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SUMMARY

The anelastic sigma-coordinate version of the pseudo-anelastic Miller-Pearce model is developed. The
pseudo-anelastic model is characterized by the presence of external-mode acoustic perturbations which propagate
in the horizontal, compromising the model performance by the need to use smaller time steps than would otherwise
be required. The approach developed in this study allows for the filtering of acoustic waves and adjustment of
surface pressure perturbations. The approach is tested in a new numerical implementation of an adiabatic sigma-
coordinate non-hydrostatic model and results are found to be comparable to the unadjusted version, and to theory
when applicable. The new code is found to allow for significantly larger time steps whilst still retaining numerical
stability, showing the possibility of further model improvements.
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1. INTRODUCTION

The use of pressure as the vertical coordinate in atmospheric dynamics was proposed
by Eliassen (1949) and soon became the preferred choice in most large-scale studies,
either in the pressure-coordinate (p-coordinate) form or in the sigma-coordinate (o -
coordinate) form. The latter was introduced by Phillips (1957) and allows for an implicit
representation of surface orography. There are some good reasons for the popularity of
p-space in atmospheric dynamics. The most obvious reason is that most atmospheric
measurements are made in terms of pressure, and traditional meteorological analysis of
the atmosphere is related to constant-pressure surfaces, whereas geometrical height, z,
is a computed quantity. More important though, is the fact that the equations simplify in
p-space, especially because the atmosphere is non-divergent in that framework. There
are also some advantages in the formulation of the thermodynamic relationships in this
context. In the case of hydrostatic dynamics, which are still dominant in meteorological
theory and numerical applications at the large scale, these advantages have made the
p-space very attractive.

The increasing resolution of both numerical forecast and climate models, as well
as the growing requirements for model precision, has brought the transition from
hydrostatic (HS) to non-hydrostatic (NH) models into the limelight. The development
of non-hydrostatic models has been going on for about three decades, in the context
of different mesoscale investigations (e.g. Ogura and Charney 1962; Dutton and Fichtl
1969; Miller and Pearce 1974; Tapp and White 1976; Klemp and Wilhelmson 1978;
Redelsperger and Sommeria 1981; Pielke 1984), but NH models are still mostly used
for research and for high-resolution or specialized studies, while operational forecasts
rely on HS models. However, in the next five to ten years most HS models are likely to
be replaced or updated to NH versions and there would be many advantages if the model
upgrading could preserve connections with existing models and analysis tools, as well
as with the forecasters’ experience. These are all based on p-coordinate models.

Three main groups of NH p-space models have been developed:
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() Models which employ the actual pressure of an air particle as the vertical
coordinate (Miller 1974; Miller and Pearce 1974; Miller and White 1984; White 1989;
Ro66m 1989, 1990).

(i) Models which employ the hydrostatic component of the pressure field as the
vertical coordinate (Laprise 1992): this coordinate system is used for instance in the
Meété€o-France operational limited-area model, ALADIN (Bubnova et al. 1995).

(iii) Models which use the hydrostatic mean background pressure field as the vertical
coordinate. This coordinate frame is employed in the NH extension of the Penn State—
National Center for Atmospheric Research model (Dudhia 1993).

The first and probably best known NH model in pressure space is the Pseudo-
anelastic Model (PAM, our terminology), introduced by Miller and Pearce (Miller 1974;
Miller and Pearce 1974). A more general form of the PAM in pressure coordinates was
presented by White (1989). The o-coordinate versions of the PAM were developed
by Miller and White (1984) and have been used in numerical modelling in the two-
dimensional (2D) case by Xue and Thorpe (1991), and in the three-dimensional (3D)
case by Miranda and James (1992) and Miranda and Valente (1997). The PAM abandons
the hydrostatic equilibrium assumption in favour of the more exact vertical momentum
equation but introduces, from scale-analysis arguments, the non-divergence of motion
in p-space and this filters out the internal acoustic waves. The horizontally propagat-
ing external mode acoustic waves—Lamb waves (first described by Lamb (1932))—
are maintained unless appropriate boundary conditions are used (Moncrieff and Miller
1976, Miller and White 1984). After both the internal and external acoustic modes are
eliminated, the PAM becomes equivalent in essential details to the anelastic approxi-
mation in geometric space, in which the acoustic mode is completely eliminated by the
assumption of a time-independent density distribution.

In this paper we will introduce a modified PAM, in the form of a novel o -coordinate
model NHAD (non-hydrostatic adjusted dynamics). The NHAD model is a modification
of the earlier model, NH3D (Miranda and James 1992), the NH3D model is also a
numerical realization of the PAM, but with the external mode included. The essential
modification in the new model consists of the elimination of the external acoustic mode
(in addition to elimination of the internal acoustic wave) for general flow over an uneven
surface. For the simplest case, with no surface topography, the external acoustic mode
can be eliminated by requiring the omega velocity to be zero on the bounding pressure
surface (Moncrieff and Miller 1976), or by requiring the vertical velocity to be zero
on the underlying surface (Miller and White 1984). Generalization of these ideas to
the case of an uneven surface with orography is not straightforward because, to ensure
mass conservation, appropriate boundary conditions on the horizontal boundaries for
the non-hydrostatic geopotential equation need to be formulated. The NHAD model
takes advantage of the acoustic filtering technique, first applied in the development
of the non-hydrostatic High-Resolution Limited-Area Model (HIRLAM) (see Rodm*;
Miinnik and R66mt). However, in contrast to HIRLAM (which is a hybrid-coordinate
model), in the NHAD model the upper boundary is chosen at a finite height, and
lateral boundaries are considered transparent (radiative boundary conditions). These
differences provide the NHAD model with distinctive properties and, thus, provide an
opportunity to compare the influence of the coordinate system (o -coordinates versus
hybrid coordinates), and the lateral boundary conditions (radiative boundary versus
absorbing layer) in p-coordinate-based models.

* hutp://apollo.aai.ee/HIRLAM/nhkern1.ps.gz (March 2000).
T http://apollo.aai.ce/HIRLAM/nhkern2.ps.gz (March 2000).
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2. THE ANELASTIC SIGMA-COORDINATE MODEL

The main feature of the NHAD model is that the domain of integration is fixed in
pressure coordinates, and the lower boundary of the domain is given by a fixed pressure
distribution pg(x), independent of time:

Pop =P = Po(X).

Here piop is the constant upper boundary. It is possible to choose pyop = 0, but, keeping
the approach of the parent model NH3D, in this paper we assume piop > 0. The pressure
po represents the mean background pressure at the surface, related to the topographic
height by the barometric formula

h
po<x>=psexp(—§f W _dz )
RJy T@

where p is the mean sea-level pressure, R is the gas constant of dry air, g is the
gravitational acceleration, Ty represents the mean background temperature (elsewhere
in this paper mean reference-state profiles are indicated by ‘0’ suffixes), and h(x) is the
surface elevation. Let the o-coordinate be defined as

_ P~ Prwop
Px ’
where p,(X) = po(X) — prop- The fixed lower boundary requires a balance condition for

the vertically integrated mass
1
V-(p*/ Vd0)=0, (2)
0

where v is the horizontal velocity vector = (u, v). The fixing of the boundary po, along
with application of condition (2), is the mechanism which eliminates external waves.

Except for the surface-pressure tendency equation, which is replaced by Eq. (2), the
equations of motion in mass-conserving flux form are the same as in the NH3D model
(Miranda and James 1992):

o
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px 00

is the horizontal p-coordinate gradient in the o-coordinate representation. The geopo-
tential height, z, and potential temperature, 6, are represented as sums of reference state
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profiles zo and 6, depending on pressure only, and perturbation fields, represented by
primed quantities. The Brunt-Viisili frequency is indicated by N, and f is the Coriolis
parameter. ¢ is the sigma velocity of an air parcel, Q represents the heat sources, V is
the gradient along a constant o -surface and

Fo= %(p*w) + %(p*w) + %(p*éw)-

The vertical structure function, s, is defined as

8 P _ 8 1o+ Pop/p«(X)}

RTo(p) p« R Tofopu(x) + prop}

The quantity w, defined in Eq. (3a), is an approximation of the vertical veiocity,

introduced by Miller and Pearce (1974), and p, represents the material derivative of
D+ atlevel o:

sx,0)=

Note that the temperature equation (3d) is not simplified, and represents potential-
temperature conservation, d6/dr = Q, written here in flux form for the fluctuating part
of potential temperature.

As Lamb waves have been eliminated, the actual surface pressure becomes adjusted,
but not necessarily equal to the mean, time independent value, po. The actual surface-
pressure fluctuation, p (thus, the total pressure is py + Py) can be evaluated from the
geopotential-height fluctuation at the mean surface-pressure level, as:

P_6 _ 8%
Px RTO(PO)‘

This formula is easy to prove by representing the total height, z, of the surface o,

(o5 #1) as

)

0z
lo=0, = Zo=1+ | — (o5 — 1),
do o=1
and making use of relations
Z;’:] =ZZo=1 — Z:Tnialn’

mean
Lo zzo_i] =

(where £ is the elevation of the underlying surface),

US_IZP{)/P*

and
(9z/00)5=1 =~ RTo(po)/g.

3. THE z-EQUATION

In all filtered NH models, cast in pressure-type coordinates, the geopotential height
represents a diagnostic variable and its determination requires the solution of a non-
homogeneous elliptical equation (z-equation), which is, in fact, a generalized Poisson
equation. This is different from the exact dynamics, in which the geopotential height, z,
represents a prognostic field (R66m 1998), and from the HS primitive-equation models,
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in which z is a known function of surface pressure and temperature fields. Because the
distribution of the geopotential height determines the distribution of the main forcing
field in the system—the pressure-gradient force—its determination is a central task of
every NH model and the z-equation represents the central relationship of every NH
model.

The z-equation can be deduced by differentiating Eq. (3e) in time and eliminating
time derivatives of the velocity components using the equations of motion (3b) and (3¢)

L7+ M =A, (6a)

where £ and M are the horizontally homogeneous main operator and the horizontally
non-homogeneous perturbation operator:

L=V —5— 6b

—Jr_aaY Jo (6b)
3 Ve \ 3 V2 3 v 3

s 2 (T a2 Ve 0 Ve g 0 g
do D do px 00O DPx do

A is a known function of velocity, temperature and surface pressure:

1 V.D* d 9 T
A=— V- —0 | (Fyv+ pe fRX V) = =10 | Fu — 8Px—
gps px 80 : 9o To

and 5, s’ represent the horizontal mean and the fluctuation components of s:

s(x,0,t) =50, 1)+ 5 (x,0,1), s =0.

A standard way for solving Eq. (6a) is to invert the main elliptical operator, L,
explicitly, and consider M iteratively (Xue 1989; Miranda 1991). This is possible
because V py/ps & —gVh/(RTp), and s, are small parameters in comparison with 5.
At eachiteration /,/ =0, 1, 2, ..., it is necessary to solve equation

L7V = A0, (7

where A = A — M2~ is known from the previous iteration.

For the solution of Eq. (7), boundary conditions must be provided. At the lateral
boundaries, the boundary values for 7’ are given, as in the parent model NH3D, from
radiative boundary conditions, although, in some cases, it may be convenient to add a
sponge region. Lateral sponges are found to be necessary in some nonlinear regimes, as
a way of avoiding undesired changes in the upstream conditions, and in strongly non-
hydrostatic backgrounds, for which the radiative boundary conditions may not work
very well. However, the upper- and lower-boundary conditions in the adjusted model
are, as first described by R60m*, novel.

At the upper boundary, 0 = 0 (p = piop), We need to apply a condition that elimi-
nates solutions of the homogeneous equation £z’ = 0 which grow with height:

7 —0, ifoc—0 and A=0. 8

Due to the elliptic nature of £, the solution of Eq. (7) may include solutions of the
homogeneous equation both exponentially growing and exponentially decreasing with
height. The decreasing mode is caused by the lower-boundary condition, which is

* http://apollo.aai.ee/HIRLAM/nhkemn1.ps.gz (March 2000).
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equivalent to the existence of a surface source on the lower boundary. Similarly, the
growing mode would be determined by the existence of some surface source on the
upper boundary. As in reality there are no external sources at the top, the growing mode
must be eliminated, and condition (8) for the homogeneous equation yields the absence
of such a mode. The original integrability condition, formulated by Ro6m*, can not
be applied here directly due to the finite height of the upper boundary. However, in a
vertically discrete numerical model, the original integrability condition and Eq. (8) both
yield the same elimination of undesired exponentially growing modes.

For the second ‘vertical’ constraint, the mass balance condition (2) is used. Differ-
entiation of this condition in time yields

1 1
V. (gp*/o GZ da) = -V -/(; (Fv + fpk x v) do. - {9

This 2D relationship replaces the usual lower Dirichlet condition (Xue and Thorpe
1991) of the unadjusted model. It guarantees that the initial mass-balance condition (2)
holds for all time. Consequently, the lower-boundary value, z,—1, is not specified before
Eq. (6a) is solved and, when the solution is found, this value determines, in accordance
with Eq. (5), the adjusted surface-pressure fluctuation.

Numerical aspects of the inversion of Eq. (7) with conditions (8) and (9) with the
use of eigenvector techniques are discussed in detail by Miannik and R6dm?.

4. THE NHAD MODEL AND NUMERICAL RESULTS

The proposed ideas have been applied in the development of the numerical model
NHAD. Some results obtained with this new code are presented in this section and com-
pared with the ‘unadjusted” NH3D model, allowing for a discussion of the properties and
performance of the new approach.

Model NHAD is a modification of the NH3D model (Miranda and James 1992). 1t
includes the NH3D model as a special case, which can be switched on with a logical
key. Most of the numerical implementation of the model and its main parameters are
as described by Miranda and James (1992). The main differences between the NHAD
model and the parent model NH3D are:

o In the NH3D model the lower-boundary p, is prognosticated from the pressure-
tendency equation. In the NHAD model it is fixed, and related to the surface elevation
h, via the barometric formula

Do =a exp ( g /h dz )
0 — R )
R Jo To(z)

where a is the mean sea-level pressure, whereas the actual surface-pressure fluctuation
is evaluated from Eq. (5).

e In the NH3D model, Dirichlet conditions are applied for 7 at the upper and
lower boundaries. In the NHAD model the upper- and lower-boundary values for 7’
are not fixed. Instead, conditions (8) and (9) are applied. Both models allow for spurious
reflection of gravity waves from the top, though in the NHAD model the top reflection
is reduced in comparison with the NH3D model due to the exclusion of spurious
exponential modes of z’ with the help of Eq. (8). To suppress reflection, a sponge layer
is applied in both models.

* hitp://apollo.aai.ee/HIRLAM/nhkern1.ps.gz (March 2000).
t http://apollo.aai.ee/HIRLAM/nhkern2.ps.gz (March 2000).
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e The NH3D model prognosticates vertical velocity from Eq. (3b). The NHAD
model diagnoses vertical velocity from the equation

1
pssw = —0ov-Vp, —f V. (pyv) do’,

o

(this follows from Eq. (3e) with the help of Eq. (12)).

The modelling domain is a rectangular area in sigma space with dimensions
Ny - Ax x Ny - Ay x Ny - Ao. The model uses a staggered grid (Winninghoff 1968;
Williams 1969), known in atmospheric dynamics as the Arakawa-C grid (Arakawa and
Lamb 1977; Cullen 1991).

The time-integration scheme is an explicit leapfrog algorithm. For temporal smooth-
ing, and for suppressing the decoupling tendency inherent in leapfrog schemes, an As-
selin filtering technique (Robert 1966; Asselin 1972) is applied. Two spatial-filtering
mechanisms are employed. A fourth-order filter is used to suppress short-scale instabil-
ities with wavelengths A two grid lengths. This filter was initially proposed by Durran
and Klemp (1983) and generalized by Miranda (1991) to the 3D case. This filter is
highly scale selective. All experiments that follow use a filter with very little impact on
horizontal wavelengths larger then 2 Ax and virtually no impact on the vertical structure.
The spatial filter is applied once every five time steps. In the experiments shown in the
following section, a sponge column was used near the lateral boundaries to guarantee
the maintenance of the background conditions, in spite of the possible upstream influ-
ence associated with nonlinear regimes. That sponge affects the 10 grid points close to
each lateral boundary. At the initial time the rigid-lid condition, w|p = 0, and vertically
integrated mass balance Eq. (2) for the horizontal velocity v are assumed.

In the following experiments, the Coriolis force and moisture effects are left out
(though the NH3D and NHAD models incorporate both of them), as having no relevance
for surface-pressure adjustment and acoustic-relaxation processes.

(a) Experiments with different flow regimes

To test the new code, a set of numerical experiments were performed. Those ex-
periments simulate the flow past an isolated bell-shaped circular mountain, and the flow
parameters chosen—shown in Table 1—correspond to flow (Na/U > 1, where U is the
advection velocity) in the three flow regimes identified by Miranda and James (1992)—
quasi-linear mountain waves (Exp 1), splitting flow (Exp 2), and breaking waves
(Exp 3)—and to one case of quasi-linear but strongly non-hydrostatic flow (Exp 4).
For each experiment, two runs were performed with exactly the same parameters: one
with the NH3D model, which is considered the control run, the other with the new
NHAD code. All experiments use a 65 x 65 x 40 grid-point grid, with 1 km horizontal
resolution and variable vertical resolution implied by evenly spaced o -surfaces, varying
from about 200 m near the surface to about 1000 m near the top of the computational
domain. All experiments used a time step of 2 s. The parameters were chosen so that
the model is able to resolve both the main forced waves—with horizontal wavelength
defined by the mountain shape—and the free oscillations, with wavelengths 27U/ N.

The results obtained in Exp 1 are shown in Figs. 1, 2 and 3. Figure 1 shows the
steady-state potential-temperature perturbation in the two simulations, which produce,
for this and all other fields, almost identical distributions. The very slight differences
between the two model results can also be appreciated in the evolution of the surface-
pressure fluctuation and surface drag, presented in Figs. 2 and 3. The adjusted model
yields, in comparison with the non-adjusted one, a slightly enhanced depression on
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TABLE 1. NUMERICAL EXPERIMENTS

ho U N a dx
Experiment m (ms') (7 (km) (km) Nho/U Na/U
Exp | (Linear flow) 100 8 0.012 4 1 0.15 6
Exp 2 (Splitting) 2000 4.44 0.01 3 1 4.5 6.8
Exp 3 (Wave breaking) 1000 6.67 0.01 4 1 1.5 6
Exp 4 (Linear non-hydrostatic) 100 15 0.005 2 l 0.15 0.66
8— 3‘ -
(a) adjusted (b) nh3d
6- 6/
gEc, 4 é 4
N N
2- 2
0 0

.20

x (km)

Figure 1. Potential-temperature perturbation at the central cross-section of the model in the steady-state case of
Exp 1: (a) adjusted NHAD model; (b) NHD3 model. Contours shown: +0.05, +0.1, +0.15, ..., +0.3 K. Shaded
where 6" < —0.1 K. See text for further explanation.

the lee side of the mountain (Fig. 2) and, consequently, enhanced downslope wind.
Results of the modelling of surface drag are presented in Fig. 3. High-frequency
oscillations of the unadjusted NH3D model during time steps 0—1000 mirror the initial
adjustment process. The initial adjustment takes approximately 30 minutes in this
particular example, which is ten times 7; (= L/c = (65 km)/(350m s~ 1)~ 3 minutes).
In spite of the fact that in the case of the adjusted model the surface drag is evaluated
indirectly from the low-level geopotential perturbation, the results are virtually identical
and converge to a numerical non-hydrostatic linear steady solution for the same grid
(right y-axis). The results are also, in this case, very close to the hydrostatic analytical
solution for the infinite bell-shaped mountain (left y-axis). Overall, the results seem to
indicate the good behaviour of the new code.

Exp 2 corresponds to a regime of very high Nho/U, where horizontal streamline
splitting around the mountain dominates the circulation. In this particular regime, as
found by Smolarkiewicz and Rotunno (1989) and Miranda and James (1992), the
flow tends to produce a pair of vortices, downstream of the mountain, with small
amplitude mountain waves and reduced drag. Results for this experiment are shown
in Fig. 4, showing the potential temperature, and Fig. 5, presenting the time evolution
of the surface drag. Results are qualitatively similar, although the estimated drag shows
somewhat higher values in the adjusted model. Because of that, the simulations were, in
this particular case, extended to much higher values of non-dimensional time, to check
the long-term behaviour of that flow, but the difference remained. On the other hand,
an analysis of the different fields, including the vertical cross-sections and the surface
flow, shown in Fig. 4, reveals only slight differences in the flow patterns, allowing the
conclusion that the two models produce comparable results.
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Figure 2. Surface pressure fluctuation (pj) along the mountain x-axis in the asymptotically steady-flow regime
for Exp 1, using the NH3D model (dashed line) and the adjusted NHAD model (solid line). See text for further
explanation.
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Figure 3. Time evolution of the normalized drag for Exp 1, using the NH3D model (dashed line) and the adjusted
NHAD model (solid line). See text for further explanation.

Exp 3 corresponds to a value of the non-dimensional mountain height, Nho/U =
1.5, for which it has been found that wave breaking is likely to occur. In this case,
it is expected that the flow will evolve into a transient regime, with oscillations in its
behaviour associated with wave-breaking events. For that reason a direct comparison
of results at a given time step, as done in the other cases, may be misleading. Instead,
one must look at the general behaviour of the flow, and the time evolution of the drag
is probably a good indicator of that behaviour. It is also known that in this case of
wave-breaking flow, the solution depends on parameters other than the non-dimensional
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Figure 4. Potential temperature at the central cross-section of the mode] in the steady state of Exp 2: (a) NHAD
model; (b) NH3D model. Contours shown every 1 K. Wind at the lowest model level: (c) NHAD model; (d) NH3D
model. See text for further explanation.
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Figure 5. Time evolution of the normalized drag for Exp 2, using the NH3D model (dashed line) and the NHAD
model (solid line). See text for further explanation.
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Figure 6. Potential temperature at the central cross-section of the model in the maximum-drag state of Exp 3
(3000 time steps, 1.75 h): NHAD (solid lines), NH3D (dashed). Contours every 2 K. See text for further

explanation.
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Figure 7. Time evolution of the normalized drag for Exp 3, using the NH3D model (solid line) and the NHAD
adjusted model (dashed line). See text for further explanation.

mountain height (see Miranda and James 1992) and that there is a possibility of
upstream-propagating modes changing the reference-state flow in time.

Results for Exp 3 are shown in Figs. 6 and 7. A comparison between the drag
evolution curves (Fig. 7) indicates an excellent match between the two models. Looking
at results at 3000 time steps, where the drag is at its maximum, the differences in
flow structure are minimal. Both experiments show an almost identical vertical wave
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Figure 8. Vertical velocity in the steady state of Exp 4 for (a) the adjusted code , (b) NH3D and (c) the linear
solution. Contours every 5 cm s~ !

structure, with clear indications of large-amplitude mountain waves in a breaking
regime. As expected, the behaviour of the NH3D model and of the NHAD code depend
on different flow parameters and not just on the non-dimensional mountain height.
Other experiments in the same wave-breaking regime (Nho/ U = 1.5) but with different
horizontal scale, showed drag evolution curves with different behaviours, and the match
between NH3D and NHAD is not always as good as found in this particular case. In all
cases, though, the qualitative behaviour is comparable, and the maximum values of the
drag are similar.

The last experiment of this set, Exp 4, simulates a case of linear flow with Na/U =
2/3, for which non-hydrostatic effects are very strong. Figure 8 shows the vertical cross-
section of the steady-state vertical velocity in this experiment, comparing the results
from NH3D, NHAD (the adjusted code) and a linear model with the same parameters.
As shown, the differences are minimal, indicating the good behaviour of both models in
the simulation of this regime.
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TABLE 2. STABILITY EXPERIMENTS

Exp 5a Exp 5b Exp 5c
Parameters NH3D/ADJ NH3D/ADJ  NH3D/ADJ
h (m) 60 60 60
Ums™") 3 3 3
N (s™H 0.005 0.005 0.005
a (km) 2 4 20
Ax (km) 1 2 20
Nho/U 0.1 0.1 0.1
NaJU 3.3 6.7 66.7
Almax (5) 8/100 10/140 35/165
C; (ms™h 1.6 3.2 32

U Atmax/Ax 0.024/0.3 0.015/0.21  0.005/0.025
CiAtmax/Ax  0.013/0.16 0.016/0.22 0.056/0.26

(b) Experiments on code stability

Another set of experiments was performed to test the improvements in numerical
stability gained with the NHAD code. These experiments correspond to a linear flow
regime (Nho/U = 0.1), for which there is a well known solution. For each choice of
parameters, a large number of experiments were performed with different time steps
until it was found that numerical stability was destroyed. From those results, for each
set of parameters, a maximum allowable time step is defined, which allows for the
computation of the Courant number, C Afmax/Ax, where C is the propagation speed
of perturbations in the flow. The propagation speed, C, depends on the advection
velocity, U, and on the phase speed of the internal wave, C;j. The latter is a function
of the horizontal scale and will have both horizontal and vertical components. As a
consequence, two facts must be taken into account in the stability analysis:

(1) As the vertical resolution of the model is generally much larger than the horizon-
tal resolution, especially in experiments with wide mountains, the relative importance of
horizontal and vertical propagation will change with changes in horizontal resolution;

(ii) The relative importance of advection velocity and phase speed will also change
with horizontal resolution.

Table 2 presents the parameters used in the three sets of simulations performed,
one for each horizontal scale, and the obtained values of Aty for both the NH3D
and NHAD code. In all experiments, the only difference in parameters between the two
models is the value of the time step Ar, all other numerics being equal, including spatial
and temporal smoothing, whereas diffusion was switched off.

An analysis of the data shown in Table 2 shows the large impact of the proposed
approach, especially in the case of small horizontal scales, where changes in the
maximum allowable time step were of an order of magnitude. The results also show
that the gain in time step is a function of horizontal scale, because the phase speed of
the waves increases with its horizontal wavelength and will dominate over the advection
velocity above some value of the horizontal grid spacing. To clarify this effect, Table 2
shows a computation of the Courant number, C Atpax/Ax, from both the advection
velocity and the phase speed of the internal wave for each experiment. Results obtained
show that the new code runs in all three cases up to a Courant number of 0.2-0.3,
an excellent result, typically an order of magnitude better than NH3D. This is a clear
consequence of the removal of the Lamb wave. It should be mentioned though, that
the time-step gains may be more modest when the permitted phase speeds are large
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(comparable to the speed of sound) or when vertical propagation is the dominant effect
in the definition of the Courant number, which is never the case in Exp 5a—c.

5. CONCLUSIONS

The main aim of this paper was to derive and test an anelastic o-coordinate non-
hydrostatic model filtering the external mode. The filtering was achieved by having a
vertical domain of the model which is fixed in pressure coordinates, and deducing proper
vertical boundary conditions for the non-hydrostatic geopotential-height equation. We
have investigated the effect of using this set of equations to describe the dynamics of
the atmosphere. Theoretical results were supported by the results of some numerical ex-
amples obtained with the NHAD model, which implements the proposed developments,
compared with control experiments performed with the parent model NH3D.

Model results were found to be almost identical in the case of linear flow, for which
there is a well known analytical result. In the two cases of highly nonlinear flow the
two model formulations also produced very similar results, in the same regime and
with similar surface drag, while the exact distributions of the different prognostic fields
showed slight differences. Those differences were not much larger than those found
between different numerical models or for the same model when changes are made to
its numerical parameters (e.g. diffusion terms and spatial or temporal filtering).

An analysis of the numerical stability of the new formulation, made through a large
set of experiments of flow past a small-amplitude mountain, proved the efficient removal
of fast Lamb waves from the solution. The changes in the maximum allowable time step
can be, in some cases, of one order of magnitude, approaching the theoretical limit for
advection and/or maximum gravity-wave phase speed.

The use of the fixed geometry in p-space, as in this new formulation, increases
computational accuracy, because it eliminates the fast Lamb waves in the solution. In
this case, the surface-pressure fluctuation, which is not computed by the model, can be
evaluated at every instant from the distribution of non-hydrostatic geopotential-height
fluctuation at the time-mean surface-pressure level.

The conclusion then is that the new formulation of this pressure-based non-
hydrostatic model is worth using and developing further.
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