Q. J. R. Meteorol. Soc. (1998), 999, pp. 1-999

LEAST ACTION PRINCIPLE FOR GENERAL, NONHYDROSTATIC,
COMPRESSIBLE, ACOUSTICALLY NON-FILTERED
PRESSURE-COORDINATE MODEL

By REIN ROOM!

L Tartu Observatory, Estonia

(Received 23 June 1997; revised 10 May 1998)

SUMMARY

The least action principle is described for general (nonhydrostatic, compressible, acoustically non-
filtered) pressure—coordinate equations of atmospheric dynamics (R6om 1989), which represents a gen-
eralization of the Least Action Principle, first developed for the pressure-coordinate representation of
atmospheric dynamics by Salmon and Smith (1994).
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1. INTRODUCTION

Beginning with classical works by Serrin (1959, henceforth S59) and Arnol’d (1965,
1969), the application of variational principles in atmospheric dynamics has been at-
tracting attention of many investigators (Salmon 1983, 1988, Shepherd 1990, Salmon
and Smith 1994 (further SS94), Roulstone and Brice 1995, R66m 1998a). Apart from
the intrinsic aesthetic appeal, the use of the least action principle (LAP) for foundation
of hydrodynamic models 1s also of practical importance at least in two respects. First,
the existence of variational formulation exhibits agreement of the model with funda-
mental laws of nature. As it is proved in Noether Theorem, the variational formulation
of dynamics is automatically accompanied with the existence of integrals of motion, the
number and quality of which is uniquely determined by temporal and spatial symmet-
ries of the action integral. Secondly, the variational method provides powerful tools for
model development. It 1s safe and straightforward to employ the variational formulation
for deduction of different simplified sub-models which are easier to study or integrate
numerically and which still maintain the desired symmetries and conservative qualities
of the initial, nonsimplified model. Keeping this in mind, it is advantageous to have vari-
ational formulation for pressure—coordinate models, too. The first variational formulation
of atmospheric dynamics in pressure coordinates is presented by Salmon and Smith in
the important paper S594 for the White (1989) anelastic pressure-coordinate model. As
it turns out, it is quite straightforward to generalize results of the 5594 to include all
dynamical effects present in the atmosphere and to get a variational principle for gen-
eral atmospheric dynamics in pressure coordinates without filtering simplifications. In
the present note, we describe the required generalization. The resulting LAP describes
the general, compressible, acoustically nonfiltered, pressure—coordinate dynamics (R66m
1989, 1990). Different filtered models, including the SS94, represent approximations which
can be achieved, introducing necessary modifications into the action integral.

2. THE LAP ror GENERAL, ACOUSTICALLY NONFILTERED PRESSURE-COORDINATE
DYNAMICS

The required generalization of the SS94 results can be obtained, (1) retaining the full
vertical velocity z in the Lagrangian action density, and (2), introducing explicitly the
continuity equation for the mass density n in pressure coordinates. The last modification

1



2 R. ROOM

can be easily introduced following the LAP formulation of the S59 (except that Cartesian
coordinates, used in the S59 are replaced by pressure—coordinates).
We define the action integral

t1
S = / dt/ nl(z, z, &, ¥y, p, n, s)dV , (1)
to v

where dV = dxdydp is the volume element in pressure coordinates, n represents the
nondimensional density, defined via the mass element dM = ndV/g, and g is the constant
gravity acceleration. [ represents the Lagrangian density of action, which for general,
nonfiltered case can be presented as
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where h(p, s) represents the enthalpy as the known thermodynamic characteristic func-
tion of pressure p and entropy s, for which
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p ant 6 being the density and temperature.
Variational principle for action (1) is

0 =0 ¥V {ox(x,y,pt),dylx,y,pt), dplx,y,pt), dz(z,y,p, )} . (2)

Here 6z dy, dp and dz are fields of independent variations (virtual replacements) of
coordinates z,y, p and isobaric height z of air particles. It is assumed, that these re-
placements are differentiable functions, which become zero at boundaries of the domain
V' and in the initial and final instants {5 and ¢;. Note that the number of independently
varied fields in pressure space is larger by one in comparison with the common Cartesian-
coordinate formulation (S59). The four—dimensional nature of the field of independent
variations is the main quality of the pressure—coordinate formulation which cannot be
deduced in a trivial manner with the analogy to the common—space formulation.

Additional constrictions, laid on the variations of S, are similar to the S59 and are
as follows.

(a) The elementary mass is conserved in pressure—space at virtual replacements:
d (dV -n) = 0, which yields for the density variation

0 dop\
6n+n<a—x~5x+%) =0. (3)

(b) The entropy is conserved at variations
ds = 0. (4)

(¢) The virtual replacements involve the trajectories (both in the ordinary physical and
pressure—coordinate spaces), from which the commutation rules arise:

d , d d , d

bk = dr, 8y = —dy, 0i = bz, G = op. (%)
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3. EQUATIONS OF MOTION

Equations of motion are extremes of variational problem (2) at additional restrictions
(3) — (5). We represent the final result without details (which can be found in Réém
1998b. In general, the deduction follows 559). The four equations, corresponding to four
independent variations, are

d?z
dz: n el g(l — n), (6a)
d?z 0z
d?y 0z
dy: n pr i g% , (6¢)
0z n Jh(p,s)
dp: = "7 o (6d)

(For simplicity we have dealt with non-rotating coordinates and the Coriolis force is
absent). This set of equation must be complemented with the continuity and entropy
equations, which follow for real motion from (3) and (4) in the form

dn oz Jy AN

@t (81‘ + Jy + 3])) =0 (6e)
ds
ST Ay . (6f)

System (6) coincides with the equations, derived by Ré6m (1989, 1990).

4. ACOUSTIC FILTERING IN LAGRANGIAN FUNCTION

The variational formulation has practical value as an efficient tool for getting dif-
ferent simplified models which maintain the essential qualities (like symmetries and con-
sequent conservation laws) of the initial, nonsimplified dynamics. In particular, different
acoustically filtered pressure—coordinate models; which are of great interest for numerical
applications, can be deduced, compared and studied in the unified framework. As the
existing filtered models (Miller and Pearce 1974, White 1989, SS94) as well as different
filtering schemes in pressure coordinates (R6om 1998a) demonstrate, the approxima-
tion that effectively filters acoustic component but maintains slow dynamics almost un-
changed, 1s the one which approximates the vertical velocity z by the material derivative
of an appropriately chosen function of other fields and independent variables:

d
RS qu)(l‘,y, pt,s,m, ), (7)

and which yields approximation of the Lagrangian density by function

l(Z,i‘,y,p,]'),n,S,t) = Z[Z, ¢>(l‘,y,p,t,8,n,..),i‘,y,p,n,s] .

The three known special cases of this general approximation are:
(i) The nonhydrostatic anelastic model by Miller and Pearce:
0z w

¢)IZQ(p) — zzw%:—%, (8)
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where zp represents the horizontally homogeneous background distribution of the hydro-

static isobaric height and pg(p) is the corresponding background density. This approx-

imation has been used in numerical models by Miranda and James (1992) and Miranda

and Valente (1997) and has proved an effective approximation in meso-scale modeling.
(i1) Approximation introduced by Salmon and Smith (S594)

h(p,s . w Ts
g8 o @ T8 (9)
g gp g
This approximation represents a generalization of the White model (1989) and yields the
last one for the conservative case, s = 0.
(iii) Hydrostatic approximation

$=0 — 0. (10)

Though this approximation represents the long—wave asymptote of the two previous
cases, 1t can be introduced promptly into the Lagrangian density [ to get the hydrostatic
primitive equation model as the extremum of variational problem.

As a special case of (7), not considered elsewhere, and generalizing the Miller and
Pearce model, is the approximation

. dzg
i
dt

(11)

Here zs(x,y, p) is an appropriately chosen isobaric height distribution, not necessarily
homogeneous in horizontal (a temporal mean of the actual air-mass, for instance).

The common quality of all described filtering approximations (8) — (10) is the absence
of time argument ¢ in the definitions of ¢. When this restriction is not maintained and
¢ includes ¢ among arguments, the approximated Lagrangian will include ¢ explicitly,
which will cause in accordance with Noether Theorem the energy conservation violence.

The acoustic wave filtering by (7) is a general quality, inherent to this approxim-
ation, and does not depend on the special choice of ¢. Once (7) is introduced into the
Lagrangian, the variation of action .S in z yields the anelastic condition for the pressure—
coordinate density: n =1 . As a consequence, the continuity equation (6e) reduces to

dxr  dy op
3x+3y+3p_0’ (12)

¢ =z (x,y,p)

which yields the non-divergent nature of three-dimensional flow and filtering of motions
connected with volume changes in pressure-coordinates. As in the special case of hydro-
static approximation the acoustic disturbances are eliminated, one can conclude that this
is the case for all models which are based on approximation (7).

Detailed derivation of filtered models using approximations of the action S is presen-
ted in (Room 1998b). Explicit representation of model equations corresponding to ap-
proximation (8) can be found in (Miller and Pearce 1974), the model based on (9) is
presented by White (1989) and in the SS94. Here we present the model resulting from
approximation (11), which has not been formerly published. Defining the reference dens-
ity ps and the vertical velocity w; according to relations

0z, 1

ap ~ gps
dz,
= w

dt ’
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the analogues of equations of motion (6a) — (6¢), representing the extremal of the ap-
proximated action, are

dw 1 n 0z

a =0l T

dv

At
where v = {#, §} is the horizontal velocity. This model becomes closed after supplement-
ation with the equation (12) and (6e).

dw
= —gVz — —Vz, .
gVz " z
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