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1  Introduction

A method for numerical solu-
tion of non-hydrostatic linear
equations of atmospheric dynam-
ics for horizontally homogeneous
but otherwise arbitrary refer-
ence state and arbitrary orog-
raphy is introduced.
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The developed solution is

4D-discrete (x,y,z,t),
spectral,
semi-lmplicit,
semi-Lagrangian

(SISL) scheme

for both stationary and nonsta-
tilonary cases



Motivation

Originally this algorithm was de-
veloped for testing and quality
check of nonhydrostatic adia-

batic kernels of SISL-based NWP
models (HIRLAM, in particu-
lar)



Testing NH HIRLAM

HIRLAM, V,: D(V,)=0.05m/s,a,=3km, h=100m, MLEV=100,dx=.55km,dt=30s,600 steps
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The actual domain of applica-
tion i1s much wider:

Investigation of specific details of oro-
eraphic flows for complex wind and
temperature stratification.

Investigation of non-stationary devel-
opment and buoyant instability:.

Investigation of the impact of discretiza-
iion to the solution quality.

—
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2 MModel description

Initial continuous equations: Lin-
ear, NH pressure-coordinate equa-
tions with filtered internal sound-

waves
(Miller-Pearce-White model)



Linearization with respect to
T'(p) , Ulp), ps(z,y)




Discretization:

3D staggering with constant hor-
izontal grid-step Ax = Ay and
variable vertical step Ap;

Two time level,

semi-implicit,

semi-Lagrangian time scheme



Solution 1in the form of discrete
Fourier series

3D (x,y,t) presentation of dis-
crete solution:
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where
U= {T", u,v,w, p}
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Discrete spectral equations for
spectral amplitudes arrive
from which a

one-dimensional wave equation
follows for w-velocity.
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The wave equation is solved for
boundary conditions :

Free-slip condition on the sur-
face

Radiative boundary condition
on the top
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A special feature of the wave
equation:

As normal mode intrinsic fre-
quency v depends on height, the

wave-equation coeflicients are func-
tions of both v and Av/Ap
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In stationary case height-dependent
v presents an ordinary thing;

In nonstationary case it involves
a dispersion equation which is
a nonlinear first order differen-
tial equation with respect to v
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Special: Solution of wave equa-
tion is designed as a cumulative
product of decrease factors

k
WE = H Cj, |Cj| < 1,
1=1

which results in an effective nu-
merical algorithm, where solu-

tion w; 1s alwas an exponent func-
tion of a complex argument.
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SOLUTION EXAMPLES

I.

Stationary 2D orographic flow
over 1D mountain ridge
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Vertical velocity waves

Homogeneous stratification, U = 10 m/s, T = 280 K
Mountain ridge: a, = 2 km, h = 200 m

V,:u=10m/s, T=265K, h=0.2 km, a, =2 km, zlev = 300, xlev = 1024, Az = 0.1 km, Ax = 0.4 km
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Vertical velocity waves

Refraction and reflection on tropopause.
U =12 m/s, v= 6.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause.
U =12 m/s, v = 8.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause in the case of
linear wind shear in the troposphere.

U = 12-15 m/s, v = 6.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause in the case of

linear wind shear in troposphere.
U = 12-24 m/s, v = 6.5 K/km;
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Vertical velocity waves
Hyperbolic wind, U = 10-30 m/s, v = 6.5 K/km
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Vertical velocity waves
Hyperbolic wind, U = 10-30 m/s, 7 = 6.5 K/km;
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SOLUTION EXAMPLES

11.

Baroclinic instability of
long waves
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E-folding time of normal modes in case of
constant wind shear dU/dz = 2 m/s/km

Z=0.0: T,=28h, AT=6h
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- scale height
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As previous Fig., except Z =1 (L, ~ 10 km)

Z=1.0: T;=64 h, AT=6h
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3 CONCLUSIONS

Though the numerical scheme was initially developed for test
purpose, its actual application area is wider:

Investigation of specific details of orographic flows for
complex wind and temperature stratification:

Impact of tropopause, discontinuity of the Brunt-Vdisdld fre-
quency, wind shear (including directional shear), boundary
layer

Investigation of non-stationary development of linear
disturbances, including buoyant instability study

Investigation of the impact of discretization to numer-
ical solution quality:

Vertical discretization (variable Az)
Accessible time step size and numerical stability issues
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