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I. INTRODUCTION1. Nonhydrostatic e�ects in shorter meso-scale.Hydrostatic approximation in equation of vertical development:�dwdt = �g�� @p@z ) g�+ @p@z = 0 :This approximation is not valid for large vertical accelerations:{ convection: { resolved short-scaleorographic disturbances:dwdt � 0:1 � 1m=s2 dwdt � 0:01 � 1m=s2
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∆Xdwdt � w@w@z � (�w)2�z dwdt � �u�w�z ;�w � �u�z�x�w � 10(50)m=s ; �u � 10m=s; �x � 0:1�1km;�z � 1km �z � 0:1� 1km2



Flow modelling over bell-shaped orographydemonstrates that nonhydrostatic and hydrostatic wave{patterndi�er essentially for horizontal scales l < 10 { 20 km.��� = 1:0 K
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a)h0 = 1500ml = 20 kmN = 0.005 s�1U = 20ms�1�� = 2:0 K
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b)h0 = 1000ml = 10 kmN = 0.01 s�1�� = 4:0 K
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c)h0 = 1000ml = 3 kmN = 0.01 s�1Moreover, as it is proved theoretically, the hydrostatic modelis not capable of some nonhydrostatic phenomena description(trapped lee waves (Durran 1990) are an example).3



2. Pressure-related coordinates at nonhydrostatic mod-elling (What is their advantage?)Initially pressure coordinates and pressure-related coordinateswere developed for HS modelling purpose:Eliassen, 1949: isobaric or p{coordinatesPhillips, 1957: sigma-coordinates, � = p=psHybrid- or �{coordinates (ECMWF, HIRLAM):� = p�(p)p0 + [1� �(p)]ps ; 0 � �(p) � 1Advantages:{ natural coordinates at sounding and analysis{ simpli�cation of equations due to the non-divergent("anelastic" in the pressure{space terms) nature of the ow:rp � v+ @!@p = 0 ; ! � dpdt4



How to be at the entering of the NH -domain? :A) leave the pressure coordinates in favour of the ordinary Carte-sian coordinates?B) develop nonhydrostatic dynamics in the pressure-coordinaterepresentation?The second alternative is attractive. Yet for its correctness thepressure must be a monotonous function of z. From thevertical development equation a restriction follows:@p@z = ���g + dwdt � < 0 ) dwdt > �gThat is, transition from z to p{coordinates (and appli-cation of p{space concept) is correct so far, as verticalaccelerations do not exceed the gravitational accelera-tion!There are developed di�erent versions of NH p{space dynamics.Anelastic models: Miller 1974 and Miller and Pearce 1974, White1989, Salmon and Smith 1994.Exact (non-simpli�ed) NH model: R~o~om 1989, 1990.Elastic acoustically �ltered NH model: R~o~om 1997, 1998.The anelastic model by Salmon and Smith(which coincides in essence with the White model) is employedfor the development of the NH HIRLAM.Details of this model are discussed further.5



II. ANELASTIC MODELIN PRESSURE-RELATED COORDINATES3. Anelastic model in p{coordinates. Adiabatic formula-tion (Eq. "NEW" are the ones which the hydrostatic dynamicslacks)(NEW :) dwdt = pH @�@p +Pw+Kw; (1a)dvdt = �rp('+ �)� fk� v +Pv +Kv (1b)dTdt = gHCp !p + PT +KT ; (1c)rp � v+ @!@p = 0 ; (1d)dpsdt = !jps (1e)@'@p = �gHp (1f)(NEW :) wH = �!p � 1R dsdt (1g)H = RT=g { height{scalew = dz=dt { vertical velocityv = iu + jv { vector of horizontal velocity� { NH component of the geopotential6



4. �-coordinate formulation of the anelastic model.Adiabatic caseLet us make following modi�cation in (1):i. Eliminate ! in favour of w in the continuity equation;ii. employ hybrid coordinates;iii. use expansion ddt = @@t + v � r� + � @@� ;iv. express horizontal velocity advection via vorticity and energygradients like in the hydrostatic HIRLAM.As the result of these transformations, (1) becomes to(1a)) @w@t = Fw + Ŝ� (2a)(1b)) @u@t = Fu � Ĝ�� ; @v@t = Fv � Ĝ�� ; (2b)(1d)) Ĝ+� u+ Ĝ+� v � Ŝ+w = 0 �= Ŝ+ T _sg � : (2d)Equations for temperature T (1c), ground pressure ps (1e), andHS geopotential ' (1f) do not change and will exactly coincidewith those of the "standard", HS HIRLAM in hybrid coordi-nates.Fv is the right side of the corresponding equation of the HSHIRLAM, and (continuous case)Fw = �v � r�w � _�@w@� + Pw +Kw7



Operators Ĝ; Ĝ+ are representations of the horizontal pressure{coordinate gradient and divergence in hybrid coordinates:
Ĝ�� =8>>>>><>>>>>: 1h� �@�@��p ; continuous p{space1h� �@�@� � 1m @p@� @�@��� ; continuous �-space1h�� ����� 1�p� (��p)������i+1=2;j;k ; discrete �-space
Ĝ�� =8>>>>><>>>>>: 1h� �@�@� �p ; continuous p{space1h� �@�@� � 1m @p@� @�@�� ; continuous �-space1h�� ����� 1�p� (��p)������i;j+1=2;k ; discrete �-spaceNotation here is the standard HIRLAM notation, exceptm = @p@�8



Ĝ+� u = 8>>><>>>: 1h� �@u@��p ; continuous p{space1h� �@u@��� � 1m 1h� � @p@��� @u@� ; continuous �-spaceh 1h� ���u� 1�p��p��u���ii;j;k ; discrete �-space
Ĝ+� v = 8>>><>>>: 1h� �@v@� �p ; continuous p{space1h� �@v@� �� � 1m 1h� �@p@��� @v@� ; continuous �-spaceh 1h� ���v � 1�p��p��v���ii;j;k ; discrete �-space

Ŝ� = 8>><>>: pH @�@p ; continuous p{spacepmH @�@� ; continuous �-space�g��m� ����i;j;k+1=2 ; discrete �-space
Ŝ+� = 8>><>>: @@p p�H ; continuous p{space1m @@� p�H ; continuous �-spaceh 1�p�� (g��w)ii;j;k ; discrete �-space9



III. NONHYDROSTATIC EULERIAN SCHEME5. Poisson equation for NH geopotential height uctua-tionAction on eq. (2d) with @=@t yields the Poisson equation for �(Discrete �-coordinate case, all relations are de�ned at internalgrid-points fi; j; kg): L� = A ; (3)L = Ĝ+� Ĝ� + Ĝ+� Ĝ� + Ŝ+Ŝ ;A = Ĝ+� Fu + Ĝ+� Fv � Ŝ+Fw + @Ĝ+�@t u+ @Ĝ+�@t v + @Ŝ+@t H!pFw = � u�h�� ��w� + v�h�� ��w� +m _���w�p ��!+ Pw +KwSource function A represents the 3D divergence of HS tendency+ small contribution (last three terms), proportional to tenden-cies of operators.In the continuous p-coordinate representation L would be:L� = r2p� + @@p � p2H2 @�@p�10



6. Boundary conditions for �i. Lateral boundaries: Zero normal gradient (no accelerationdue to NH geopotential)�@�@n�L = 0 (= �L(�) as option ) (4a)ii. Boundary condition on the bottom:Normal gradient @�=@�at the bottom (� = 1)must maintain airparticles at free{slipon the surface V(t)
V(t +∆t)

dV/dt t∆

V(t+∆t)The required condition can be obtained, acting with @@t on thefree{slip condition wj�=1 = vj�=1 � rZ: The result reads (aftersome 'algebra'; the continuous �-space representation is assumed)�@�@���=1 = �0s + �1s(�) ; (4b)�0s = � mHFp[1 + (Hrp=p)2]��=1 ;�1s(�) = � mH2rp � r�p2[1 + (Hrp=p)2]��=1F = � Fw �Hrp � Fv=p :If horizontal scale is > 5000 m { 1 km, then (4b) can be approx-imated as homogeneous (�0; �1 ! 0).11



iii. Boundary condition at the top follows from the require-ment that � is �nite at � ! 0, if the source function A is �nite.This condition can be formulated quantitatively in the Fourierrepresentation by the horizontal coordinates.We de�ne the main part of L as its horizontally averaged com-ponent:L = � 1hh�i @@��2 +� 1hh�i @@��2 + 1hmi @@� hp=Hi2hmi @@�where h�i is the operation of horizontal averaging:fkg : hai = 1NlatNlonXi;j aijkLet us consider the main-part approximation to the exact Poissonequation for � L� = AIts Fourier transform in x; y reads1hmi @@� hp=Hi2hmi @ ~��@� � �2 ~�� = ~A�where ~��, ~A� are Fourier amplitudes of � andA, and �= f�x; �ygis the wave-vector, whereas �2 = (�x)2 + (�y)2 is the Fouriertransform of the horizontally averaged Laplacian.12



The upper boundary condition for �� is�� @ ~��@� !�� � �� ~��(��) = hHi2� ~A�(��)�� + 1 ; (4c)where �� =q1=4 + hHi2��2 � 1=2 ;�� is a level near the top and hHi� is mean value of hHi abovethat level.In the discrete model,�� corresponds tothe level k = 3/2,�� = ��.
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The discrete approximation (wave index � is omitted) to (4c) isL̂~� � (~�ij2� ~�ij1)� �ij2 (~�ij1+ ~�ij2) = hHi21 ~Aij1 + ~Aij22(�ij + 1) � Ĝ ~A :13



7. Solution of elliptic equation for �Iterative algorithm is employed, which supports the fast Fouriercosine-transform (FFCT).Initial equation and boundary conditions are presented asL� = A� L0� ;�@�@���=1 = �0s+�1s� ; �@�@n�L = �0L+�1L� ; L̂� = Ĝ(A� L0�) :Here L0 is the perturbation component of the elliptic operator,L0 = L �Lwhich becomes zero for at, plain ground and horizontally ho-mogeneous strati�cation: Z = 0, H = H(�), ps = p0.The idea is to use the iterative process, in which the ith approx-imation �i is solution of the equationL�i = A� L0�i�1 ;�@�i@� ��=1 = �0s + �1s�i�1 ; �@�i@n �L = �0L + �1L�i�1 ;L̂�i = Ĝ(A � L0�i�1) ;starting with �0 = 0 :14



Application of the FFCT requires expansion (Winningho� 1968,Williams 1969) �i = �i + �ibwhere �i has zero normal gradient at lateral boundary and �ib iszero in the internal points of the domain. Thus,
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Nloni21�@�ib@� �1 = �0s+�1s�i�1;�@�ib@n �L = �0L+�1L�i�1; L̂�ib = Ĝ(A�L0�i�1)L�i = A� L�ib � L0�i�1 � Ai ;�@�i@� ��=1 = 0; �@�i@n �L = 0 ; L̂�i = 0 ;�i = �i + �ib ; �0 = 0 ; �0b = 0 :As a rule, 4 - 5 iterations are required to compute nonhydrostaticgeopotential height uctuation �=g with error � 1 cm.15



8. Numerical schemeDescribed algorithm is realized on the variant of HIRLAM 2.5:50 � 50 � 24 points; horizontal resolution 11.1 km; area 555 �555 km2.Modi�cations concern subroutine 'EULER':{ routine 'DYN', which is called from 'EULER' is modi�ed toinclude computation of w and @w=@t.{ thereafter routine 'ellipt' is called, which computes �.{ NH tendencies of u, v are added to the hydrostatic counterpartsto get full tendencies.Present NH version assumes the Eulerian time integration (Ex-plicit Leapfrog Scheme). Common Explicit Leapfrog requires asmall time step, �t < �x=Ce, where Ce � 280 m/s is the exter-nal buoyancy wave (Lamb wave) speed. To increase �t, externalwaves are eliminated using the rigid bottom approximation inthe pressure � space: @ps@t ! 0 : Thus, the modelling domain0 < p � ps = psjt=0 is the same for all integration period.The actual surface pressure is considered as an adjusted �eldand is computed via the boundary value of the NH geopotentialuctuation � at the lowest model surface ps:ps � ps = �1 + �RT ��=1 :Such approximation for lower boundary is good so far, as themodelling domain is small (up to 1000 { 2000 km in horizontal).16



Yet the problem has temporary nature, as the time{step restric-tion (and along with it a need to �x the ground pressure) arein practice eliminated in the implicit scheme, which would be anext modi�cation to the present NH version anyway.Lateral boundary relaxation scheme.The existing boundary relaxation scheme of the HS HIRLAMdoes not work properly in the NH modi�cation. It is too inex-ible and causes buoyancy wave reection on lateral boundariesand consequent standing{ wave formation near the boundary re-laxation zone:
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Fig. Potential temperature � (upper panels) and vertical ve-locity w (lower panels) in vertical plane j = 25 in the initialmoment (left panels) and after 1 h (120 steps of integration).17



Next �gure illustrates what changes undertakes the source func-tion A in the �{equation (3) during a short integration (1 hour ofreal time), if the common relaxation scheme of theHS HIRLAMis used.
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Fig. Source function A along line k = 13, j = 25 for istep = 1and istep = 120. �t = 30 s.There exist two principal schemes to avoid buoyancy wave reec-tion at lateral boundaries. The �rst applies radiative bound-ary condition and in this way makes the boundaries transparentto gravity waves (Orlanski 1976, Raymond and Kuo 1984). Thisapproach is, for instance, applied in the NH sigma-coordinatemodels NH3D (Miranda 1990, Miranda and James 1992) andNHAD (R~o~om 1997), and in theNH mesoscale model of the MRI(Ikawa and Saito 1991). The other makes use of the Davies-type18



absorbing layer (Davies 1976), introducing the Newton-Rayleighfriction near boundaries. This relaxation scheme is implementedin the Lokal-Modell of the DWD (Doms and Schaettler 1997).The mechanism is similar to the one, used at upper boundary(� ! 0) by Klemp and Lilly (1978).Instead of the rigid relaxation scheme of the HS HIRLAM,which applies relaxation scheme in the boundary zone L ��L < x < Lain(x)! arel(x) = ain(x) � (1� w(x)) + aref (x)w(x)(a is arbitrary �eld to be relaxed, and w(x) is the givenweight-function), the Davies mechanism makes rather use of theNewton{Rayleigh friction@a@t = Fa �K(x)(a� aref)where K(x) is a positive friction coe�cient:K(x) = � 0 ; x < L��Lc(x� L+�L)2 ; L��L < x < Land Fa represents the ordinary tendency for a (without friction).In the case of the NH HIRLAM the Davies scheme is morepreferable as the HS HIRLAM makes already use of the relax-ation zone, and modellings carried out by Davies (1976), and bySaito, Doms, Schaettler and Steppler (1998), shows that relax-ation zone with a depth of 5 { 6 grid-points is already su�cientfor the NH buoyancy wave absorption.19



IV. CONCLUSIONSA preliminary version of the nonhydrostatic HIRLAM is close tobe completed. For completion the lateral BC should be modi-�ed. The model employs Eulerian integration scheme and enablescomputation of additional tendencies due to nonhydrostatic ac-celerations, which are caused by the orography and by inertialforcing. The model is quasi-planar : Earths sphericity is treatedas a small perturbation to the plain geometry, which restricts thedomain of integration to be less than 1500 { 2000 km.Actual problems (as seen in October 1998):{ Modi�cation of lateral boundary conditions and implementa-tion of the Davies relaxation scheme.{ Implementation of the spherical geometry. Requires a newsolution scheme for the elliptic equation, which, similarly to theexisting Helmholtz-scheme of the HS HIRLAM, employs eigen-vector technique in the vertical dimension.{ Resolution enlargement (�X = 11 km! �X = 5.5, 2.25 km).{ Tests on larger grids.{ Development of the semi-implicit NH scheme.{ Implementation of NH algorithm with the Lagrangian time-integration scheme. 20
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