoothing e�et of the spetral di�usion sheme).5 ConlusionsThe nonhydrostati semi-impliit Eulerian version of the adiabati kernel ofHIRLAM has been presented in this paper. The model is a rather straight-forward extension of the expliit Eulerian realization of anelasti pressure-oordinate dynamis. As the numerial tests show, the semi-impliit versionmaintains the preision harateristis of the expliit model, while giving riseto omputational e�ieny and numerial stability. The numerial e�ienydepends on the model resolution and on the maximum wind speed. At 5- 10 km horizontal resolutions, the model is at least 1.5 - 2 times more ef-24



fetive than its expliit, aoustially adjusted relative, but this advantagediminishes rapidly with shorter grid-steps and makes negligible at 0.5 kmresolution. However, the larger stability advantage, whih beomes evidentvia lesser spetral smoothing requirement, remains.The model is implemented numerially in the parallel-omputing HIRLAMenvironment. The numerial sheme is ongruous with the remaining nu-meris of HIRLAM, and may be swithed on as an option in the ommonhydrostati HIRLAM.
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