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The equations of motion of an ideal atmosphere are ccnverted from Cartesian co-
ordinates to isobaric coordinates with no assumptions of quasistatic behavior. 1In
contrast to the quasistatic equations, these equations can also describe acoustic
waves. It is shown that for infinitely slow vertical movements, the system is con-
verted to the quasistatic equations. Invariant forms of the equations for the
energy and potential vorticity in isobaric coordinates are derived.

1. Introduction. Eliassen's suggestion [1]
that the equations of atmospheric dynamics be
written in isobaric coordinates has proved very
fruitful. TIsobaric coordinates and the closely
associated sigma-system [2] are now widely used
for numerical modeling of atmospheric dynamics.

Hitherto, in transforming the dynamic equa-
tions into isobaric coordinates it has been as-
sumed that the atmosphere is in quasistatic equi-
1ibrium and that one of the equations of motion
can be replaced by the static equation

dpldz=—gp, (n

where p is the pressure, p is the density, g is
the gravitional acceleration, and z is the height
above sea level.

In the present paper we shall show that con-
dition (1) is not an essential (necessary) condi-
tion. The conversion can be made under the far
less confining condition of a monotonic change
of pressure with height,

dpldz<<0. (2)

There are, of course, processes in which this
condition breaks down, e.g., the propagation of
shock waves, subsonic flow, and the like. Such
processes cannot be realistically described in
isobaric coordinates. But in most problems that
are of interest in atmospheric physics. condition
(2) is satisfied everywhere and at all times.

The present paper is methodological in char-
acter. We shall investigate primarily the prob-
lem of invariant transformation of the equations
of motion into isobaric coordinates. Using the
general apparatus of tensor analysis in a frame
of reference in curvilinear motion, we can repre-
sent all characteristics of motion and the dy-
namic equations in invariant form. The quasi-
static equations will be derived for the special
case of infinitely slow vertical movement.

It is obvious that the quasistatic approxi-
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mation will continue to be used in most practical
problems. But with the more general equations
available, when necessary we can use isobaric co-
ordinates to take account of subtler effects
associated with deviations from static equilibrium.
In additicn, this approach enables us to investi-
gate more deeply the structure of the isobaric co-
ordinate space and the invariant properties of
the equations of motion.

2. The Isobaric System of Coordinates. In
a plane-parailel atmosphere we introduce the rec-
tangular coordinates (x, y, 2) and the associated

orthogonal basis {i, i,, 1.} (where 12 is directed

upward). Together with this system, we consider
the system of coordinates in which the third co-
ordinate is the pressure p. We denote the system

as {x', x*, x*}. The conversion from the old coor-
dinates to the new isobaric coordinates consists
of

H=x, x=y, X=p(x, y, 2 1), (3)

where p(x, y, 2, t) is the pressure field in
atmosphere. For this conversion to be single-
valued and for there to exist the reverse trans-
formation

x=x', y=x', z==z(x', x} x° 1), (4)

condition (2) must be satisfied.

Below we shall present, very briefly, the
main vector equations that will be needed for the
discussion [3-6] in curvilinear coordinates
{xt, %, £°}.

The covariant and contravariant bases {e*}

and {e.} have, in the original orthogonal basis

{ix, i, .}, the representations
el=i, e’=i, e=Vp, (5a)

e, =iy +i.2,, e= iy -+ iZZ,Zy ey =i,2,, (5b)
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where V is the gradient operator (here, in Cas-
tesian coordinates), and 2,=02/0x*. The spatial
locations of the basis vectors relative to the
jsobaric surface z=z(x, y, p, ), p = const, are
shown in the figure.

For the covariant and contravariant compo-

o
nents aa and @ of the vector a=a.e*=a%., the

equations

a‘=a, a*=a, a’=aVp, (6a)

A, =a,+a,2,, G=0,1T02, =02, (6b)

apply, where a. ay, and a are the components of

vector a in basis {is iy, i.}.
Bases (5a) and (5b) can also be used to ex-
press the components of the metric tensor G:

G**=e%e?, Gys=e.e;.

In the formulas that follow, a fundamental role

is played by the determinant of the metric tensor,

G=|Gull = (25)*= (92/0p)™. (7

3. Velocity. To represent the velocity of
a material particle

v—ix +y~+.z ~ixk+iyy+izé (8)

in isobaric coordinates, it is convenient to use
Eqs. (6). For the contravariant components, we
find

vi=zx, V'=y, V'=vVp=p—p,..
It is readily shown that

Py Dxpyz = — (2.p)x 0.t @.1)x..p-
and, consequently,

1~ 2 e Y 3_ 2
vi=%, v'=y, UV'=ptz.z, (9)

in vector form,
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Local bases in isobaric coordinates.

v=u-+tv,, (10)
where
u=ute,=zxe,tye,+pe; (11)

is the velocity of the material point relative to
the isobaric frame of reference, and

Vo:esz,f/zy*_‘izz,r (12)
is the speed of vertical displacement of the iso-
baric surface. Equations (9)-(12) form a con-
travariant description of the velocity.

But we often must also know the covariant
description. From formula (6b) we find

v =343z, U,=ytiz, U,=i2,. (13)
Writing this result in vector form, we obtain
v=ie'+ye*+iVz, (14)

where Vz=e*2z, is the gradient of the function
z(x7', t) in isobaric coordinates. Since

Vz=i,, (15)
Eq. (14) actually coincides with the definition
of velocity in Cartesian coordinates.

4. Density and Continuity Equations. De-
fining the density p and pp by means of the equa-

tions
dm=pdxdydz=p,dx'dx*dy’,

where dm is the elementary mass associated with
the volume dV = dxdydz, we obtain

=1/Gp = —z4p. (16)

The continuity equation (the law of conser-
vation of mass) is

p.+div(pv) =0, (17a)
or
pt+p divv=0. (17b)

If we decompose v into the relative velocity u
and the velocity of the frame of reference v,

(see Egs. (10)-(12)), then use for the divergence
of the vector the invariant definition

d1va=~—(VGa)a, (18)

and make use of the readily demonstrated equation

. 1 a
divvy = —= Ve ~Va. (19)

Equations (17) can be written
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Pp.t + (Ppl%),0 = 0, (20a)
Pp‘f‘Pnu?x:O- (20b)

As we should expect, the form of continuity equa-
tions (20) is retained in isobaric coordinates.
Note that Eq. (20) contains the relative velocity

{u*}={%,y, p} rather than the absolute velocity.

5. Equations of Motion. The equations of
motion in isobaric coordinates are readily de-
rived from the appropriate equations

i=F, ij=F, #=F, 21)

in Cartesian coordinates. Here, the left sides
of the equations contain the absolute accelera-
tion of the material particle and the right sides
contain the components of the force acting on
this particle per unit mass.

In converting to isobaric coordinates, the
absolute accelerations are not altered, but only

their interpretations: &, j must be regarded as

the function z(xi, t) defining the position of
the curvilinear frame of reference in space.

The right sides of Eqs. (21) can be re-
written, using Eqs. (5a) and (15), as

F,=i,F=¢'F=F",
F,=i,F=e!F=F?,
F,=i,F= (Vz) F=F°z,

Thus, in isobaric coordinates the equations of
motion are

W=F @*=F? i=Foz, (22)

where the operator for full differentiation with
respect to time in isobaric coordinates is

f=dfjdt=Ff,+ uf ,, (23)

and F* are contravariant components of the force
field vector. The problem of representing the
equations of motion in isobaric coordinates will
be fully solved if we represent the explicit

equations for the force components F*.

6. Force in Isobaric Coordinates. Consid-
er an atmosphere rotating along with the earth
under the ideal-gas approximation. Then the
force in Cartesian coordinates (rotating along
with the earth) will be

F=—giz——:)~VP—Fe,

(24)
where —Fc is the Coriolis force,

F.=20Xv, (25)
and w is the angular velocity vector of the
earth's rotation,

0=i,0,(y) +i.0.(y). (26)

Thus,
e*F = — ge®j, — l—e"‘Vp —e*F, a=1,2,
p

FVz = — gitVz — L V2Vp — F.Vz.
p

From Eqs. (15) and (16) and the definition of

3
vector e~ (5a), we obtain

VG

Pp

e“F = —

e%ed —e’E, a=1,2,

Va

P

FVz2 = —g— i2Vp — F.i,.

It is readily shown that

2% = G® =2,/ G, a=1, 2,
i.Vp= —1/)VG.

and thus that

eF = —z4/0, —e*F;,, a=1,2,
FVz=1/p, — g — F.i,. (27)

It remains to represent the Coriolis force
in terms of the components of vectors w and v.
For this purpose it is convenient to use the
representation of these vectors in Cartesian co-
ordinates (e.g., Eqs. (8) and (26)). Using the
definition of the vector product in the orthogonal

system and the qualities #=u' y=u?, we obtain

ech = ich = _2"1)zuZ + 2(09"2,
e’F, = i,F, = 20,1,
i.Fe = — 20,u". (28)

7. Closed System of Equations for the Hydro-
thermodynamics of the Atmosphere in Isobaric Co-
ordinates. To obtain a closed system of equations
describing the evolution of the atmosphere, we
need to supplement equations of motion (22) with
continuity equation (17), an equation for the
balance of internal energy, and an equation of
state. In addition, for a closed dynamic descrip-
tion, we need to add boundary value conditions to
this system. As we shall shortly explain, one of
the boundary conditions is converted in isobaric
coordinates to a supplementary dynamic equation.

The internal energy equation undergoes no
outward alteration on conversion to isobaric co-
ordinates, but in the equation of state the den~
sity p is replaced by pp, using Eq. (16). Thus,

making use of the results of the preceding sec-
tion, we obtain the system
2= 1/p, — g + 20,4, (29a)
ut = —2z,/pp + 20,4 — 20,2, (29b)

U= —2,4/p, — 20,4, (29¢)
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cpT — RTW/p = w, (294d)
Pp + Ppi = 0, (29e)
z,=—Rp,T/p. (29f)

Here T(x', {)=T(x, y, p, t) is the temperature field,
w is the density of the heat sources, and cp and

R are the thermodynamic constants of an ideal
gas. :

System (29) must be supplemented by boundary
conditions on the underlying surface z = 0 and at
z = o, The level z = 0 in isobaric coordinates
represents the free surface p=p,(x, y, t),
defined by the conditions

z[xv Y, pn(x, Y, t)r t]=0 (30)

The boundary condition for this surface is

2(%, 4, P, D) lo—patrwy = 0. (31)

Applying the operator of full differentiation
with respect to time to Eq. (30), by virtue of
Eq. (31) we obtain

I;o_ualp=pn =0. (32)

This equation, which defines the movement of the
free surface in isobaric coordinates, is the
equivalent of boundary value condition (31) for
the case in which condition (30) is satisfied at
the initial instant. Thus, the boundary value
condition for the underlying surface becomes a
dynamic equation in isobaric coordinates.

We integrate Eq. (29a) and use condition
(30) to determine the constant of integration:

PolX.y.1)
26, 9,0, 0=R | Z-dp.

’

4 (33)

This integral equation can be used in place of
differential equation (29f); condition (30) is
satisfied at all times.

It follows from Eq. (33) that the equation

2| p=o=0 cannot be used as a boundary value con-
dition at infinity. To see that this is so,
consider, for example, the model situation

T=Ty+T,)8(—p1), 0<p1<Po-
The correct boundary condition as p »> 0 is
¥ p=0 = 0. (34)

The components of the Coriolis force that
depend on the horizontal components of the angu-
lar velocity are small compared with the other

forces in Eqs. (29a) and (29b), i.e., |2wm,u'|~

10-*g, |2w,i| ~107*|20,u'|:, for slow quasihorizontal
movements of the atmosphere, and we can there-—
fore use in place of Egs. (29a)-(29c) the equa-
tions

R g g

2=1/p, — & (35a)
w = —2z,/p, + 201 (35b)
dzzr——zﬂmp——2wgﬂ. (35¢)

8. Conversion to the Quasistatic Case. For
slow quasihorizontal movements of the atmosphere,
the vertical acceration Z is small compared with

the forces p -1 and g (it is well known that

]z[ v 10_4 g for movements of synoptic scale).
Thus, when describing such movements, we can con-
vert to the quasistatic equations. We derive the
quasistatic equations by replacing 2 with with
zero in Eq. (35a), which is then converted to the
condition of quasistatic equilibrium

pr=1/g. (36)

Thus, the principal sign of quasistatic movement
is that the density p_ is constant. Based on Eq.
(29a), we obtain instead of (36)

pr=1/(g—2w,u"),
i.e., with allowance for the Coriolis force, the
density pp depends on the horizontal velocity
ul. But this relationship is very weak, and the
relative deviation of pp from the constant value
of Eq. (36) caused by the Coriolis force does not

exceed 10_4.

When condition (36) is satisfied, continuity
equation (29f) is converted to the incompressibil-
ity condition

u?‘a:O, (37)

and Eq. (33) to the familiar formula for the geo-
potential

pu(X.qJ) T y
(x.y:p )dpﬂ

o P (38)

gz(x, 4, p, =R

Thus, under the assumption of infinitely slow
vertical movements, the general system of equa-
tions in isobaric coordinates is converted to
the usual, familiar system of quasistatic equa-
tions.

A special case of the quasistatic situation
is the state of static equilibrium

u=0, z=2,(p), T=To(p), pp=0=~1000 mbar. (39)

In static equilibrium, the system of equations
for the hydrothermodynamics of the atmosphere de-
generates into the two main equations (36) and
(38), with (38) becoming

T, (p' ,
ga(p) =R gy
b (40)
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9. Linearized Equations. Linearizing the
equations of hydrothermodynamics relative to the
state of static equilibrium (36), (39), (40) re-
sults in the following system (we use as initial
equations (29d), (2%e), (32), (33) and (35a)-
(35¢)):

2y — ulick (p)Igp = — &Pn, (41a)
Uy = — gz, + 20.u2, (41b)
W = — gz, — 20,1, (41c)
T\ — w36 (P)/(Rp) = O, (41d)
Ppt + u/g =0, (41e)
Dot — 13| peg = 0, (41F)
) e -, R G
= u+;§ o pudp +—g—j — dp, (1)

P =ps(x, y, p, H)—

—lg, T'=T(x, y, p, ) =Ts(p), pJ' (%, 4, 1) =po(*, y, t)—a,
are the deviations of the height of the isobaric
surface, the density, temperature, and pressure

at the underlying surface from their equilibrium
values. The quantities

Here, 2/'=2z(x, y, p, t)—z(p),

) = VTG ) = 1/ BT (£ 250

P (42)

have the dimensions of velocity. In the tropo-
sphere they are ey = 280 m/s, ey = 180 m/s. 1In
the quasistatic approximation, g and e define
the phase velocities of the propagation of ex-
ternal two-dimensional waves and internal grav-
ity waves [7-9].

The solutions of Eqs. (14) also described
wave movements of the atmosphere. But in con-
trast to the quasistatic situation, in this case
the solutions contain not only gravity waves and
gyroscopic waves, but also acoustic waves. For
example, there exist solutions with a purely ver-
tical structure (such solutions cannot exist in
quasistatics):

u'=u*=0,
uS ~ it [(ﬂ‘)‘/’“‘k__ ('ﬁ)%‘m] ,
\a a (43)
where the frequency is given by the formula
L EER
=g l/ a_a (44)
k is the wave number (we assume that CO and e,

are constants). Solution (43) is a superposition
of two traveling waves, propagating vertically
upward and downward in the atmosphere, which in
Cartesian coordinates have the phase velocity

RSV
”F=C°l/—1t:ca/7‘~
7o

In the short-wave part of the spectrum (k >> 1,

v <o=1/ 2RI, (cr=c,—R)
"

The equality on the left applies in the case of
adiabatic equilibrium, and that on the right in an
isothermal atmosphere. Here, ¢ is the speed of
sound in an ideal gas. Thus, Eq. (43) describes
an acoustic standing wave.

10. Balance of Energy and Potential Vorti-
city. 1In conclusion, we consider two balance
equations, which, in the absence of dissipative
processes, heat sources, and external forces,
become conservation laws, namely, the equations
for balance of energy and potential vorticity.

The law of balance of energy in Cartesian
coordinates is

pé+div (pv) =pw. (45)

The mass energy density is the sum of the
kinetic, potential, and internal energies,

e=v*/2+gz+c,T. (46)

Using Egqs. (10), (18), and (19), we can convert
(45) into

Prépt (2u°%) o =p,w, 47

where

ep = e+ RT —z/p, =1/, [(})? + (4% + (2)*] +
+(g— Vpp)z+ T, (48)

is the sum of the densities of the kinetic energy,
the enthalpy, and the energy (g—1/pp)z, resulting
from the deviation of the density pp from the

equilibrium value 1l/g.

For the quasistatic case p,=1/g, /=0, Eq.
(47) becomes

bt (g2u®) o =w,

where e.="'/[ (4')?+ (4?)?*]+c,T is the energy density
of the quasistatic atmosphere in isobaric coor-
dinates.

Equations (46) and (48) define two different
energy densities (which, incidentally, have the
same dimensionality of energy/mass). The question
arises whether there correspond to these two
densities two different integral quantities that
are conserved. We find that this is not the case.
Integration in the vertical direction gives the
same values for the energy of a unit column

ol Po

J epdz = yepppdp.
[}
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The Ertel potential vorticity J [10-12] is
defined as

J=(QVs)/p 49

where Q=rotv+2® = is the absolute vorticity

and s=c,InT—RInp + const is the entropy density
of an ideal gas. From the equations of motion
follows the balance of vorticity in Cartesian
coordinates

J=Ldiv (Qi) i
P T

(50)
by virtue of which, in the absence of heat
sources (w = 0), J is a conservative quantity.

In isobaric coordinates, we can write the
potential vorticity

=L@, +2yGo)Vs,
Pp (E2Y)
where Qp is a vector with contravariant compo-

nents
Q% — — eV ((2) pzy + Uapl, (52)

£ - are the Levy-Civita symbols, and {#}={%, g, 0}
={ut, u?, 0} .
The negative sign in Eq. (52) takes account

of the sinistral orientation of the bases {e«} and

{e*} . The earth's angular velocity vector has the
covariant components
ol=0, =0 m3=-——1—:(a)z~mz ).
’ Y VG y<.y. (53)
The balance of vorticity in isobaric coordinates
is

] 1.9 o Go®) 2.
J:B;-S;;{(Qp—{—Q]/Gm) T]. s

As will be seen from formulas (51) and (52),
the potential vorticity in isobaric coordinates
is extremely complex. Note that when the angular
velocity w is replaced in the equations of motion
by its vertical component w.i., the same change
takes place in the formula for the potential
vorticity. For quasistatic equilibrium, the
formula for the potential vorticity is consider-
ably simplified:

i
= ‘—g‘ [u?as,L —_ Ufas,z _ (u?l.— u%z + 20;) 5.5)

(here, in addition to quasistatic conditions, we

also assume that 0=i,w,).

In transforming the equations for the dy-
namics of the atmosphere we neglected internal
friction and other nonpotential forces. Addi-
tion of such forces as a supplementary term f
in the definition (24) introduces no fundamental
complications. It entails the incorporation into
Egqs. (29a)-(29¢c) of the force components iVz,

e'f, ef , while p,vf (v appears in the right side of

energy balance equation (47) (v is the absolute

velocity (10), (14)), and a term ———"(se'f, ),
Pp 0x*

must be added to the right side of Eq. (54),

where f} are the covariant components of f in

isobaric coordinates. But it should be noted
that the internal structure of the components of
the dissipative forces is likely to be very com-
plex in isobaric curvilinear coordinates.
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