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1 Introduction

A method for numerical solu-
tion of non-hydrostatic linear
equations of atmospheric dynam-
ics for horizontally homogeneous
but otherwise arbitrary refer-
ence state and arbitrary orog-
raphy is introduced.
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The developed solution is

4D-discrete (x,y,z,t),
spectral,

semi-implicit,
semi-Lagrangian
(SISL) scheme

for both stationary and nonsta-
tionary cases
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Motivation

Originally this algorithm was de-
veloped for testing and quality
check of nonhydrostatic adia-
batic kernels of SISL-based NWP
models (HIRLAM, in particu-
lar)
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Testing NH HIRLAM
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The actual domain of applica-
tion is much wider:

Investigation of specific details of oro-
graphic flows for complex wind and
temperature stratification.

Investigation of non-stationary devel-
opment and buoyant instability.

Investigation of the impact of discretiza-
tion to the solution quality.
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2 Model description

Initial continuous equations: Lin-
ear, NH pressure-coordinate equa-
tions with filtered internal sound-
waves
(Miller-Pearce-White model)
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Linearization with respect to
T (p) , U(p), ps(x, y)

7



Discretization:

3D staggering with constant hor-
izontal grid-step ∆x = ∆y and
variable vertical step ∆pk

Two time level,
semi-implicit,
semi-Lagrangian time scheme
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Solution in the form of discrete
Fourier series

3D (x,y,t) presentation of dis-
crete solution:

Ψn
ijk =

∑

qrs
Ψ̂s

qrke
i(ηx

q i+η
y
r j−ds

qrkn),

where

Ψ = {T ′, u, v, ω, ϕ}
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Discrete spectral equations for
spectral amplitudes arrive
from which a

one-dimensional wave equation

follows for ω-velocity.
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The wave equation is solved for
boundary conditions :

Free-slip condition on the sur-
face

Radiative boundary condition
on the top
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A special feature of the wave
equation:

As normal mode intrinsic fre-
quency ν depends on height, the
wave-equation coefficients are func-
tions of both ν and ∆ν/∆p

12



In stationary case height-dependent
ν presents an ordinary thing;

In nonstationary case it involves
a dispersion equation which is
a nonlinear first order differen-
tial equation with respect to ν
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Special: Solution of wave equa-
tion is designed as a cumulative
product of decrease factors

ωk =
k∏

j=1
cj, |cj| < 1,

which results in an effective nu-
merical algorithm, where solu-
tion ωk is alwas an exponent func-
tion of a complex argument.
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SOLUTION EXAMPLES

I.

Stationary 2D orographic flow
over 1D mountain ridge
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Vertical velocity waves

Homogeneous stratification, U = 10 m/s, T = 280 K
Mountain ridge: ax = 2 km, h = 200 m
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Vertical velocity waves

Refraction and reflection on tropopause.
U = 12 m/s, γ = 6.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause.
U = 12 m/s, γ = 8.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause in the case of
linear wind shear in the troposphere.
U = 12-15 m/s, γ = 6.5 K/km;
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Vertical velocity waves

Refraction and reflection on tropopause in the case of
linear wind shear in troposphere.
U = 12-24 m/s, γ = 6.5 K/km;

Z, km
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Vertical velocity waves

Hyperbolic wind, U = 10-30 m/s, γ = 6.5 K/km
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Vertical velocity waves

Hyperbolic wind, U = 10-30 m/s, γ = 6.5 K/km;
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SOLUTION EXAMPLES

II.

Baroclinic instability of
long waves
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E-folding time of normal modes in case of
constant wind shear dU/dz = 2 m/s/km
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As previous Fig., except Z = 1 (Lz ∼ 10 km)

 Z = 1.0:  τ1= 64 h, ∆τ= 6h 
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3 CONCLUSIONS

Though the numerical scheme was initially developed for test
purpose, its actual application area is wider:

Investigation of specific details of orographic flows for
complex wind and temperature stratification:

Impact of tropopause, discontinuity of the Brunt-Väisälä fre-
quency, wind shear (including directional shear), boundary
layer

Investigation of non-stationary development of linear
disturbances, including buoyant instability study

Investigation of the impact of discretization to numer-
ical solution quality:

Vertical discretization (variable ∆z)

Accessible time step size and numerical stability issues
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