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Abstract. Non-hydrostatic acoustically filtered equations of motion of nonviscid fluid
are derived in pressure coordinates. Complete set of non—hydrostatic nonlinear equa-
tions for ideal fluid in pressure coordinates serves as starting basis. These equations
are linearized and transformed to a convenient for filtering form. Acoustic filtering is
achieved in the limit of infinitely high sound speed, ¢, — oo. The filtered model
lacks acoustic wave solutions but maintains without loss of accuracy all slow processes,
including buoyancy waves. The obtained in this way linear model is complemented
to a nonlinear set by inclusion of incompressible advection terms in pressure space.
The final equations are capable of describing slow processes from local turbulence to
planetary—scale waves. Still, the main domain of application of the model is mesoscale
dynamics.



1. INTRODUCTION

The idea to use pressure related coordinates for non-hydrostatic (NH) dynamics is
not new. A pressure coordinate (p—coordinate) acoustically filtered NH model was first
proposed by Miller ['] and Miller & Pearce [*]. The Miller-Pearce model (MPM) has been
widely used in numeric modeling [> = 5]. A variant of the numeric package, developed
in [?], is presently in use at Tartu Observatory. Though the p-coordinate presentation
in combination with the non-hydrostatic assumption looks exotic and sophisticated at
first encounter, its incontestable advantage consists in ability to treat non—hydrostatic
processes of shorter mesoscale (I, ~ 102 -10® m) and hydrostatic processes of longer
mesoscale (I, ~ 10* ~10° m) and synoptic scale (I, ~ 105 ~10” m) in the framework
of unified formalism.

The main assumption of the MPM is the approximation of incompressibility of motion
in p-space, which filters sound waves:
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Here v and w = dp/dt are the horizontal wind vector and the vertical speed of the

air—particle in the p—space. Assumption (I1) enables to filter acoustic waves, unwanted
in slow dynamics, in a most straightforward manner. As the same assumption is exact
in the hydrostatic limit, (I1) presents an extrapolation of the main characteristic feature
of primitive equations to the mesoscale.

Here we introduce a different acoustically filtered NH model, which rejects hypotheses
(I1). Though approximation (I1) will be used at the final stage of the model development
for the introduction of nonlinear momentum advection, it is not used for wave filtering.

The model we develop is based on the complete set of NH equations in p-coordinates
[®]. The filtering proceeds as follows:

At first the initial set of non-hydrostatic p—coordinate equations is linearized. The
filtering is carried out in the linear model. Finally, the obtained model is complemented
to a nonlinear filtered model with maintenance of energy conservation.

2. LINEAR NH MODEL IN p—COORDINATES

2.1. Linearization of equations of paper [°] according to the hydrostatic equilibrium
state, characterized by the mean temperature, Tp(p), yields equations
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Here v, = dz/dtis vertical velocity, z" and T' represent isobaric height and temperature

fluctuations, p’ = p — 1/g is the p-space density fluctuation from its equilibrium constant
value p = 1/g, and p/, is the ground surface pressure fluctuation from the mean pressure
distribution at the ground pg. Parameter Hy = RTy/g presents the height scale for
hydrostatic pressure,
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is the stability parameter ("stability temperature”) of the background state and @
represents the given thermal forcing.

2.2. Boundary conditions. Conditions at the lateral boundaries are the same as
in cartesian coordinate models and do not present special interest in the context of
the present study. The main differences with ordinary model occur in the "horizontal”
conditions at the top and at the bottom. The domain occupied by the atmosphere in
the p—space is

0 < p <po(x,t), —o0 < z,y < o0, (2)

Boundary conditions at the bottom and top are
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where h(x) is the ground surface height above the sea—level.

2.3. Diagnostic equation for w. Model (1) presents a closed system consisting of
eight equations for eight fields z', vy, vy, v., T, p', p! and w. All quantities here, except
w, are prognostic fields, and system (1) includes a single diagnostic equation (1f). This
equation should be used for the determination of the diagnostic field w. As (1f) does not
include w explicitly, the only way to proceed is to differentiate (1f) by ¢ and eliminate
time derivatives by the help of other equations. The result is an explicit equation for w
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where

a = cpfep .
This relation presents the linearized pressure tendency equation in p-coordinate repre-
sentation.

2.4. The reduced linear system. The obtained diagnostic equation (4) along with
equation (1g) enables to get from (1) a reduced set of equations which is closed according
to 2/, vy, v, T" and pl, and does not include p’ and w (though equations for these fields,
(le) and (4), remain valid)
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We have introduced non—dimensional fluctuative fields in place of 2z’ and T":
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2.5. Wave equations. It is easy to get two second order equations for ( and 7,
differentiating (5a) and (5b) according to the time and eliminating the first order time
derivatives with the help of (5¢) and (5d):

2 (10 e\ _ (9 9 (.9 _ RoQ
[HO <cg oz Y Pe, T \GP T )|\, T )T 2
(Ta

1 9 0 RT, 9Q
(ﬁ@“)”(a}?‘a)“gma- (7

where ¢, = +/RTy/a is the sound speed and N = /RT;/Hy represents the Vaisala

frequency. These equations can be employed for modeling linear wave processes in

)
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p—coordinate presentation in a general, non—filtered case.

2.6. The Lagrangian function and energy. For the present study the significance
of wave equations is that they have a Lagrangian function
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On the one hand, the existence of the Lagrangian guarantees energy conservation. On
the other hand, with the help of Lagrangian formalism it is easy to get filtered versions
of the model which are still energy—conserving. Explicitly the energy density can be
presented for model (5) as
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The first two terms present potential energy which air particle has due to the isobaric
height and temperature fluctuations, the remaining two terms are kinetic energy.

3. ACOUSTIC FILTERING

For slow atmospheric movements with small Froude number,
F =U% << 1, (10)

where U is the characteristic amplitude of the velocity, it is reasonable to simplify
model equations in the way they do not include acoustic-wave solutions anymore. This
procedure is called filtering.

3.1. Filtering of linearized equations (5).

The physical basis and proof for acoustic filtering can be received from the scale analysis
of the Lagrangian (8). It is easy to verify that the first term in (8) is small in comparison
with others in all scales if the Froude number is small and, thus, it can be neglected.
Formally filtering is straightforward with the help of the limiting process
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in equation the (5a), which yields
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This equation along with other equations (5b) — (5e) (which did not change at the
filtering) presents the basic acoustically filtered set of linear equations in p—coordinates.
The wave equations for the filtered model can be obtained from (7) with the help of the
same formal filtering procedure (11) and they possess the Lagrangian function
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As a consequence, filtering does not harm energy conservation. The energy density can
be deduced from (9), using passage (11):
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Equation (12) presents the main diagnostic relation in the filtered model. In non—
stationary problems it presents the basic equation for ( determination, simultaneously
it can be used for calculation of the vertical speed v,. After filtering is carried out, it is
impossible to return from the field n back to the ordinary temperature fluctuation 7"
and the hydrodynamic content of n alters. In the filtered model it has the content of
the relative density fluctuation. To prove this feature, we note that from equations (4)
and (12) a relationship follows
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Comparison of this equation with (5b) exhibits that n satisfies condition
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That means, 1 evolves according to the same equation which is valid for —gp’ in nonfil-
tered model.

3.2. Inclusion of advective processes into the filtered model can be achieved in the
simplest manner by modeling them as quasi-incompressibles in the p—space. For that
in adjusted model the local time derivatives @/0¢ should be replaced by the individual
derivatives
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in momentum equations (5¢) and (5d). Here w; is the vertical p—velocity of the incom-
pressible flow:
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At the same time, (5b) should be maintained in its initial linear form, as n, having the
content of small relative density fluctuations, is not redistributed in space advectively.
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The resulting filtered equations are
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Thus, our model treats linear processes as compressible in the p-space, while nonlinear
processes are approximated as incompressible. The energy density for this nonlinear
model coincides with the energy density of the linear acoustically filtered case (9’).

CONCLUSIONS

We have developed a version of acoustically filtered set of model equations for atmo-
spheric dynamics. Differently from common models, like the MPM in p-space or anelas-
tic models in ordinary Cartesian coordinates, our model does not use incompressibility
for wave filtering. Certainly, the quality of the model should be tested in futher exper-
iments. Nevertheless, it is optimal at least in one respect: in linear case it presents the
best approximation to the non-filtered equations.
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MITTEHfJDROSTAATILISEP AKUSTILISELT
FILTREERITUD ATMOSFAARIDUNAAMIKA
VORRANDID ROHUKOORDINAATIDES
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Kaesolevas toos kirjeldatakse optimaalset akustiliselt filtreeritud atmosfaaridiinaami-
ka mudelvorrandite tuletusalgoritmi rohukoordinaatides. Lahtutakse toos [°] tuletatud
taielikest mittelineaarsetest hiidrodunaamika vorranditest rohukoordinaatides. Need
vorrandid lineariseeritakse ja tuuakse kujule (5), kus akustiline filtreerimine on liht-
saimal viisil teostatav piirtleminekuga lopmata suurele haalekiirusele, ¢, — oo.
Tulemusena vaheneb vorrandite ajaline jark kahe vorra ning kaovad haélelained.
Saadud akustiliselt filtreeritud lineaarsed vorrandid taiendatakse advektiivsete litkmete
lisamisega tagasi mittelineaarseteks. Seejuures lahendatakse advektsiooni mudeliga, mis
vastab kokkusurumatule voolamisele rohukoordinaatide ruumis. Tulemusena saadavas
filtreeritud mittelineaarses mudelis (15) séilib energia. Mudel annab parima ldhendi
filtreerimata diinaamikale lineaarsete protsesside piirjuhul.



