
NON-HYDROSTATIC ADIABATICKERNEL FOR HIRLAMPart IIISemi�impli
it Eulerian s
hemeRein Rõõm, Aarne MännikTartu University, EstoniaRein.Room�ut.ee, Aarne.Mannik�ut.ee1 Introdu
tionIn this paper, the adiabati
 kernel of the nonhydrostati
 HIRLAM with thesemi-impli
it Eulerian integration s
heme is presented. The present inves-tigation 
ontinues the work, initiated in the Part I by Rõõm (2001) andPart II by Männik and Rõõm (2001), where the fundamentals of nonhydro-stati
 atmospheri
 dynami
s in pressure�related 
oordinates were presented,and on that basis, the nonhydrostati
, expli
it-Eulerian version of HIRLAMwas developed.The new development supplements the nonhydrostati
 Eulerian s
heme witha semi-impli
it integration option. In this respe
t, the new model repre-sents a nonhydrostati
 extension of the hydrostati
 semi-impli
it EulerianHIRLAM (Kállen, 1996). However, by ideology, the parent model is theexpli
it-Eulerian nonhydrostati
 s
heme with 
ompletely anelasti
 pressure-
oordinate dynami
s, developed in Part I and Part II.The semi-impli
it method of integration in atmospheri
 dynami
s was pro-posed by Robert (1969). Soon this method be
ame a general approa
h inmost numeri
al models of large-s
ale atmospheri
 dynami
s. It is also ap-plied in the hydrostati
 HIRLAM. As is well-known, the main advantage ofthe semi-impli
it s
heme is the enhan
ement of the 
omputational e�
ien
y1



of the model via the enlargement of the time-step. This is a
hieved throughthe redu
tion of the speed of sound and buoyan
y wave motions in the mod-eled atmosphere. In mathemati
al sense, the semi-impli
it s
heme makes thenumeri
al algorithm un
onditionally stable with respe
t to the fast linearwave sub-system.In the anelasti
 approximation used in the expli
it version of the nonhy-drostati
 HIRLAM, the sound waves are �ltered prior to the dis
retization,and the time-step is limited by the fastest internal buoyan
y waves with thephase speeds of 100 m/s approximately. Due to this, the time-step of theexpli
it model is relatively large (approximately 1 minute at 10 km resolu-tion), and the further time-step enhan
ement by a semi-impli
it s
heme isnot so dramati
 as in an elasti
 model or in the hydrostati
 HIRLAM (wherethe time-step in
rease due to transition from the expli
it Eulerian to thesemi-impli
it Eulerian s
heme is of the order of two magnitudes). However,approximately a doubling of the time-step is a
hieved at 10 to 5 km resolu-tions. It is essential to note that the time-step in
rease is a
hieved at no extra
omputational 
ost, as the semi-impli
it extension uses, in essen
e, the samebasi
 integration algorithm as the expli
it nonhydrostati
 s
heme. Therefore,the semi-impli
it s
heme will give rise to the numeri
al e�
ien
y in 
ompar-ison with the expli
it model, even when the anelasti
 approximation is used,and 
onsequently, this s
heme is worth developing.In the �rst half of the paper (se
tion 2 and 3), the theoreti
al foundationof the semi-impli
it model on the base of anelasti
 hybrid-
oordinate modelis presented. In the se
ond half, after a minor dis
ussion of numeri
al im-plementation details, modeling results with both the arti�
ial �ows over abell-shaped mountain and with the realisti
 initial and boundary data arepresented (Se
tion 4). The main quality ben
hmark is the 
oin
iden
e withthe modeling results from the expli
it version. A 
entral parameter of thenonhydrostati
 semi-impli
it s
heme is the Brunt-Väisälä frequen
y N . Oneof the 
entral issues, addressed in this paper, is the proper 
hoi
e of thisquantity.
2



2 Semi-impli
it equations2.1 Initial equations with expli
it separation of linearand nonlinear partsWe pro
eed from the dis
rete equations of motion in se
tion 5, Part II. Theindexing fi; j; kg will be omitted, where appropriate, and a short notationfor verti
al di�erentiation will be usedÆpa : (Æpa)ijk+1=2 = � ��a��p��ijk+1=2 ; Æ+p b : (Æ+p b)ijk = ���b��p�ijk :Time di�eren
ing is denoted as Æt:Ætu = ut+�t � ut��t2�t :After expli
it separation of linear terms in the tenden
ies Fu; Fv, FT , andF!, equations (5.1.14), (5.2.1) � (5.2.3), (5.3.3a), (5.1.17) 
an be presentedin the form Ĝ+ � v + Æ+p ! = 0 ; (2:1:1a)Ætv = �Ĝ(�+ '�) + fv ; (2:1:1b)Æt! = �� pH��2 Æp�+ F! ; (2:1:1
)ÆtT = S!� + fT ; (2:1:1d)��' = ��RT ; ��'� = ��RT � ; (2:1:1e)where, Ĝ+ and Ĝ are de�ned by formulae (5.1.12) and (5.1.13) in Part II,fv = ffu; fvg and fT represent the nonlinear parts of the momentum andtemperature tenden
ies at time level t:fui+1=2jk = "�1hxx  �ZhxyV xy + ÆxE + hxm _�x��u���px !+ Pu +Ku#i+1=2jk(2:1:2a)fvij+1=2k = "�1hyy  ZhyxUyx + ÆyE + hym _�y��v���py !+ Pv +Kv#ij+1=2k(2:1:2b)3



where U , V are de�ned by (5.1.6), and Z, E are de�ned by (5.2.6) and (5.2.7),and fT = FT � S!� = �â(T ) + !���T ���p + PT +KT ; (2:1:2
)with â(T ) de�ned by (5.2.10) and FT by (5.2.9).The verti
al momentum for
ing F! 
oin
ides with (5.3.3b), whi
h is 
om-pletely nonlinear (does not in
lude any linear term). The strati�
ation termS in the temperature equation isSijk =  {�T ���T ���p !ijk : (2:1:3)2.2 Semi-impli
it dis
rete equationsThe semi-impli
it form of equations follows, when in the equations of motion(2.1.1b) � (2.1.1d) linear terms, responsible for wave-like motion, are treatedimpli
itly:Ĝ(�+ '�) ! Ĝ(�t + '�t) ; � pH��2 Æp�! � pH��2 Æp�t ; S!� ! S!�twhere at means the temporal averaging of the �eld a in respe
t to the timelevel t: at = at+�t + at��t2 ; where at � a(t)and the short notation is used for double averaging a�t � a�t. However, theaveraged �eld �t is, like � in the expli
it s
heme, a diagnosti
 �eld, whi
hwill be evaluated from an expli
it equation (the ellipti
 equation, see further),and there is no need to �nd or operate with its expli
it and impli
it parts(�t and �tt�) separately. Therefore, without being ambiguous, we will usethe following notation � � �t :The semi-impli
it form of equations (2.1.1a) � (2.1.1d) is thenĜ+ � vt + Æ+p !t = 0 ; (2:2:1a)Ætv = �Ĝ(�+ '�t) + fv ; (2:2:1b)4



Æt! = �� pH��2 Æp�+ F! ; (2:2:1
)ÆtT = S!�t + fT ; (2:2:1d)��'t = �(�RT )t ; ��('�)t = �(�RT �)t : (2:2:1e)The nonlinear for
ings fv; F!; fT , as well as the 
oe�
ients H, S, and thepressure p in linear terms are treated expli
itly, i.e., they are given at the timelevel t. Diagnosti
 relationships (2.2.1a), (2.2.1e) also are expli
it equations.Applying to '�t in (2.2.1b) and !�t in (2.2.1d) the following identityX t = X t +�ttX ;where �ttX is de�ned as�ttX = 12(X t+�t +X t��t)�X t ;equations (2.2.1b) and (2.2.1d) 
an be presented asÆtv = �Ĝ�� Ĝ�tt'� + Fv ; (2:2:1b0)ÆtT = S�tt!� + FT : (2:2:1d0)As the tenden
ies F in equations (2.2.1b'), (2.2.1
), and (2.2.1d') are evalu-ated at time t and 
oin
ide with those of the expli
it Eulerian s
heme (seeformulae (5.2.4), (5.2.5), (5.2.8), and (5.3.3b)), the obtained system di�ersfrom the expli
it s
heme by the presen
e of terms with the se
ond orderdi�eren
es �tt� and �tt!.As (2.2.1a) holds at every time-level, it yields derivative relationshipsĜ+ � vt + Æ+p !t = 0 ; (2:2:1a0)Ĝ+ � Ætv + Æ+p Æt! = 0 : (2:2:1a00)3 Integration of the semi-impli
it systemIn this se
tion, the ellipti
 equation for � is derived. It is a generalization ofthe ellipti
 equation for �t of the expli
it s
heme.The equation in
ludes anellipti
 main part and a small perturbation term. When solved iteratively,the algorithm draws ba
k to the expli
it 
ase with an ex
eption that thehorizontal Lapla
ian in the ellipti
 equation is in
reased by the fa
tor 1 +�t2N2, N being the Brunt-Väisälä frequen
y.5



3.1 The ellipti
 equation for bari
 geopotentialElimination of time di�eren
es in (2.2.1a�) with the help of (2.2.1b') and(2.2.1
) yields equation̂G+ � Ĝ ��+�tt'��+ bL� = A� ; (3:1:1a)where bL� = Æ+p � p2(H�)2 Æp�� (3:1:1b)and A� = (Ĝ+ � Fv) + Æ+p F! : (3:1:1
)The mass balan
e 
ondition for � (Part II, equation (5.3.5)) be
omesbB(�+�tt'�) = b ; (3:1:1d)where bBis given by (5.3.5a) andbij = NlevXk=1 hÆx �hyx��pxF̂u� + Æy �hxy��pyF̂v�iijk+(hxhy)ij "�2p0�t2 +r � �p0�t NlevXk=1 (��B)kvk!#ij : (3:1:1e)Note that the formula for bij is 
orre
ted here, it is di�erent from the oldformula (5.3.5b), whi
h was erroneous1.Ex
ept the term with the se
ond order di�eren
e (�tt'�), equation (3.1.1a)
oin
ides with ellipti
 equation (5.3.4
) of the expli
it s
heme. Due to thisadditional term, equation (3.1.1a) is not 
losed and it must be 
omplementedwith an additional relationship between (�tt'�) and �. To obtain su
h arelationship, we rewrite the omega and temperature equations (2.2.1
) and(2.2.1d') in the form �tt! = ��t� pH��2 Æp�+ �! ; (3:1:2a)1However, this di�eren
e has no signi�
an
e in pra
ti
e, as it is almost negligible ina
tual atmospheri
 
onditions. 6



�ttT = �tS�tt!� + �T ; (3:1:2b)where �! = �tF! � !t + !t��t ; �T = �tFT � T t + T t��t : (3:1:2
)Elimination of ! in (3.1.2b) with the help of (3.1.2a) yields�ttT = ��t2S� pH�2 Æp�� + �T +�tS�!� : (3:1:2d)Further, the integrated presentation for the thermi
 geopotential is needed. Itpro
eeds from (2.1.1e) with the help of the boundary 
ondition 'ijNlev+1=2 = ghij'�ijk = ghij + [M̂(�RT )℄ijk ; (3:1:3)[M̂(a)℄ijk = NlevXk0=k+1 aijk0 + 12aijk : (3:1:4)Applying here the operator �tt, assuming that � and R are (approximately)
onstant2 , and using (3.1.2d), the wanted relationship results:�tt'� = �Q(�) +Q0 (3:1:5a)where Q(�) = �t2M̂ "�RS � pH��2 Æp��# ; (3:1:5b)Q0 = M̂ [�R (�T +�tS�!�)℄ : (3:1:5
)It is advantageous to modify the sum in the right hand side of (3.1.5b), usingidentity[M̂(ab�)℄k = NlevXk0=k+1(a�b)k0�1=2 + 12aNlevbNlev+1=2 � 14ak(��b)k :2A
tually, the weights of levels �ijk depend on time via ba
kground surfa
e pressure ps ,and R is time dependent in the moist air. However, in the present 
ase, these dependen
iesare marginal and 
an be omitted in the relationship (3.1.5a).7



The result of the transformation is1�t2Qk(�) = NlevXk0=k+1(N2���)k0�1=2+12(�RS)Nlev � p2(H�)2 Æp��Nlev+1=2 � 14 �(�RS)�� � p2(H�)2 Æp���k ; (3:1:6a)where N is a dis
rete presentation for the Brunt-Väisälä frequen
yN2k�1=2 = " �RS�p2(H�)2��p�#k�1=2 : (3:1:6b)Omitting from (3.1.6a) the last two terms, whi
h present, respe
tively, the�rst- and se
ond-order small 
ontributions to the sum, and using presentationNlevXk0=k+1(N2���)k0�1=2 = N2Nlev+1=2�Nlev �N2k+1=2�k � NlevXk0=k+1�k0(��N2)k0 ;the �nal presentation for Qk follows:Qk(�) = �2Nlev�Nlev � �2k�k � NlevXk0=k+1�k0���2k0�1=2 ; (3:1:7)where the non-dimensional parameter � is�2ijk = �t2N2ijk+1=2 : (3:1:8)Using (3.1.5a) and (3.1.7), the term � + �tt'� 
an be presented as�k +�tt'�k = (1 + �2k)�k � �2Nlev�Nlev + NlevXk0=k+1�k0���2k0�1=2 +Q0k : (3:1:9)This is the desired relationship whi
h 
loses the system (3.1.1).Thus, in the 
ase of semi-impli
it model, the time-integration problem (i.e..,the one-step-fore
ast problem) draws, in essen
e, ba
k to the solution of thebari
 geopotential � from the ellipti
 problem des
ribed by equations (3.1.1a),(3.1.1d) and (3.1.9). The situation is rather analogous to the expli
it 
ase,8



where it was ne
essary to solve an analogous ellipti
 problem for the expli
it
omponent of the bari
 geopotential �t. The most important quality of thepresented semi-impli
it model is that there is no need to solve the ellipti
equation for the expli
it and impli
it 
omponents �t and �tt� separately3 ,as it is su�
ient to have the solution for the sum � = �t + �tt�.3.2 Solution of the ellipti
 equationEquations (3.1.1a), (3.1.1d) are rather similar to the 
orresponding equationsof the expli
it model (Eq. (5.3.4) and (5.3.5) in Part II) and approa
h theexpli
it 
ase in the limit �t ! 0. It is advantageous then to redu
e thesolution algorithm to the 
orresponding s
heme of the expli
it model.In the following, the 
onstant Brunt-Väisälä frequen
y approximationNijk � N� = 
onst, �ijk = � = �tN� = 
onst (3:2:1)is used in the solution of the ellipti
 equation. The reason is that when theverti
al derivative �N=�p is lo
ally large, the iterative algorithm will not
onverge. The non-iterative algorithm would be 
omputationally expensive.Meanwhile, it is not 
lear either, whether the non-iterative solution is sta-ble. At the same time, the algorithm with the 
onstant N is non-expensive,
omputationally stable, and, as it will be demonstrated later in numeri
alexperiments, approximation (3.2.1) does not a�e
t the solution's pre
ision.The use of simpli�ed ba
kground state in the semi-impli
it adjustment pro-
edure is not a spe
i�
 feature of the 
urrent algorithm, but a rather generalproperty of all semi-impli
it s
hemes, whi
h deal with the regularization ofthe internal wave mode. The need to treat the referen
e state isothermallywas �rst dis
ussed by Simmons et al (1978). The isothermal ba
kgroundreferen
e temperature (yielding, by the way, the 
onstant Brunt-Väisälä fre-quen
y), is also implemented in the hydrostati
 HIRLAM, both in the Eule-rian and Semi-Lagrangian integration s
hemes (Källén, 1996).For the 
onstant N , (3.1.9) simpli�es to�k +�tt'�k = (1 + �2)�k � �2�Nlev +Q0k: (3:2:2)The inversion algorithm will use an orthogonal basis. In this 
ase, it isobligatory to supplement the sour
e fun
tion with a singular term 
ijÆkNlev3However, the derivation of su
h equations is possible and straightforward.9



to satisfy 
ondition (3.1.1d)4. It is also 
onvenient to treat �ij = �2�ijNlevas an additional variable. The ellipti
 problem (3.1.1) reads then (only theverti
al index k is shown expli
itly):(1 + �2)(Ĝ+ � Ĝ�)k + (bL�)k = A�;k � (Ĝ+ � ĜQ0)k + (Ĝ+ � Ĝ)k�+ 
ÆkNlev ;(3:2:3a)where 
ij and �ij have to be spe
i�ed from equationsbB[(1 + �2)�� �℄ = b� bB[Q0℄ ; (3:2:3b)� = �2�Nlev : (3:2:3
)The obtained system is 
lose to the expli
it 
ase. The two di�eren
es are,�rst, the additional 
onstant multiplier (1 + �2) in front of the 'horizontal'Lapla
ian Ĝ+ � Ĝ, and, se
ondly, the additional variable � and equation forit (3.2.3
). The solution algorithm of equations (3.2.3) is as follows.� As the �rst step, all operators in (3.2.3) are presented as the sums ofhorizontally homogeneous main parts and non-homogeneous perturbationsĜ+ � Ĝ = (Lx + Ly) + [Ĝ+ � Ĝ℄0 ;L = L� + L0 ; bB = bB0 + bB0 ; (3:2:4)Horizontal mean operators Lx, Ly, L�, and bB0 are de�ned in Part II (formulae(5.3.9b),(5.3.9
), (5.3.10b)).Using separation (3.2.4), system (3.2.3) is repla
ed with the iterative set ofequations(1 + �2)(Lx + Ly)�(l)k + (L��(l))k = A(l)k + (Lx + Ly)�(l) + 
ÆkNlev (3:2:5a)bB0[(1 + �2)�(l) � �(l)℄ = b(l) ; (3:2:5b)�(l) = �2�(l)Nlev ; (3:2:5
)where f�(l); �(l); 
(l)g represent the lth iteration to the exa
t solution f�; �; 
gfor iterated sour
esA(l)k = A�;k�(Ĝ+ �ĜQ0)k�f[(1+�2)(Ĝ+ �Ĝ)0+bL0℄�(l�1)gk+[Ĝ+ �Ĝ℄0k�(l�1) ;(3:2:5d)4It would also be ne
essary to introdu
e analogous singular sour
es on lateral bound-aries while solving the ellipti
 equation with non-homogeneous lateral boundary 
onditions.However, as the 
onsideration is restri
ted to the model with Davies' boundary relaxationzone, the solution will be sought with homogeneous boundary 
onditions, and the lateralsingular sour
es will not appear. 10



b(l) = b� bBQ0 � (1 + �2) bB0�(l�1) + bB0�(l�1) : (3:2:5e)� As the se
ond step, the equation (3.2.5a) is solved for �(l) and for the op-tional right hand side, using three-dimensional orthogonal basis fXiqYkrElsg(Part II, Appendix C), where X, Y and E represent the eigenve
tors of theone-dimensional Lapla
ians Lx, Ly, and L�, with eigenvalues ��xq , ��yr , and���s , respe
tively. For X and Y the normalized dis
rete 
osine-Fourier basesare used with eigenvalues given in (C.1
) of Part II. For E, the eigenve
torproblem, given in(C.3) of Part II is solved numeri
ally.Using notation~�qrs =Xijk XqiYrjE�1sk �(l)ijk ; ~Aqrs =Xijk XqiYrjE�1sk A(l)ijk ;~
qr =Xij XqiYrj
(l)ij ; ~�qr =Xij XqiYrj�(l)ij ~bqr =Xij XqiYrjb(l)ij :
s =Xk h�pikEks ; ds =Xk E�1sk ;the solution of (3.2.5a) in the basis is~�qrs = (�xq + �yr)ds~�qr � ~
qrE�1sNlev � ~Aqrs(1 + �2)(�xq + �yr) + ��s : (3:2:6)� As the third step, the 
oe�
ients 
 and � are spe
i�ed. For this, thesolution (3.2.6) is substituted into equations (3.2.5b) and (3.2.5
). As theresult, a two-dimensional set of linear algebrai
 equations follows for ea
hpair of 
oe�
ients ~
qr, ~�qr (repetitive indexes q, r are omitted everywhere)m11~� +m12~
 = n1 ; (3:2:7a)m21~� +m22~
 = n2 ; (3:2:7b)wherem11 = (�x + �y)Xs 
sds(1 + �2)(�x + �y) + ��s � hpiNlev+1=2(1 + �2) ; (3:2:8a)m12 = �Xs 
sE�1s;Nlev(1 + �2)(�x + �y) + ��s ; (3:2:8b)11



m21 = 1� �2(�x + �y)Xs ENlev;sds(1 + �2)(�x + �y) + ��s ; (3:2:8
)m22 = �2Xs ENlev;sE�1s;Nlev(1 + �2)(�x + �y) + ��s ; (3:2:8d)n1 =Xs 
s ~As(1 + �2)(�x + �y) + ��s � ~b(1 + �2)hhxihhyi(�x + �y) ; (3:2:8e)n2 = ��2Xs ENlev;s ~As(1 + �2)(�x + �y) + ��s : (3:2:8f)After (3.2.7) is solved, solutions ~
, ~� are repla
ed into (3.2.6) and the resultingiterative solution is summed up�(l)ijk =Xqrs XiqYjrEks ~�qrs : (3:2:9)
4 Numeri
al testsThe nonhydrostati
 semi-impli
it s
heme des
ribed in the previous se
tionsis realized numeri
ally as the extension of the expli
it-Eulerian HIRLAM.The pre- and post-pro
essing fa
ilities are 
ompletely those of the hydro-stati
 HIRLAM, also the lateral boundary treatment is the same (Davies'boundary relaxation s
heme). The numeri
al 
ode in
ludes all hydrostati
(Eulerian expli
it, Eulerian semi-impli
it, Lagrangian semi-impli
it) and non-hydrostati
 (expli
it and semi-impli
it Eulerian) sub-models as options whi
hmay be swit
hed on/o�. The numeri
al 
ode has a parallel realization on theLinux-
luster (Tartu Observatory, Estonia) and on the Cray T3E (FMI).In the following, some provisional results are presented, the purpose of whi
his to demonstrate the 
omputational e�
ien
y and pre
ision 
hara
teristi
sof the model.
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4.1 Flow over arti�
ial orographyThe �rst group of test experiments 
ontains a high-resolution adiabati
 simu-lations with arti�
ial orography and an arti�
ial initial state. For orographyserves, as usual, the 'Wit
h of Agnesi'-type isolated hill provides the orogra-phy h(x; y) = h0[1 + (x=ax)2 + (y=ay)2℄s ; (4:1)where h0 is the mountain height and ax; ay are the half-widths of the hillalong 
oordinate axes. We use s = 1.5 when examining �ow over an isolatedmountain and s = 1 when looking at one dimensional �ow with ay = 1.The initial state is 
hara
terized with the referen
e temperature T0(p), andwind U , whi
h is initially taken a 
onstant in x-dire
tion and then trans-formed to the mass-balan
ed wind (see formulae (6.1.1) - (6.1.3) in Part II).The mean surfa
e pressure �eld p0 is spe
i�ed from orography h(x; y), usingthe barometri
 formula and a small 
orre
tion Æp0(y)=�(p0=RT0(p0))fUy,
hanging linearly in y-dire
tion, is added to it to balan
e the ba
kgroundCoriolis for
e fU . Boundary 
onditions are presented by the boundary�elds, whi
h 
oin
ide with the ba
kground �elds: ub = U , vb = 0 , Tb =T0(p). Temperature Brunt-Väisälä frequen
y
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Fig. 1 The temperature pro�les and the 
orresponding Brunt-Väisälä fre-quen
ies used in the model experiments with arti�
ial orography. The 're-alisti
' temperature distribution Treal 
orresponds to the mean (horizontallyaveraged) a
tual temperature distribution over Norway on Mar
h 21, 2001.N�real and N�lin are the 
onstant values for the e�e
tive frequen
y N� in theellipti
 solver, 
orresponding to Nreal and Nlin, respe
tively.13



The verti
al resolution in the following tests is either 31 level (the standard
ase) or 60 level ECMWF �-levels.The temperature pro�le is 
hosen di�erently in di�erent experiments. Theused temperature pro�les T0(p) and the 
orresponding Brunt-Väisälä pro�lesN(p) are shown in Fig. 1.E�e
t of the time-step size on buoyan
y wavesThe �rst group of experiments is aimed at the study of the in�uen
e of time-step size on the buoyan
y wave behavior. As is well-known, the ex
essivelylarge time-step in the semi-impli
it s
heme 
auses systemati
 distortions ofbuoyan
y waves (Haltiner and Williams 1980, Laprise and Peltier 1989).a) Expli
it, dt = 40 s b) Impli
it, dt = 40 s
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Fig. 2Verti
al velo
ity w and poten-tial temperature � for station-ary �ow regime over 
ir
ularhill with ax = ay = 4.4 km, h= 300 m. The mean �ow isfrom left to right. Isoline in-tervals are �w = 0.1 m/s, ��= 2 K.As an example, the verti
al velo
ity w and the potential temperature � areshown in Fig. 2 for stationary �ow over the 
ir
ular hill with ax = ay =14



4.4 km, h = 300 m. The temperature pro�le is Treal (see Fig. 1), and U =20 m/s. In this experiment there are 114�100 grid-points with 2.2 km grid-step, and the verti
al resolution is 31 levels. The expli
it s
heme with dt =40 s (panel a), the semi-impli
it s
heme with the same time-step (panel b),and the semi-impli
it s
heme with dt = 80 s (panel 
) are 
ompared. Thisexample shows the general feature of the semi-impli
it integration: whenthe time-step is mu
h larger than the maximum a
hievable time-step of the
orresponding (a
ousti
ally �ltered) expli
it s
heme, the modeled waves willhave a strong spurious down-stream shift.a) Expli
it, dt = 60 s b) Impli
it, dt = 90 s
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it, dt = 300 s
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Fig. 3 Verti
al velo
ity w for sta-tionary �ow regime over 2D ridgewith ax = 30 km, ay =1, h = 350m. The mean �ow is from left toright. Isoline intervals are �w =0.05 m/s.This is the 
onsequen
e of the redu
tion of the buoyan
y wave propagationspeed by the impli
it s
heme, whi
h results in the down-stream drift of sta-tionary waves. A small distortion from the semi-impli
it s
heme is evidentalso at the moderate time-step, 
ompare panel b with panel a in Fig. 2.15



However, a strong distortion is seen for an 80 s time-step, see panel 
 of Fig.2.The down-stream drift is a physi
al e�e
t in the 
ase of short-s
ale orography,ax; ay < 10 km, as the buoyan
y wave propagation speed is naturally smallhere. The problem is that for large time-steps the semi-impli
it s
hemeredu
es this speed even more, and makes the down-stream drift stronger thanit a
tually should be. The false down-stream drift e�e
t 
an be
ome apparentalready in the hydrostati
 domain ax; ay > 10km, where the semi-impli
its
heme, when used with a very large time-step, turns the �ow apparentlynonhydrostati
.a) Expli
it b) Impli
it, exa
t N
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Fig. 4 Stationary �ow over 
ir-
ular hill with linear N(p) (
orre-sponds to Nlin in Fig. 1). Ex-pli
it 
ase (a) represents the test-solution; (b) � modeling with theexa
t treatment of N in the ellip-ti
 solver; (
) � 'mainstream' mod-eling with the 
onstant N = N�.An example of su
h behavior is presented in Fig. 3 for a model �ow with16



ax = 30 km, ay = 1, h0 = 350 m, U = 30 m=s, T0 = 280 K and N =0.018 1=s (isothermal atmosphere), grid 114�100, grid-step 11 km, 31 levels.As it 
an be seen, the use of the 5 minute time-step 
auses the systemati
observable down-stream shift of the wave 
enters, whi
h in
reases with theheight. In addition, the wave pattern is systemati
ally distorted. However,the distortions due to ultimately large time-steps are not so drasti
, as theywere for ax = 4.4 km. For strong winds (50 - 70 m/s in the jet stream), thedistorting e�e
t be
omes less, whi
h is mainly the result of the 
omparativelysmall a
hievable time-step at these large material speeds. Another limiting
ase, where the distortions due to the large time-step have no e�e
t, is theshort-s
ale end of orography with ax, ay � 0.5 km, as here the time-step ofthe semi-impli
it s
heme will approximately 
oin
ide with the time-step ofthe expli
it s
heme (see further dis
ussion).Anyway, when attention is paid to the buoyan
y waves, the time-step in thesemi-impli
it integration mode should not ex
eed too far over the maximumtime-step of the (a
ousti
ally �ltered) expli
it one.E�e
t of the Brunt-Väisälä frequen
y approximationAnother group of experiments with arti�
ial �ows was designed to study thein�uen
e of approximation N(p) ! N�, (3.2.1), used in the ellipti
 solver.In the 'mainstream' algorithm, des
ribed in se
tion 2.2, this approximationis used everywhere. The numeri
al values slightly ex
eeding the maximumof N(p) are used for N� (see Fig. 1). However, for 
he
king whether theappli
ation of the a
tual N(p) instead of the e�e
tive N� would in
reasethe model pre
ision, a spe
ial modi�
ation of the semi-impli
it s
heme wasmodi�ed to use N(p) instead of 
onstant N�. In these experiments N(p) wasmodeled with the T0(p), linear with the height (see Tlin in Fig. 1), to whi
h
orresponds an approximately linear pro�le of N (Nlin; ibid).As an example, in Fig. 4, the results of the simulation of stationary �owover a 2D 
ir
ular hill with ax = ay = 1.5 km, h = 200 m, U = 20 m/s,grid 114�100, grid-step 0.5 km, verti
al resolution 60 levels are presented.The modeling result with the linear N (
orresponding to Nlin in Fig. 1) ispresented in panel b. It is 
ompared to the expli
it�mode integration (panela) and to the 'mainstream' semi-impli
it integration s
heme, whi
h makesuse of the 
onstant N� (panel 
).As it 
an be seen from this 
omparison, the more detailed (exa
t in thisparti
ular 
ase) treatment of N , instead of the 
onstant-N -approximation,17



a
tually does not add any re�nement into the modeling results, but on the
ontrary, introdu
es some additional distortion.A
tually, there is no 
hoi
e in the 
ase of the real strati�
ation (like Nreal inFig. 1), be
ause the ellipti
 solver does not 
onverge for the strong variabilityof the Brunt-Väisälä frequen
y. However, as the experien
e of modelingwith the 
onstant-N -approximation and 
omparison with the expli
it s
hemehas shown, the 
onstant-N -approximation enables reasonable a

ura
y alongwith the numeri
al stability.4.2 Real data testsIn these experiments, the real observational initial and boundary data areused. The sub-grid physi
al parameterization is swit
hed on, it representsthe HIRLAM 5.0.0 standard physi
al pa
kage. In the impli
it mode, the ap-proximation of the 
onstant Brunt-Väisälä frequen
y (3.2.1) is used in semi-impli
it 
omputations. Typi
ally, for the e�e
tive Brunt-Väisälä frequen
yvalue N� = 1.2 Max(N) is used.Fore
ast experiment over �at regionSome examples of modeling with the new s
heme are presented in Fig. 5a(surfa
e pressure) and Fig. 5b (verti
al 
ross-se
tions of wind and tempera-ture �elds). The 24h fore
ast on the 0.1 degree resolution, 114�100 point,31 level grid is presented. Modeling area is the 'Estonian site', whi
h rep-resents a rather �at geographi
al region. The time steps in the expli
it andsemi-impli
it nonhydrostati
 s
hemes are 90 and 150 s, respe
tively. The�gures demonstrate a very 
lose 
oin
iden
e of the semi-impli
it and expli
itnonhydrostati
 algorithms. This is observable despite the large di�eren
ein the integration time-steps. The impli
it s
heme is not distorted by theex
essively large time-step, whi
h was observable in the experiments with anarti�
ial isolated mountain and a uniform ba
kground stream. The absen
eof distorting e�e
ts in the 
ase of the semi-impli
it s
hemes 
an be explainedwith the small amplitude of buoyan
y disturban
es. Also, a 
lose 
oin
iden
ebetween the nonhydrostati
 s
hemes and the semi-impli
it hydrostati
 modelis observable, though the nonhydrostati
 model gives a slightly deeper depres-sion minimum in the 
enter of the 
y
lone. In this example, the resolutionbelongs to the 
ompletely hydrostati
 region, thus, there should be no sig-ni�
ant di�eren
es between the hydrostati
 and nonhydrostati
 simulations,anyway. 18



Expli
it non-hydrostati
 Semi-impli
it non-hydrostati


Hydrostati

Fig. 5a 24h MSL pressure fore-
ast with the expli
it non-hydrostati
,semi-impli
it non-hydrostati
, andsemi-impli
it hydrostati
 s
hemes.

Fore
ast experiment over mountainous regionAn example of a 24 h fore
ast over Norwegian site with the nonhydrostati
semi-impli
it, nonhydrostati
 expli
it, and hydrostati
 models are presentedin Fig. 6a (surfa
e pressure), and Fig. 6b (verti
al 
ross-se
tions of U -wind).Resolution is 0.05 degrees, grid size 156�156 points, verti
al resolution is31 levels. Time steps are 80 and 40 s, respe
tively. Despite of rather highorography, there is still a very 
lose 
oin
iden
e between the expli
it and19



semi-impli
it nonhydrostati
 s
hemes. This 
oin
iden
e shows that the semi-impli
it s
heme produ
es adequate results.Expli
it non-hydrostati
 Semi-impli
it non-hydrostati


Hydrostati
 Fig. 5b 24h fore
ast for the ver-ti
al 
ross-se
tions (�= 14E) of theU-wind and temperature with the ex-pli
it non-hydrostati
, semi-impli
itnon-hydrostati
, and semi-impli
ithydrostati
 s
hemes.The 
on
lusion is that even in the 
ase of high orography, the distortingme
hanism due to a large time-step has no e�e
t in real �ow 
onditions.The la
k of distortions 
an be explained by di�erent fa
tors, like the smallamplitude of short-s
ale buoyan
y waves, non-uniformity of wind, e�e
ts ofsub-grid physi
s, or by the 
ombination of all of these fa
tors.In this 
ase, the nonhydrostati
 simulation gives not large, but distinguish-ably di�erent result from the hydrostati
 model. In the large s
ale pattern,the predi
ted �elds are rather similar. However, in �ne details, the nonhy-drostati
 and hydrostati
 models di�er signi�
antly. That means that the20



nonhydrostati
 e�e
ts 
an be
ome evident at 5-km resolution, if the orogra-phy has a substantial height.Semi-impli
it non-hydrostati
 Expli
it non-hydrostati


Hydrostati

Fig. 6a 24h mean sea-level pres-sure fore
ast with the non-hydrostati
semi-impli
it, non-hydrostati
 ex-pli
it, and hydrostati
 s
hemes.

4.3 Computational e�
ien
yAn essential ben
hmark of a numeri
al s
heme is the a
hievable time-step,whi
h is restri
ted by the Courant-Friedri
hs-Lewy stability 
ondition. As-suming that the �ow is predominantly horizontal, this 
ondition states for21



expli
it s
hemes �t < q�X=maxjv + 
j (4:2)Semi-impli
it non-hydrostati
 Expli
it non-hydrostati


Hydrostati
 Fig. 6b 24h fore
ast for theverti
al 
ross-se
tions (�= 1E) ofU-wind and temperature with thesemi-impli
it non-hydrostati
, ex-pli
it non-hydrostati
, and hydro-stati
 s
hemes.where �X is the horizontal grid step, maxjv + 
j is the absolute maximum ofthe geometri
al sum of material speed v and wave speed 
 in the medium, andthe geometri
al fa
tor q = 1 , and q = 1/p2, for one- and two-dimensional�ows, respe
tively. In the a
ousti
ally non-adjusted 
ase, 
 stands for thesound speed, and the maximum time-step is rather restri
ted. In the a
ousti-
ally adjusted model, the a
ousti
 mode is 
ompletely eliminated (in
ludingthe external wave), and 
 represents the internal buoyan
y wave speed. Thespeed of internal waves is dispersive and has a strong dependen
e on thedominant horizontal wave-length a, de
reasing proportionally with a. In the
ase of orographi
ally indu
ed buoyan
y waves, a is of the same order of the22



horizontal s
ale of orography. Thus, shorter orography indu
es slower waves.As a result of the smaller wave speeds, the adjusted model supports mu
hlarger time-steps in 
omparison with the non-adjusted 
ase.In the semi-impli
it s
heme, the wave 
omponent is un
onditionally stable,and the Courant-Friedri
hs-Lewy 
ondition applies to the material motionwith the maximum velo
ity maxjvj:�t < q�X=maxjvj : (4:3)Consequently, the semi-impli
it model supports a larger time-step than theexpli
it one does. This advantage should be observable at long s
ales, whenthe a
tivated internal buoyan
y waves have long wavelengths, and shoulddisappear at shorter s
ales.In the Table 1, the maximum time-steps for the expli
it and semi-impli
its
hemes are presented for �ow over isolated mountain ridge (ay = 1 in (4.1)and q = 1 in (4.1) - (4.3)). The modeling is 
arried out for two ba
kgroundwind speeds, U = 30 m=s, and U = 100 m=s. As for a linear �ow regime,modeled in these experiments, the velo
ity disturban
e v0 = v � U i issmall and satis�es 
ondition maxjv0j << U , the ba
kground value U 
anbe approximately used for estimation of the maximum value maxjvj in theCourant-Friedri
hs-Lewy 
onditions (4.2) and (4.3). TABLE 1Maximum time-step �t for expli
it and semi-impli
it s
hemes�X ax U �X=U �texpli
it �timpli
it(km) (km) (m=s) (s) (s) (s)11 30 30 367 60 3405.5 10 30 183 40 1800.55 10 30 18.3 14 170.55 2.5 30 18.3 16 1811 30 100 110 50 1005.5 10 100 55 30 500.55 10 100 5.5 4 50.55 2.5 100 5.5 4 523



As expe
ted, the semi-impli
it s
heme has the time-step 
lose to the theoret-i
al estimate �X=max(jvj) � �X=U j). Also it is seen that for U = 30 m/s,the semi-impli
it s
heme provides in 
omparison with the expli
it adjusted
ase the time-step enlargement 340/60 � 5.7 times at the 11 km resolution,and 180/40 = 4.5 times at the 5.5 km resolution. For the strong wind U= 100 m=s, the gain in the time step is mu
h modest. However, doublingat the 11 km resolution and enlargement by the fa
tor 50/30 � 1.7 at 5.5km resolution is a
hieved. The 
ase of the strong ba
kground wind U = 100m=s is important for pra
ti
al appli
ations, as high wind speeds are oftentreated in the mighty jet-streams. As the �gures of Table 1 demonstrate,approximate doubling at 11 km resolution and enlargement by the fa
tor 1.7at 5.5 km resolution is expe
ted even in the most unfavorable 
onditions ofa strong jet-stream.At higher resolutions, where the speed of buoyan
y waves de
reases, the dif-feren
e between the expli
it and semi-impli
it time-steps diminishes rapidly.At 0.55 km resolution, the di�eren
e is negligible for U = 30 m=s and 
on-stitutes about 1.2 times for U = 100 m=s.The time-
onsumption rate (
omputation time per one time-step) of the semi-impli
it model is slightly lower than in the expli
it 
ase. The integrationalgorithm in both s
hemes is basi
ally the same, and this explains the similartime 
onsumption rate. The slight additional e
onomy in the semi-impli
it
ase is a
hieved due to the smaller (in average over many time-steps) numberof iterations at the solution of the ellipti
 problem (3.2.5), whi
h, in its turn,is determined by the smoothing e�e
t of the semi-impli
it s
heme (whi
h israther analogous to the smoothing e�e
t of the spe
tral di�usion s
heme).5 Con
lusionsThe nonhydrostati
 semi-impli
it Eulerian version of the adiabati
 kernel ofHIRLAM has been presented in this paper. The model is a rather straight-forward extension of the expli
it Eulerian realization of anelasti
 pressure-
oordinate dynami
s. As the numeri
al tests show, the semi-impli
it versionmaintains the pre
ision 
hara
teristi
s of the expli
it model, while giving riseto 
omputational e�
ien
y and numeri
al stability. The numeri
al e�
ien
ydepends on the model resolution and on the maximum wind speed. At 5- 10 km horizontal resolutions, the model is at least 1.5 - 2 times more ef-24



fe
tive than its expli
it, a
ousti
ally adjusted relative, but this advantagediminishes rapidly with shorter grid-steps and makes negligible at 0.5 kmresolution. However, the larger stability advantage, whi
h be
omes evidentvia lesser spe
tral smoothing requirement, remains.The model is implemented numeri
ally in the parallel-
omputing HIRLAMenvironment. The numeri
al s
heme is 
ongruous with the remaining nu-meri
s of HIRLAM, and may be swit
hed on as an option in the 
ommonhydrostati
 HIRLAM.
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