🏛 TARTU ÜLIKOOL

Nonhydrostatic HIRLAM with semi-lagrangian semi-implicit dynamic core in high resolution NWP environment

Aarne Männik, R. Rõõm, A. Luhamaa University of Tartu

aarne.mannik@ut.ee October 2005, Bad Orb

NH SISL and HIRLAM

- Developed at University of Tartu
- Extension to HS HIRLAM routines
- adiabatic core
- White (1989) model
- Two-time-level
- Non-constant with height temperature background profile
- Ported to HIRLAM 6.4.0 in June 2005

a) NH SISL HIRLAM

b) linear analytical

NWP environment at EMHI (I)

- Experimental "operational" NWP environment
- Joint project of University of Tartu (UT), Estonian Meteorological Hydrological Institute (EMHI), Finnish Meteorological Institute (FMI)
- EMHI provides computing and operating environment
- FMI provides boundary fields and know-how
- UT maintains and develops the environment and NH model

martu ülikool

NWP environment at EMHI (II)

- ETA 114×100×40
 - 11.1 km resolution
 - HS SISL Δt =400s
- ETB 186×170×40
 - 3.3 km resolution
 - NH SISL $\Delta t=120s$
- Continuous 36h forecasts at 00 and 06 GMT + 6h forecasts to maintain analysis cycle
- HIRLAM 6.4.0 (since October 2005)
 - 3DVAR
 - NMI
 - STRACO, CBR, Savijärvi radiation

Verification examples (I)

skill of surface variables

skill of 500 mb variables

Verification examples (II)

36h precipitation comparison 2005102300

Future plans

- Explicit deep convection and parameterized shallow convection
- Develop better precipitation verification capabilities
- Closer look at local/coastal wind properties
- Critical evaluation of output with the respect of air quality modelling (COST 728)
- Increase vertical resolution (if computing power increases)