NON-HYDROSTATIC ADIABATIC
KERNEL FOR HIRLAM
Part 111

Semi—implicit Eulerian scheme

Rein Room, Aarne Méannik
Tartu University, Estonia
Rein.Room@ut.ee, Aarne.Mannik@ut.ee

1 Introduction

In this paper, the adiabatic kernel of the nonhydrostatic HIRLAM with the
semi-implicit Eulerian integration scheme is presented. The present inves-
tigation continues the work, initiated in the Part I by R6om (2001) and
Part IT by Mannik and R6om (2001), where the fundamentals of nonhydro-
static atmospheric dynamics in pressure-related coordinates were presented,
and on that basis, the nonhydrostatic, explicit-Eulerian version of HIRLAM
was developed.

The new development supplements the nonhydrostatic Eulerian scheme with
a semi-implicit integration option. In this respect, the new model repre-
sents a nonhydrostatic extension of the hydrostatic semi-implicit Eulerian
HIRLAM (Kallen, 1996). However, by ideology, the parent model is the
explicit-Eulerian nonhydrostatic scheme with completely anelastic pressure-
coordinate dynamics, developed in Part I and Part II.

The semi-implicit method of integration in atmospheric dynamics was pro-
posed by Robert (1969). Soon this method became a general approach in
most numerical models of large-scale atmospheric dynamics. It is also ap-
plied in the hydrostatic HIRLAM. As is well-known, the main advantage of
the semi-implicit scheme is the enhancement of the computational efficiency



of the model via the enlargement of the time-step. This is achieved through
the reduction of the speed of sound and buoyancy wave motions in the mod-
eled atmosphere. In mathematical sense, the semi-implicit scheme makes the
numerical algorithm unconditionally stable with respect to the fast linear
wave sub-system.

In the anelastic approximation used in the explicit version of the nonhy-
drostatic HIRLAM, the sound waves are filtered prior to the discretization,
and the time-step is limited by the fastest internal buoyancy waves with the
phase speeds of 100 m/s approximately. Due to this, the time-step of the
explicit model is relatively large (approximately 1 minute at 10 km resolu-
tion), and the further time-step enhancement by a semi-implicit scheme is
not so dramatic as in an elastic model or in the hydrostatic HIRLAM (where
the time-step increase due to transition from the explicit Eulerian to the
semi-implicit Eulerian scheme is of the order of two magnitudes). However,
approximately a doubling of the time-step is achieved at 10 to 5 km resolu-
tions. It is essential to note that the time-step increase is achieved at no extra
computational cost, as the semi-implicit extension uses, in essence, the same
basic integration algorithm as the explicit nonhydrostatic scheme. Therefore,
the semi-implicit scheme will give rise to the numerical efficiency in compar-
ison with the explicit model, even when the anelastic approximation is used,
and consequently, this scheme is worth developing.

In the first half of the paper (section 2 and 3), the theoretical foundation
of the semi-implicit model on the base of anelastic hybrid-coordinate model
is presented. In the second half, after a minor discussion of numerical im-
plementation details, modeling results with both the artificial flows over a
bell-shaped mountain and with the realistic initial and boundary data are
presented (Section 4). The main quality benchmark is the coincidence with
the modeling results from the explicit version. A central parameter of the
nonhydrostatic semi-implicit scheme is the Brunt-Vaiisila frequency N. One
of the central issues, addressed in this paper, is the proper choice of this
quantity.



2 Semi-implicit equations

2.1 Initial equations with explicit separation of linear
and nonlinear parts

We proceed from the discrete equations of motion in section 5, Part II. The
indexing {1, 7, k} will be omitted, where appropriate, and a short notation
for vertical differentiation will be used
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(5 a : ((5 a)i'k+1/2 = <——77> ; (5+b : (6+b)lk — <_77> .
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Time differencing is denoted as 9;:

uttAt _ g t-At

2At

After explicit separation of linear terms in the tendencies F,, F,, Fr, and
F,, equations (5.1.14), (5.2.1) — (5.2.3), (5.3.3a), (5.1.17) can be presented
in the form

5tu ==

G v+diw=0, (2.1.1a)
ov=-Gp+7") +1,, (2.1.10)
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p
Siw = — <?> 5,0 + F, (2.1.1¢)
6T = ST+ fr, (2.1.1d)
Ayp=—aRT , A,7"=—aRT", (2.1.1¢)

where, G* and G are defined by formulae (5.1.12) and (5.1.13) in Part II,
f. = {fu, f»} and fr represent the nonlinear parts of the momentum and
temperature tendencies at time level ¢:
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where U, V are defined by (5.1.6), and Z, F are defined by (5.2.6) and (5.2.7),

and

oA, T"
Ayp

with a(7") defined by (5.2.10) and Fr by (5.2.9).

The vertical momentum forcing F, coincides with (5.3.3b), which is com-
pletely nonlinear (does not include any linear term). The stratification term
S in the temperature equation is

T AT
S e L (2.1.3)
Anp ijk

2.2 Semi-implicit discrete equations

fr=Fr—Sw" =—a(T) + + Pr+ Kr (2.1.2¢)

The semi-implicit form of equations follows, when in the equations of motion
(2.1.1b) — (2.1.1d) linear terms, responsible for wave-like motion, are treated
implicitly:

2 2
G(o+7") — G +3™), <%> S, — (%) 5,6 . Sw" — Swm

where @' means the temporal averaging of the field a in respect to the time

level t:
., at+At + atht

o= where @' = a(t)

and the short notation is used for double averaging a"* = an. However, the
averaged field Et is, like ¢ in the explicit scheme, a diagnostic field, which
will be evaluated from an explicit equation (the elliptic equation, see further),
and there is no need to find or operate with its explicit and implicit parts
(¢" and Ay ) separately. Therefore, without being ambiguous, we will use
the following notation

=9
The semi-implicit form of equations (2.1.1a) — (2.1.1d) is then
Gt vi+oiw =0, (2.2.1a)
ov=—G(p+7") +1, (2.2.1b)
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b
6tw = — (?) 6p¢ + Fw s (2210)

6T = Sw" + fr | (2.2.1d)
Ayt = —(aRT)', A,(@") = —(aRT")" . (2.2.1¢)
The nonlinear forcings f,, F,, fr, as well as the coefficients H, S, and the

pressure p in linear terms are treated explicitly, i.e., they are given at the time
level t. Diagnostic relationships (2.2.1a), (2.2.1e) also are explicit equations.

Applying to " in (2.2.1b) and @ in (2.2.1d) the following identity
X = X'+ AuX
where A, X is defined as
ApX = %(Xt—l—At 4 XAy Xt

equations (2.2.1b) and (2.2.1d) can be presented as
ov=—Gop—GAup +F, , (2.2.10")
6tT = SAttwn + FT . (221dl)

As the tendencies F' in equations (2.2.1b’), (2.2.1¢), and (2.2.1d’) are evalu-
ated at time ¢ and coincide with those of the explicit Eulerian scheme (see
formulae (5.2.4), (5.2.5), (5.2.8), and (5.3.3b)), the obtained system differs
from the explicit scheme by the presence of terms with the second order
differences Ay ¢ and Ayw.

As (2.2.1a) holds at every time-level, it yields derivative relationships
G -v +6w =0, (2.2.1d")
G5 v+60w=0. (2.2.1a")

3 Integration of the semi-implicit system

In this section, the elliptic equation for ¢ is derived. It is a generalization of
the elliptic equation for ¢! of the explicit scheme.The equation includes an
elliptic main part and a small perturbation term. When solved iteratively,
the algorithm draws back to the explicit case with an exception that the
horizontal Laplacian in the elliptic equation is increased by the factor 1 +
At2N?, N being the Brunt-Viisili frequency.
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3.1 The elliptic equation for baric geopotential

Elimination of time differences in (2.2.1a”) with the help of (2.2.1b’) and
(2.2.1c) yields equation

GT-G(p+Au0") +Lo=4,, (3.1.1a)
where
Lo = 5p (m@@) (3.1.1b)
and

Ay=(GT-Fy)+6F, . (3.1.1¢)

The mass balance condition for ¢ (Part II, equation (5.3.5)) becomes
B(p+Bup") =1, (3.1.1d)

where Bis given by (5.3.5a) and

Nlev
. —x T 2 — YV £
bi; = kz:; [5:,,; (hy A,p F) +4, (hx A,p F,,)ij
9Py Ipy —
+(hahy)is [— +V. (— (A, B)ivi . (3.1.1¢)
ot ot L ;

Note that the formula for b;; is corrected here, it is different from the old
formula (5.3.5b), which was erroneous'.

Except the term with the second order difference (Ay¢"), equation (3.1.1a)
coincides with elliptic equation (5.3.4c) of the explicit scheme. Due to this
additional term, equation (3.1.1a) is not closed and it must be complemented
with an additional relationship between (A,¢") and ¢. To obtain such a

relationship, we rewrite the omega and temperature equations (2.2.1¢) and
(2.2.1d’) in the form

2
Apw = —At (%) Sy + o | (3.1.2a)

!'However, this difference has no significance in practice, as it is almost negligible in
actual atmospheric conditions.



AttT = AtSAttwn + ILLT s (312())

where
o = AtFy, —w' + w2 pp = AtFp — T+ T4 (3.1.2¢)
Elimination of w in (3.1.2b) with the help of (3.1.2a) yields

7277

Further, the integrated presentation for the thermic geopotential is needed. It
proceeds from (2.1.1e) with the help of the boundary condition @;jnievt1/2 = ghij

~

@i = ghij + [M(aRT)]ijp (3.1.3)
Nlev 1
(M(a)ije =Y aiw + 5 ik (3.1.4)
K =k+1

Applying here the operator A, assuming that o and R are (approximately)
constant? , and using (3.1.2d), the wanted relationship results:

Aug" =-Q() + Q" (3.1.50)
where
2 n
Q(¢) = A’M |aRS <%> Oy ] , (3.1.5b)
Q" = M [aR (7 + AtSTL")] (3.1.5¢)

It is advantageous to modify the sum in the right hand side of (3.1.5b), using
identity

Nlev
" 1 1
(M(ab)e = > @)1+ 3 ONtevDNIev+1/2 = Zak(Anb)k :

k'=k+1

2 Actually, the weights of levels a;j; depend on time via background surface pressure p;,
and R is time dependent in the moist air. However, in the present case, these dependencies
are marginal and can be omitted in the relationship (3.1.5a).



The result of the transformation is

Nlev
1
@Qk(@ = Z (N2 2y )1 /o+

kK'=k+1
L aRs) < P ¢) ! [(aRS)A ( v qﬁ)} (3.1.60)
a9 Nlev \ =—mn.,"p - n\ 7=n.,9% s .
2 (H )2 Nlev+1/2 4 (H )2 k

where N is a discrete presentation for the Brunt-Viisild frequency
aRS"p?
(H")*Ayp k—1/2

Omitting from (3.1.6a) the last two terms, which present, respectively, the
first- and second-order small contributions to the sum, and using presentation

Nlev Nlev
Z (N?Ay @)k -1/2 = Nien1 joONtew — Nigy1 20k — Z O (AN
k'=k+1 k'=k+1

the final presentation for (), follows:

Nlev
Qk(¢) = V]QVlev¢Nlev - V}?% - Z ¢k’AnV]3/_1/2 s (317)
K'=k+1
where the non-dimensional parameter v is
Vije = A Niki1s - (3.1.8)

Using (3.1.5a) and (3.1.7), the term ¢ + Ay@" can be presented as

Nlev
O+ Dy, = (14 1) 0 — Ve Oniew + Z ¢k’AnV13'—1/2 +Qp . (3.1.9)
k'=k+1
This is the desired relationship which closes the system (3.1.1).

Thus, in the case of semi-implicit model, the time-integration problem (i.e..,
the one-step-forecast problem) draws, in essence, back to the solution of the
baric geopotential ¢ from the elliptic problem described by equations (3.1.1a),
(3.1.1d) and (3.1.9). The situation is rather analogous to the explicit case,
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where it was necessary to solve an analogous elliptic problem for the explicit
component of the baric geopotential ¢!. The most important quality of the
presented semi-implicit model is that there is no need to solve the elliptic
equation for the explicit and implicit components ¢’ and Ay ¢ separately® |
as it is sufficient to have the solution for the sum ¢ = @' + Ayud.

3.2 Solution of the elliptic equation

Equations (3.1.1a), (3.1.1d) are rather similar to the corresponding equations
of the explicit model (Eq. (5.3.4) and (5.3.5) in Part II) and approach the
explicit case in the limit At — 0. It is advantageous then to reduce the
solution algorithm to the corresponding scheme of the explicit model.

In the following, the constant Brunt-Viiséla frequency approximation
Nijr = N* = const, Vijk = v = AtN" = const (3.2.1)

is used in the solution of the elliptic equation. The reason is that when the
vertical derivative dN/dp is locally large, the iterative algorithm will not
converge. The non-iterative algorithm would be computationally expensive.
Meanwhile, it is not clear either, whether the non-iterative solution is sta-
ble. At the same time, the algorithm with the constant NN is non-expensive,
computationally stable, and, as it will be demonstrated later in numerical
experiments, approximation (3.2.1) does not affect the solution’s precision.

The use of simplified background state in the semi-implicit adjustment pro-
cedure is not a specific feature of the current algorithm, but a rather general
property of all semi-implicit schemes, which deal with the regularization of
the internal wave mode. The need to treat the reference state isothermally
was first discussed by Simmons et al (1978). The isothermal background
reference temperature (yielding, by the way, the constant Brunt-Viisila fre-
quency), is also implemented in the hydrostatic HIRLAM, both in the Eule-
rian and Semi-Lagrangian integration schemes (Kéllén, 1996).

For the constant N, (3.1.9) simplifies to
O + Bup = (1+°)gp — V2 G1er + Q}- (3.2.2)

The inversion algorithm will use an orthogonal basis. In this case, it is
obligatory to supplement the source function with a singular term ;05 nieo

3However, the derivation of such equations is possible and straightforward.



to satisfy condition (3.1.1d)*. Tt is also convenient to treat pij — V2¢iszev
as an additional variable. The elliptic problem (3.1.1) reads then (only the
vertical index k is shown explicitly):

(14+ 1) (G- Go)y + (L) = Ags — (GF - GQYs + (G- G)pp + Yornten |

(3.2.3a)

where 7;; and p;; have to be specified from equations
Bl(1+v%)¢ - p] =b— B[Q"] , (3.2.30)
=1 ONiew - (3.2.3¢)

The obtained system is close to the explicit case. The two differences are,
first, the additional constant multiplier (1 + »?) in front of the "horizontal’
Laplacian G+ G, and, secondly, the additional variable p and equation for
it (3.2.3c). The solution algorithm of equations (3.2.3) is as follows.

e As the first step, all operators in (3.2.3) are presented as the sums of
horizontally homogeneous main parts and non-homogeneous perturbations

Gt G=(L,+L)+[Gt G L=£,+L, B=B"+DB', (324)

Horizontal mean operators L, £, £,, and B are defined in Part I (formulae
(5.3.9b),(5.3.9¢), (5.3.10b)).

Using separation (3.2.4), system (3.2.3) is replaced with the iterative set of
equations

(1+ )Ly + £,)0)) + (Ly0 ") = AY + (Lo + £,)0” +70knien (3.2.50)

B[(1 + v*)p® — p0] = p® | (3.2.50)
P =100, (3.2.5¢)

where {¢), p), 4V} represent the [th iteration to the exact solution {¢, p, v}
for iterated sources

A = A= (G- GQ")— {[(1+7) (G- QY + T8y +[GF- Gl D
(3.2.5d)

41t would also be necessary to introduce analogous singular sources on lateral bound-
aries while solving the elliptic equation with non-homogeneous lateral boundary conditions.
However, as the consideration is restricted to the model with Davies’ boundary relaxation
zone, the solution will be sought with homogeneous boundary conditions, and the lateral
singular sources will not appear.
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b = b — BQ" — (1 +v*) B¢ 4 Bpl . (3.2.5¢)

e As the second step, the equation (3.2.5a) is solved for ¢(*) and for the op-
tional right hand side, using three-dimensional orthogonal basis {X;, Y%, Es }
(Part II, Appendix C), where X, Y and F represent the eigenvectors of the
one-dimensional Laplacians L., £,, and L, with eigenvalues —A7, —A¥, and
— A7, respectively. For X and Y the normalized discrete cosine-Fourier bases
are used with eigenvalues given in (C.1c) of Part II. For E, the eigenvector
problem, given in(C.3) of Part II is solved numerically.

Using notation

= 1.
Dgrs = ZXqu;”jEsqusgj)k , Ags = ZquYmEsklAzgk ;

ijk ijk
Tor = O XYoo fgr = ZXqZYmp” ZXQZ b
ij
Cs = Z<Ap>kEks y ds - ZE;]: s
k k

the solution of (3.2.5a) in the basis is

> _ (AZ + )‘g)dSﬁqr - ,?qrEs_Z\lflev - Aqrs
i (1+v2)(A2 + M) + N

(3.2.6)

e As the third step, the coefficients v and p are specified. For this, the
solution (3.2.6) is substituted into equations (3.2.5b) and (3.2.5¢). As the
result, a two-dimensional set of linear algebraic equations follows for each
pair of coefficients 4,,, g, (repetitive indexes ¢, r are omitted everywhere)

mllﬁ + mlﬂ =ny , (327@)
mglﬁ + m22’~y = Ny , (327())
where
Csds <p>Nlev+1/2
= (A" 4+ N — 3.2.8
= (A )2(1+u2)(A$+Ay)+AZ (1+02) (3:2.80)
csE i
= — Sy 3.2.8b
e Z:(Hu?)(»n“y)ﬂ;” (3.2.80)
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ENlev,sds

mar =1 — 2(A" + \Y) Z T e T (3.2.8¢)
e A (00

=2y u2)(§\ZA—i O VAR u2)<hx>fhy)(Ax Ty (8280
ny = V" zs: 1+ z/??(]v/\livj—isy) FAT (3.28/)

After (3.2.7) is solved, solutions 7, p are replaced into (3.2.6) and the resulting
iterative solution is summed up

¢5§)’€ - ZXZ"JY}TEkséqrs . (329)

qrs

4 Numerical tests

The nonhydrostatic semi-implicit scheme described in the previous sections
is realized numerically as the extension of the explicit-Eulerian HIRLAM.
The pre- and post-processing facilities are completely those of the hydro-
static HIRLAM, also the lateral boundary treatment is the same (Davies’
boundary relaxation scheme). The numerical code includes all hydrostatic
(Eulerian explicit, Eulerian semi-implicit, Lagrangian semi-implicit) and non-
hydrostatic (explicit and semi-implicit Eulerian) sub-models as options which
may be switched on/off. The numerical code has a parallel realization on the
Linux-cluster (Tartu Observatory, Estonia) and on the Cray T3E (FMI).

In the following, some provisional results are presented, the purpose of which
is to demonstrate the computational efficiency and precision characteristics
of the model.
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4.1 Flow over artificial orography

The first group of test experiments contains a high-resolution adiabatic simu-
lations with artificial orography and an artificial initial state. For orography
serves, as usual, the "Witch of Agnesi’-type isolated hill provides the orogra-

phy
ho

h r,Yy) = )
@) = T wla + (g
where hg is the mountain height and a,, a, are the half-widths of the hill

along coordinate axes. We use s = 1.5 when examining flow over an isolated
mountain and s = 1 when looking at one dimensional flow with a, = oc.

(4.1)

The initial state is characterized with the reference temperature Ty(p), and
wind U, which is initially taken a constant in z-direction and then trans-
formed to the mass-balanced wind (see formulae (6.1.1) - (6.1.3) in Part II).
The mean surface pressure field 7, is specified from orography h(x,y), using
the barometric formula and a small correction dpo(y)=—(po/RTo(Do))fUy,
changing linearly in y-direction, is added to it to balance the background
Coriolis force fU . Boundary conditions are presented by the boundary
fields, which coincide with the background fields: w, — U, v, — 0, T}, —

To(p)-

Temperature Brunt-Viisdld frequency
0 0
200 200 | .
“«.\?‘real """"""""""""
s 400t s 400 [ N rear
o o
= =
N 600 | N 600 |
800 f 800 | N
1000 : : S 1000
220 240 260 280 300 0.02 0.025
T,K

Fig. 1 The temperature profiles and the corresponding Brunt-Viisdld fre-
quencies used in the model experiments with artificial orography. The ’re-
alistic’ temperature distribution Tyeq corresponds to the mean (horizontally
averaged) actual temperature distribution over Norway on March 21, 2001.
N}, and Nj;, are the constant values for the effective frequency N* in the

rea
elliptic solver, corresponding to N,eq and Ny, respectively.
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The vertical resolution in the following tests is either 31 level (the standard
case) or 60 level ECMWF 7p-levels.

The temperature profile is chosen differently in different experiments. The
used temperature profiles Tp(p) and the corresponding Brunt-Vaiséla profiles
N(p) are shown in Fig. 1.

Effect of the time-step size on buoyancy waves

The first group of experiments is aimed at the study of the influence of time-
step size on the buoyancy wave behavior. As is well-known, the excessively
large time-step in the semi-implicit scheme causes systematic distortions of
buoyancy waves (Haltiner and Williams 1980, Laprise and Peltier 1989).

a) Ezplicit, dt = 40 s b) Implicit, dt = 40 s
0 0
200 E . 200 ¢
'5_5 400 F 3 S 400 ¢ ,
< o] O 1
N 600 N 600 — 'X¥ \
800 800 F
1000 ‘st : 1000
70 80 90 100 110 120
X, km
c) Implicit, dt = 80 s
0 Fig. 2
: Vertical velocity w and poten-
200 | tial temperature 0 for station-
s 400 ary flow regime over circular
o : - hill with a, = a, = 4.4 km, h
N 600 E——— = 300 m. The mean flow is
: — from left to right. Isoline in-
800 ¢ tervals are Aw = 0.1 m/s, A0
=2 K.

1000

110 120

X, km
As an example, the vertical velocity w and the potential temperature 6 are
shown in Fig. 2 for stationary flow over the circular hill with a, = a, =
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4.4 km, h = 300 m. The temperature profile is T}., (see Fig. 1), and U =
20 m/s. In this experiment there are 114x100 grid-points with 2.2 km grid-
step, and the vertical resolution is 31 levels. The explicit scheme with dt =
40 s (panel a), the semi-implicit scheme with the same time-step (panel b),
and the semi-implicit scheme with dt = 80 s (panel c¢) are compared. This
example shows the general feature of the semi-implicit integration: when
the time-step is much larger than the maximum achievable time-step of the
corresponding (acoustically filtered) explicit scheme, the modeled waves will
have a strong spurious down-stream shift.

a) Ezplicit, dt = 60 s b) Implicit, dt = 90 s

0 0

200 | 200 |
o 400 | 400 |
o
<
N 600 | 600 |
800 | 800 |
000 . . Yo . . . 1000 . . Vob . . .
200 -150 -100 -50 O 50 100 150 200  -200 -150 -100 -50 O 50 100 150 200
X, km X, km
c¢) Implicit, dt = 300 s
0
200 | . 4 .
Fig. 3 Vertical velocity w for sta-
400 tionary flow regime over 2D ridge
g with az = 30 km, a, = oo, h = 350
N

600 m. The mean flow is from left to

right. Isoline intervals are Aw =
0.05 m/s.

800 r

000 _—
-200 -150 -100 -50 0 50 100 150 200
X, km
This is the consequence of the reduction of the buoyancy wave propagation
speed by the implicit scheme, which results in the down-stream drift of sta-
tionary waves. A small distortion from the semi-implicit scheme is evident

also at the moderate time-step, compare panel b with panel a in Fig. 2.
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However, a strong distortion is seen for an 80 s time-step, see panel c of Fig.
2.

The down-stream drift is a physical effect in the case of short-scale orography,
ag, ay < 10 km, as the buoyancy wave propagation speed is naturally small
here. The problem is that for large time-steps the semi-implicit scheme
reduces this speed even more, and makes the down-stream drift stronger than
it actually should be. The false down-stream drift effect can become apparent
already in the hydrostatic domain a,, a, > 10km, where the semi-implicit
scheme, when used with a very large time-step, turns the flow apparently
nonhydrostatic.

60

a) Ezplicit b) Implicit, exact N
0 ‘ ‘ ‘ : 0
200 t N {“"-i.'::-,-.,‘_“ : 200 |
'5_5 400 : S 400
< <
N 600 | IN 600 |
800 800
1000 S : : 1000
10 20 30 40 50 60
X, km X, km
c¢) Implicit, N ~ N*
0 ‘ ‘ - ‘ Fig. 4 Stationary flow over cir-
200 | O cular hill with linear N(p) (corre-
sponds to Ny, in Fig. 1). Ex-
& 400 plicit case (a) represents the test-
= solution; (b) — modeling with the
N 600 . .
exact treatment of N in the ellip-
800 tic solver; (c) - 'mainstream’ mod-
1000 eling with the constant N — N*.

10 20 30 40 50 60
X, km
An example of such behavior is presented in Fig. 3 for a model flow with

16



a; = 30 km, a, — oo, hg = 350 m, U = 30 m/s, Ty — 280 K and N —
0.018 1/s (isothermal atmosphere), grid 114x100, grid-step 11 km, 31 levels.
As it can be seen, the use of the 5 minute time-step causes the systematic
observable down-stream shift of the wave centers, which increases with the
height. In addition, the wave pattern is systematically distorted. However,
the distortions due to ultimately large time-steps are not so drastic, as they
were for a, = 4.4 km. For strong winds (50 - 70 m/s in the jet stream), the
distorting effect becomes less, which is mainly the result of the comparatively
small achievable time-step at these large material speeds. Another limiting
case, where the distortions due to the large time-step have no effect, is the
short-scale end of orography with a,, a, < 0.5 km, as here the time-step of
the semi-implicit scheme will approximately coincide with the time-step of
the explicit scheme (see further discussion).

Anyway, when attention is paid to the buoyancy waves, the time-step in the
semi-implicit integration mode should not exceed too far over the maximum
time-step of the (acoustically filtered) explicit one.

Effect of the Brunt-Viisdld frequency approximation

Another group of experiments with artificial flows was designed to study the
influence of approximation N(p) — N*, (3.2.1), used in the elliptic solver.
In the 'mainstream’ algorithm, described in section 2.2, this approximation
is used everywhere. The numerical values slightly exceeding the maximum
of N(p) are used for N* (see Fig. 1). However, for checking whether the
application of the actual N(p) instead of the effective N* would increase
the model precision, a special modification of the semi-implicit scheme was
modified to use N(p) instead of constant N*. In these experiments N(p) was
modeled with the Ty(p), linear with the height (see T}, in Fig. 1), to which
corresponds an approximately linear profile of N (Ny;,, ibid).

As an example, in Fig. 4, the results of the simulation of stationary flow
over a 2D circular hill with a, = a, = 1.5 km, h = 200 m, U — 20 m/s,
grid 114x100, grid-step 0.5 km, vertical resolution 60 levels are presented.
The modeling result with the linear N (corresponding to Ny, in Fig. 1) is
presented in panel b. It is compared to the explicit-mode integration (panel
a) and to the 'mainstream’ semi-implicit integration scheme, which makes
use of the constant N* (panel c).

As it can be seen from this comparison, the more detailed (exact in this
particular case) treatment of N, instead of the constant-N-approximation,
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actually does not add any refinement into the modeling results, but on the
contrary, introduces some additional distortion.

Actually, there is no choice in the case of the real stratification (like NV,.q in
Fig. 1), because the elliptic solver does not converge for the strong variability
of the Brunt-Viisild frequency. However, as the experience of modeling
with the constant- N-approximation and comparison with the explicit scheme
has shown, the constant- N-approximation enables reasonable accuracy along
with the numerical stability.

4.2 Real data tests

In these experiments, the real observational initial and boundary data are
used. The sub-grid physical parameterization is switched on, it represents
the HIRLAM 5.0.0 standard physical package. In the implicit mode, the ap-
proximation of the constant Brunt-Viisild frequency (3.2.1) is used in semi-
implicit computations. Typically, for the effective Brunt-Viisila frequency
value N* = 1.2 Max(N) is used.

Forecast experiment over flat region

Some examples of modeling with the new scheme are presented in Fig. 5a
(surface pressure) and Fig. 5b (vertical cross-sections of wind and tempera-
ture fields). The 24h forecast on the 0.1 degree resolution, 114x100 point,
31 level grid is presented. Modeling area is the 'Estonian site’, which rep-
resents a rather flat geographical region. The time steps in the explicit and
semi-implicit nonhydrostatic schemes are 90 and 150 s, respectively. The
figures demonstrate a very close coincidence of the semi-implicit and explicit
nonhydrostatic algorithms. This is observable despite the large difference
in the integration time-steps. The implicit scheme is not distorted by the
excessively large time-step, which was observable in the experiments with an
artificial isolated mountain and a uniform background stream. The absence
of distorting effects in the case of the semi-implicit schemes can be explained
with the small amplitude of buoyancy disturbances. Also, a close coincidence
between the nonhydrostatic schemes and the semi-implicit hydrostatic model
is observable, though the nonhydrostatic model gives a slightly deeper depres-
sion minimum in the center of the cyclone. In this example, the resolution
belongs to the completely hydrostatic region, thus, there should be no sig-
nificant differences between the hydrostatic and nonhydrostatic simulations,
anyway.
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Fig. 5a 2/h MSL pressure fore-
cast with the explicit non-hydrostatic,
semi-implicit non-hydrostatic, and
semi-implicit hydrostatic schemes.

Forecast experiment over mountainous region

An example of a 24 h forecast over Norwegian site with the nonhydrostatic
semi-implicit, nonhydrostatic explicit, and hydrostatic models are presented
in Fig. 6a (surface pressure), and Fig. 6b (vertical cross-sections of U-wind).
Resolution is 0.05 degrees, grid size 156x156 points, vertical resolution is
31 levels. Time steps are 80 and 40 s, respectively. Despite of rather high
orography, there is still a very close coincidence between the explicit and
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semi-implicit nonhydrostatic schemes. This coincidence shows that the semi-
implicit scheme produces adequate results.

Ezplicit non-hydrostatic Semi-implicit non-hydrostatic

09 May 1999 12 GMT +24h
=057

Hydrostatic

09 May 1999 12 GMT +24h

Fig. 5b 24h forecast for the wver-
tical cross-sections (A= 14E) of the
U-wind and temperature with the ex-
plicit non-hydrostatic, semi-implicit
non-hydrostatic, and semi-implicit
hydrostatic schemes.

The conclusion is that even in the case of high orography, the distorting
mechanism due to a large time-step has no effect in real flow conditions.
The lack of distortions can be explained by different factors, like the small
amplitude of short-scale buoyancy waves, non-uniformity of wind, effects of
sub-grid physics, or by the combination of all of these factors.

In this case, the nonhydrostatic simulation gives not large, but distinguish-
ably different result from the hydrostatic model. In the large scale pattern,
the predicted fields are rather similar. However, in fine details, the nonhy-
drostatic and hydrostatic models differ significantly. That means that the
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nonhydrostatic effects can become evident at 5-km resolution, if the orogra-
phy has a substantial height.

Semi-implicit non-hydrostatic Ezplicit non-hydrostatic
NH+phys Inslp 2001.03.22.00+24 NH+phys mslp 2001.03.22.00+24

Hydrostatic

NH+phys mslp 2001.03.22.00+24

Fig. 6a 24/h mean sea-level pres-
sure forecast with the non-hydrostatic
semi-implicit, non-hydrostatic ex-
plicit, and hydrostatic schemes.

4.3 Computational efficiency

An essential benchmark of a numerical scheme is the achievable time-step,
which is restricted by the Courant-Friedrichs-Lewy stability condition. As-
suming that the flow is predominantly horizontal, this condition states for
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explicit schemes

At < gAX/mazx|v + c| (4.2)
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where AX is the horizontal grid step, mazx|v + c| is the absolute maximum of
the geometrical sum of material speed v and wave speed ¢ in the medium, and
the geometrical factor ¢ = 1 , and ¢ = 1/\/5, for one- and two-dimensional
flows, respectively. In the acoustically non-adjusted case, ¢ stands for the
sound speed, and the maximum time-step is rather restricted. In the acousti-
cally adjusted model, the acoustic mode is completely eliminated (including
the external wave), and c represents the internal buoyancy wave speed. The
speed of internal waves is dispersive and has a strong dependence on the
dominant horizontal wave-length a, decreasing proportionally with a. In the
case of orographically induced buoyancy waves, a is of the same order of the
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horizontal scale of orography. Thus, shorter orography induces slower waves.
As a result of the smaller wave speeds, the adjusted model supports much
larger time-steps in comparison with the non-adjusted case.

In the semi-implicit scheme, the wave component is unconditionally stable,
and the Courant-Friedrichs-Lewy condition applies to the material motion
with the maximum velocity maz|v|:

At < gAX/mazx|v| . (4.3)

Consequently, the semi-implicit model supports a larger time-step than the
explicit one does. This advantage should be observable at long scales, when
the activated internal buoyancy waves have long wavelengths, and should
disappear at shorter scales.

In the Table 1, the maximum time-steps for the explicit and semi-implicit
schemes are presented for flow over isolated mountain ridge (a, = oo in (4.1)
and ¢ = 11in (4.1) - (4.3)). The modeling is carried out for two background
wind speeds, U = 30 m/s, and U = 100 m/s. As for a linear flow regime,
modeled in these experiments, the velocity disturbance v/ = v — Ui is
small and satisfies condition maz|v'| << U, the background value U can
be approximately used for estimation of the maximum value max|v| in the
Courant-Friedrichs-Lewy conditions (4.2) and (4.3).

TABLE 1

Maximum time-step At for explicit and semi-implicit schemes

AX Gy U A)(/[] Atezplicit Atimplicit
(km)  (km)  (m/s) () () ()

11 30 30 367 60 340

2.5 10 30 183 40 180

0.55 10 30 18.3 14 17

0.55 2.5 30 18.3 16 18

11 30 100 110 20 100

2.5 10 100 95 30 20

0.55 10 100 2.5 4 5

0.55 2.5 100 2.5 4 Y
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As expected, the semi-implicit scheme has the time-step close to the theoret-
ical estimate AX /mazx(|v]) & AX/U|). Also it is seen that for U = 30 m/s,
the semi-implicit scheme provides in comparison with the explicit adjusted
case the time-step enlargement 340/60 ~ 5.7 times at the 11 km resolution,
and 180/40 = 4.5 times at the 5.5 km resolution. For the strong wind U
— 100 m/s, the gain in the time step is much modest. However, doubling
at the 11 km resolution and enlargement by the factor 50/30 ~ 1.7 at 5.5
km resolution is achieved. The case of the strong background wind U = 100
m/s is important for practical applications, as high wind speeds are often
treated in the mighty jet-streams. As the figures of Table 1 demonstrate,
approximate doubling at 11 km resolution and enlargement by the factor 1.7
at 5.5 km resolution is expected even in the most unfavorable conditions of
a strong jet-stream.

At higher resolutions, where the speed of buoyancy waves decreases, the dif-
ference between the explicit and semi-implicit time-steps diminishes rapidly.
At 0.55 km resolution, the difference is negligible for U = 30 m/s and con-
stitutes about 1.2 times for U = 100 m/s.

The time-consumption rate (computation time per one time-step) of the semi-
implicit model is slightly lower than in the explicit case. The integration
algorithm in both schemes is basically the same, and this explains the similar
time consumption rate. The slight additional economy in the semi-implicit
case is achieved due to the smaller (in average over many time-steps) number
of iterations at the solution of the elliptic problem (3.2.5), which, in its turn,
is determined by the smoothing effect of the semi-implicit scheme (which is
rather analogous to the smoothing effect of the spectral diffusion scheme).

5 Conclusions

The nonhydrostatic semi-implicit Eulerian version of the adiabatic kernel of
HIRLAM has been presented in this paper. The model is a rather straight-
forward extension of the explicit Eulerian realization of anelastic pressure-
coordinate dynamics. As the numerical tests show, the semi-implicit version
maintains the precision characteristics of the explicit model, while giving rise
to computational efficiency and numerical stability. The numerical efficiency
depends on the model resolution and on the maximum wind speed. At 5
- 10 km horizontal resolutions, the model is at least 1.5 - 2 times more ef-
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fective than its explicit, acoustically adjusted relative, but this advantage
diminishes rapidly with shorter grid-steps and makes negligible at 0.5 km
resolution. However, the larger stability advantage, which becomes evident
via lesser spectral smoothing requirement, remains.

The model is implemented numerically in the parallel-computing HIRLAM
environment. The numerical scheme is congruous with the remaining nu-
merics of HIRLAM, and may be switched on as an option in the common
hydrostatic HIRLAM.
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