Non-hydrostatic, semiimplicit, semi-Lagrangian adiabatic core for HIRLAM

Rein Rõõm, Aarne Männik Tartu University

HIRLAM All-Staff Meeting 2005 Met Éireann Dublin, Ireland 14 - 16 March, 2005

Introduction

- NH SISL development is completed in general lines, the model is in stage of preoperational testing
- The main goals were:
 - To bring the semi-anelastic, pressure-coordinate, NH approach to a logical and definite finish in HIRLAM framework
 - To upgrade the NH model computationally
 - (to enhance the numerical efficiency)

Dynamics

- Semi-anelastic pressure-coordinate equations of motion and thermodynamics in Lagrangian form
- HS equations + additional equation for vertical acceleration (the vertical momentum equation), which includes (additional) NH geopotential
- non-divergence of motion in pressurecoordinates
- prognostic (non-adjusted) surface pressure

Discrete model

- Hybrid (ECMWF) coordinates, C-grid staggering
- Semi-Lagrangian (SL) trajectory calculations
- For trajectory calculations and interpolating the existing (McDonald & Haugen) routines from HS HIRLAM are employed
- Two level time stepping

Specific features

- Separation of forces to the main state and perturbation (nonlinear) part makes use of pressure(height)-dependent reference temperature T(p), Brunt-Väisälä frequency N(p), and mean surface pressure $p^{0}(x,y)$ **[concordant with the reference temperature** T(p)]
- Dynamic variables are presented by fluctuations *T'*, *p*'_s

Norvegian: area-mean temperature over Norway 2001.03.22

French: a model distribution of T(p) and U(p), proposed by F. Bouttier for tests and model comparison

0.0005

Model experiments

(1) Debugging

(2) Quality control

8 ARTIFICIAL TESTS

8 ARTIFICIAL TESTS

Stationary flow over circular hill. Vertical velocity distribution, contour interval 0.1 m/s.

 $\Delta x = \Delta y = 1 \text{km};$ Vertical resolution: 60 level ECMWF grid. a = 3 km, h = 200m, N = 0.015 1/s,U = 20 m/s.

0-20

Flow over Agnesi ridge, $a_x = 3 \text{ km}$, h = 600 m

Time step estimates

There is no strict upper limit of max Δt for NH SISL. In the table, estimations of maximum reliable Δt are presented

Max U, [m/s]	Т(р)	Δx, [km]	$\Delta t_{Cr} = \frac{\Delta x}{U}$ [min]	Δt [min]	∆t/∆t _{Cr}	parcel path (max), [<i>km</i>]
40	const	5.5	2.3	4.6	2.0	11
55	real	5.5	1.67	4.0	2.4	13.2
40	real	2.2	0.92	2.8	3.0	6.6
42	real	0.55	0.22	1.0	4.6	2.5

Real-condition experiments

I. Norwegian experiment (mountains)

- Resolution 5.5 km
- Grid 156x156, 31 levels
- HIRLAM 5.0.0

Physics included (v5.0.0)

MSL pressure 24 h forecast. Resolution 5.5 km, time-step 4 min

NH model gives ~1 mb larger MSL pressure on plane, ~1 mb lesser at mountain tops

10 m temperature, 24 h forecast. *Resolution 5.5 km, time-step 4 min*

Temperature differences are mostly < 0.5 C, except on mountain tops, where $\Delta T \sim -3$ C

2

0

-2

-4

-6

-8

-10

-12

-14

-16

NH SISL

NH - HS SISL

U vertical cross section, 24 h forecast.

Resolution 5.5 km, time-step 4 min

NH SISL

Wind differences ~ 3 m/s (in some places up to 10 m/s

NH - HS SISL

U_nh, lam=1.0, 2001.03.22.00+24 U_nh-U_hs, lam=1.0, 2001.03.22.00+24 3. 6 9 -9. 12 12 -15 -15 \frown 18 18 -21 21 24 · 24 27 -27 -30 -30 -3S 2S 1S ΕQ 1N 2N ЗN 3S 2S 1S ΕQ 1N 2N 3N 4N 4N 10 20 25 -5 -2.5 2.5 7.5 5 15 0 -10 -5 0 30 5 10 G20DS-COLOZHES 4 ES 2005-03-02-10

Real-condition experiments

- II. ETB (Estonian B-area)
- resolution 3.3 km,
- Grid 186×170×40 (former 104x100x40, area increase 3.3x)
- **∆t=150s**
- Reference HIRLAM 6.1.0
- Physics (v6.1.0) included

Mean sea level pressure 36 h forecast within ETB. *Resolution 3.3 km, time-step 1.5 min*

NH SISL

NH – HS SISL

T_40 36 h forecast within ETB. *Resolution 3.3 km, timestep 1.5 min*

NH SISL

NH – HS SISL

36 h forecast within ETB

U-wind vertical cross section

Resolution 3.3 km, time-step 1.5 min

NH SISL

NH – HS SISL

Conclusions

NH SISL is completed:

- The stability and the time step are reasonable
- Comparison with theoretical results (mountain flows), as well as with other models (NH Euler, HS SISL) shows that NH SISL is reliable and ready for applications
- Currently, the NH SISL is implemented as the adiabatic core in ETB (3.3 km resolution, grid 186x170, 40 levels, physics of HIRLAM 6.1.0) and the testing is activated
- The computational efficiency increase is substantial
- The NH-specific effect is moderate

NH SISL will be a suitable tool for model development (complex terrain, boundary layer, moist convection) at very high spatial resolutions (0.5 - 1km, 100 levels)