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1 Introduction

The adiabatic kernel of the nonhydrostatic (NH) HIRLAM with the semi-
implicit semi-Lagrangian (SISL) integration scheme is presented in this pa-
per. Our investigation continues the work, initiated in the Parts [ — I11
(Ro6m 2001, Mannik and R6om 2001, Room and Mannik 2002), where the
fundamentals of NH atmospheric dynamics in pressure related coordinates

were presented, and, on that basis, the NH explicit-Eulerian and semi-implicit
(SI) Eulerian versions of HIRLAM were developed.

SISL has become the popular integration scheme in all advanced weather fore-
cast systems in last two decades. The main advantage of SISL (in compari-
son with competing schemes like the SI Eulerian scheme or time-split-explicit
scheme) is the significantly enhanced overall computational efficiency, which
is achieved through substantial gain in numerical stability at the increased
time step.

The SISL-ideology to integrate the HS primitive equations numerically was
first proposed by Robert (1981, 1982), who proceeded from an earlier pos-
itive experience with the SI Eulerian scheme '. A baroclinic, multi-level,
HS primitive-equation, three-time-level SISL model was first presented by
Robert, Yee and Richie (1985). An alternative approach with two-time-level
scheme was developed by Temperton and Staniforth (1987). In operational
forecast, SISL has implemented in the middle of the last century nineties. At
ECMWF the two-time-level SISL was operationally launched in 1995 (Ritchie
et al 1995). For HIRLAM, the two-time-level SISL scheme was introduced by
McDonald and Haugen (1992), and further developed by McDonald (1995).
Finally, McDonald (1998, 1999) carried out a further extensive investigation
to improve the departure point evaluation. Developed by him non-iterative
departure point calculation algorithm is currently in use at the operational
HIRLAM.

The first NH, fully compressible (i.e. making use of complete, non-simplified
set of dynamic equations) SISL was proposed already in 1990 (Tanguay,
Robert and Laprise, 1990), but an acute actuality for operational forecasting
it has gained in last years in connection with model transition into NH-
resolution domain.

!Three time level SI Eulerian scheme was proposed by Robert (1969); the first baro-
clinic multi-level ST Eulerian scheme for HS primitive equations was described in (Robert,
Henderson, Thurnbull 1972).



Adiabatic dynamics, applied in current NH SISL scheme, is the White model
(White 1989), which represents a simplified version of complete NH pressure-
coordinate equations. Roughly speaking, White model is the simplest gener-
alization of the hydrostatic, primitive-equation, pressure-coordinate dynam-
ics which incorporates the vertical momentum equation and takes vertical
acceleration into consideration. This closeness to HS model makes imple-
mentation of NH dynamics into existing HS environment of HIRLAM rather
straightforward. The White model derivation from general elastic pressure-
coordinate equations with description of main qualities is presented in de-
tail in (Room 2001). As comparison with the exact analytical solutions
(Room and Ménnik 1989), and with the ’full’ elastic model (French NH Al-
adin) on the non-linear test flows have demonstrated (Ménnik 2003), there
is no sensible difference between 'exact dynamics’ and White model results.
The White model has been already applied with success in heretofore de-
veloped three-time-level, explicit-Eulerian (Mannik and R6om 2001), and SI
Eulerian (R66m, Mannik 2002, Ménnik, R66m, Luhamaa 2003) schemes. In
those models, an additional approximation of the surface pressure adjustment
was introduced, which gave reason to call that approach ’anelastic pressure
coordinate model’, as the acoustic travelling waves were completely elimi-
nated from dynamics?. In the current NH SISL model, we will restore the
non-adjusted pressure treatment of the original White model, which, how-
ever, could be still called 'semi-anelastic’ because it lacks internal acoustic
mode due to non-divergence of three-dimensional (3D) velocity in pressure-
coordinates.

The most plain reason for discarding with surface pressure adjustment was
that the implicit treatment of linear development in SISL does not require
such an approximation anymore. Adjustment is actually essential in the
explicit-Eulerian scheme where it yields significant growth of computational
efficiency, expressed in the increase of achievable time step, while in the im-
plicit schemes, the time-step rise is achieved by other, independent means
(just by implicit treatment of linear forces). More considerable reason, how-
ever, was the experimentally established fact that dynamics with the adjust-

2By the way, using of terminology ’anelastic’ served us a disservice, as it was often
confused with anelasticity interpretations in shallow convection (constant reference density
p = const) or deep convection (fixed reference density p = po(z)) models. Actually, with
the term ’anelastic’ we tried just to underline that model lacks acoustic waves exactly
like the HS primitive-equation model does, likewise being anelastic with respect to the
internal (vertically propagating) sound waves.



ment approximation may lead to a discontinuity of nonhydrostatic geopoten-
tial field at surface, when the time step becomes over one critical®. Finally,
the non-adjusted, non-simplified model is simpler to deal with in the formal
plane. Thus, the non-adjusted surface pressure evolution is restored in this
paper.

Another mayor novelty consist in preceding modifications of geopotential
and surface pressure treatment. The neutral reference states are subtracted
from geopotential and surface pressure in the very beginning, in continuous
equations already, confining the treatment to evolution of geopotential and
pressure fluctuations. Ideologically this approach is similar to 'Eulerian ad-
vection of orography’ method by Richie and Tanguay (1996). However, in
the current treatment, the modification is applied before any discretization,
which refers to generality of such an approach. The aim of the modification is
elimination of large, dynamically passive fields, otherwise just being a source
of additional noise in the numerical scheme.

The last model-specific modification, yet no the least one, is the application
of height-dependent reference temperature 7°(p) together with the accompa-
nying height-dependent reference-state Brunt-Viisild frequency N(p), both
giving some rise to stability, as the non-linear residuals are minimized in the
vertical development equations.

The NH model altogether aims to be an organic and straightforward ex-
tension of the HS SISL core to NH resolutions. Thus, except the neces-
sary modifications of dynamic equations, almost all the numerical scheme is
maintained from the HS parent. This includes the use of the two-time-level
time-stepping with the complete maintenance of the departure point calcu-
lation procedures (McDonald 1998, 1999) and interpolation routines. And,
of course, the diabatic counterpart, consisting the so-called "physics’, which
is not concern of adiabatic core development, is maintained untouched, and
is overtaken from HS model without any change and modification.

3Critical time step in the sense of the Courant-Fiedrichs-Lewy stability criterion.



2 Basic equations

Concerning the basic equations, as well as notations, this paper is a direct
successor of the papers (Room. 2001, Mannik and R66m, 2001, and R66m,
Ménnik 2002), and keeps to the general HIRLAM standards (Manual 1996,
Manual 2004). However, for reader’s ease the basic definitions of constants,
variables, fields and operators are summarised in Appendix 1.

2.1 Primary modifications

In the continuous pressure-coordinate case, the basic equations of the White
Model are presented and comprehensively discussed in our former paper
(Room, 2001, equations (3.2)). Two substantial differences with those equa-
tions in current case are, first, the use of full, evolutional surface pressure
equation, and, second, modified handling of geopotential and surface pres-
sure.

2.1.1 Surface pressure equation

The departure point equation for surface pressure is the continuity equation

in n coordinates
om omn
- . I —
BT + V.- (mv)+ n ;

which, in the vertically discrete case (m = Agp/An), can be presented (after
omitting of constant An everywhere)

drA
’“dt’“p + AwpDy + Ag(mi) =0, (2.1)
where " 5
— V. k=
Dk =V Vi, dt ot + ka

Note that horizontal divergence in this definition is evaluated on fixed n-
surface and for spherical geometry with fixed curvature, equal to the mean
radius of Earth. As pyir1/2 = Agqi1/2 + Biti/2ps, one has di(Agp)/dt =
A Bdp,/dt and, after dividing by ps, equation (2.1) presents

h .

dt Ds Ds




From this equation we will subtract the identity

dj In p,
dt

AwB ( — V- V(ln[)s)) — 0, (+)

where reference surface pressure p, is defined as

h dz
A 0 _
Ps = Ps OXD ( g/o ROTO(z)) (2:2)

for the given orography (surface elevation) h, mean sea level pressure p?, and
appropriate? reference temperature T°(z). As the result of the subtraction
we obtain a prognostic equation

dZX Agp

ALB n Dy + Ak(mn)
dt Ds Ds

for logarithmic surface pressure deviation

X = In(p./ps) (2.4)

on level k. Equation (2.3) is a partial equation with the weight A, B, describ-
ing the contribution of the layer k to the overall (total) change of surface pres-
sure. To get the total evolution, partial equations (2.3) should be summed
up over all layers. However, it is reasonable to postpone this summation
until arriving at the final Lagrangian time-stepping formulae. The described
subtraction of equation (*) means factually introduction of the "Eulerian ad-
vection of orography’, first applied in Lagrangian scheme by Richie and Tan-
guay (1996). The Eulerian advection of the (mean) orography is presented
in Eq. (2.3) by term vy, - V(Inpy).

Despite of unusual (non-traditional) appearance, (partial) surface pressure
equation (2.3) is rather convenient and useful for application, as the loga-
rithmic pressure fluctuation (2.4) is the prime quantity, describing the surface
pressure contribution to the fluctuations of hydrostatic pressure (see below).

2.1.2 Diagnostic relations for omega- and eta-velocities

The SISL scheme requires diagnostic evaluation of w and 7 on the past time
levels. For mgn the continuity equation (2.1) can be applied (employed) to

4Horizontal mean over the domain of integration, as an example.



get a recurrence

: : Ips
(m)irrsz = (M)i-172 =V - (VAP)r — AxB—r, (2.6)
where Jp,/0t is (a consequence of (2.1) after use of Eulerian representation
and summation over all levels)

8])3 klev
ot =-V- ;VkAkp, (25)

Diagnostic equation for w follows, if one applies Lagrangian time derivation
d/dt to pressure expression in eta coordinates p = A(n)+ B(n)ps and applies
the result on the discrete eta-level k + 1/2:

. _ Ops
wi+1/2 = (MN)k+1/2 + Brtay2 (VZ+1/2 - Vps + 8—]1) : (2.7)

This is an diagnostic formula for w, if considered together with (2.5) and

(2.6).

2.1.3 Geopotential

Geopotential for general NH model in pressure coordinates is discussed in
(Ro6m, 2001). In this paper, we will use division of the full geopotential to
the hydrostatic component ¢® and to the non-hydrostatic supplementation
¢ (see ibid, formula (2.5.2a))

b = p°® + ¢.

Note that such separation is natural for a model with the non-adjusted
(full) surface pressure treatment, differently from the adjusted model with
geopotential separation to the baric and thermal components (ibid, formula
(2.5.3a)).

In continuous pressure-coordinate presentation the hydrostatic component is
conventional:

pS
©* = gh +/ RTd(Inp").
p



It is useful (as a numerical noise reduction remedy) to subtract from this
geopotential a neutral background geopotential

PDs
¢ =gh+ / RT(p)d(Inp"),
p

where p, is the reference surface pressure, R is the gas constant for dry air,
and T%(p) is the reference temperature distribution. If p, is chosen to satisfy
the condition (equivalent to the barometric formula (2.2))

/ " RO )d(np) = ghz, ),

Ds
then
(v@)p = 07
i.e., the horizontal pressure-force from geopotential is zero and this geopoten-

tial may be safely subtracted from ¢* without dread of actual forcing loose
or virtual forcing creation.

Using alternative presentation

Ps Ds
¢ = gh+ / R'T°(p')d(Inp) — / R'T°(p')d(Inp’)
p

Ds
pS
= gh —i—/ RT°(p")d(Inp’) — RT°(ps)x.
p

we arrive at expression for fluctuative HS geopotential
Ps
p=¢" o= RTGIx+ [ (RTVd(nyp), 2.9
p

where

(RT)' = RT — R°T°(p).

The derived formula (2.8) presents HS geopotential fluctuation, which is
essential for dynamics, while causing the real forces in the system. This
fluctuative part is small, when measured in units R°7°: the amplitude of y
is about 1/100, whereas the amplitude of the integral term in units R°T is
about 1/10.



In hybrid coordinates the formula for ¢ reads

01npdn,’

1
= R"T°(ps /RT/
o (Ps)x + n( ) o

and in the discrete approximation we obtain
ok = ROT°(ps)x + Dk(RT), (2.9)

where
klev

Tl = > aig+ %akﬁk-

j=k+1

— Pr— A
ap = 2pk+1/2 Pr—1/2 _ kp‘

Dit1/2 + DPk-1/2 Dy

Respectively, in momentum equations, the complete geopotential & will be
replaced with the fluctuative geopotential, consisting of HS and NH parts

P =+ o.

The non-hydrostatic component ¢ is caused by system departure from HS
equilibrium. In detail its main features are discussed in (R66m, 2001). Es-
sential for current treatment is the lower boundary condition

Plp. =0, (2.10)

which represents the Dirichlet” homogeneous BC (while treated in conjunc-
tion with the Laplace equation for ¢ as demonstrated further).



2.2 Initial equations

The equations of motion and thermodynamics, in vertically discrete hybrid
coordinate, Lagrangian presentation, yet in continuous time, and with mod-
ifications for geopotential and surface pressure equation introduced in the
previous section, are as follow:

Vertical momentum equation

dk+1/2w

dr —(WAQ)kr1/2 + (af,)kH/Q, (2.11a)

Horizontal momentum (wind) equation
de

e —Gr(p+ @) = x v+ Ay (2.11b)

Temperature equation (for fluctuative part of temperature)

di T’
dt

= Ssz + (AT)k; (2110)

Surface pressure k-level partial equation

dix Aka Ag(mn)
X A

A, B
" Ds Ds

Continuity equation (condition of non-divergence of 3D velocity)

. A
G,j-v+A—’:::0. (2.11¢)

The coefficients in these equations are

2 T AT
Wk+1/2 = (%) 5 Sk = <}_K—U) - Ak (212@)
(RT)*Ap" ) 11y Pr /% kP

(where T° depends via pi(x,y) on horizontal coordinates x,y),

cw Ar dInR
(aQ)kt1/2 = Wit/ ( - ) + Ay, (2.12b)
+1/ +1/ Cpp T dt oy

Terms A,, Ar and A, are general notation for diabatic forcing and spectral
smoothing.
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3 Semi-implicit semi-Lagrangian discrete approx-
imation of dynamics

3.1 Separation of linear main terms and nonlinear per-
turbations in equations

Division of forcing in equations to the main and perturbation parts is based
on the treatment of the linear part of equations as a main forcing and supple-
mentation of these linear terms to the full forcing by nonlinear residuals as
the perturbation. The linear terms are thereafter treated implicitly, whereas
the nonlinear perturbations are considered in the explicit manner.

The linear part corresponds to a fixed, horizontally homogeneous reference
state, characterized by the temperature T°(p) and uniform ground surface
with constant surface pressure p°.

Departure of temperature from the reference state, and of the surface pressure
from the uniform, constant value, are responsible for the perturbation terms.

The partition in equation (2.11a) takes advantage of presentation

(gp°)?
(ROTO(p°))2Ap"" 1412

Wk+1/2 = W/S+1/2 + WIQ+1/2= Wl?+1/2 =

with W defined in (2.12a). Thus, W is the main part and W is the nonlinear
perturbation of W, which is evaluated at every instant as

Wiz = Wigas = Wil o

For T°(p), the mean actual temperature over the area at the fixed pressure
(the p-mean temperature) is assumed. The reference pressure p2+1/2 corre-

sponds to the even ground with constant pressure p%:

p2+1/2 = Ak+1/2 + Bk+1/2p(s) = 77k+1/2p(s]'

In application, the mean (averaged over area of integration at every instant)
surface pressure is used for p?.

Division for coefficient S in equation (2.11c) is

ATp)  ATO(p)

S, =S+ 5 here SY =
k k T O, where 5S¢ 0 Arp”

11



Horizontal p-gradient G(¢ + ) in (2.11b) divides

Gi(d+¢) = V(6 +¢°) + [Grlo + )

where the ’plain’ gradient V is the main part of G, while the main part of
hydrostatic geopotential is

op = C*x + RTY(TY, (3.1)
where
C? = R'T°(p)),

klev
1
e = > af+ §a2§k-

j=k+1

0 0
ol = 2pk+l/2 — Pr-1/2 _ Ap)

—.
p2+1/2 + p2_1/2 j

(The nonhydrostatic geopotential like other prime dynamic fields does not
need any separation, yet HS geopotential, which is a function of 7" and
x with coefficients, depending on pressure, is subject to separation). The
perturbation part of horizontal pressure forcing is presented without any
simplification as the difference between full and linear pressure forces

[Gi(d+ 9)) = Gilo+ ) — V(¢ + ¢°).

As a result, equations (2) present

dw

i, k+1/2: e —WO A6 + ay, (3.2a)

, - du = 0

i+1/2, 4,k : i V(o +¢°) +ay , (3.2b)

. ) dv = 0

i,j+1/2,k : Tl ~Vy(¢+¢°) +a, , (3.2¢)

o a1’

(B k —_— = Sown + ar, (32d>
dt

A d"x Ap° 0

1,7, k- AB? = _ED — CLX, (326)
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- A
i gk : D2+A—:0+aD:0, (3.2f)

where D? is the 2D divergence in plane geometry
DY =V,u+ V0.
The nonlinear terms in these presentations are
a, =a’ —W'A¢, ar=ST"+ Ar,
ay = — |:G’:E(¢+ ©) — V(o + 900)] + fu+ A, ,

1, == G0+ ) = V(o + )] = fu+ 4,

Ap o Ap° A (mip) A
CI,X = D — p—ODO + T + ABV . V(lnps),

R A A A

3.2 SISL approximation

Equations (3.2) are still in continuous time. Their further modification is
based on the application to them of the two-time-level, semi-implicit, semi-
Lagrangian scheme (McDonald and Haugen 1992, 1993, McDonald 1995,
1998, 1999).

The SISL ideology is concisely as follows. Let us present equations (3.a) -
(3.2f) in general notation as

dy

— = F +a,

dt
with the linear main part F' and perturbation part a. The SISL approxima-
tion of this equation is

A
wt‘i' Att— ’gbi _ 1 ; gF: + 1 _;_ EFt-FAt + %ai"—At/Z —+ ¥Qt+At/2' (33)

According to this expression, an air particle arrives in the given location
(witch is usually a grid-point) with coordinate x = x(t + At) at the moment

13



t + At from the departure point x, = x,(t), where it was at time t. The
values of the fields 1, F' in the departure point and in the final point are

LR pttAt L PIHEAL respectively.  Expression on the left side of (3.3) is
the finite-difference Lagrangian approximation for material derivative of .
Forces on the right side are weighted averages of those of the continuous
model. The main linear term F' is the weighted average of its departure
value in the initial moment and final value at the arrival point. This use of
the final value F 2% makes the scheme implicit with respect to the linear
force. The nonlinear term a is also a weighted average between its departure-
and arrival-point values, but in this case the averaging is carried out for
intermediate time t + At/2 and thus, this term is approximated explicitly.
The small parameter ¢ is introduced to increase the weight of the arrival
point in forcing formation. Typically the value of this parameter is in the
interval 0 < ¢ < 0.1.

Central issues of the application of described approach are the departure
point x, evaluation, intermediate field a‘*4%? calculation, and interpolation
of fields F'* and a'*2*/? from grid-points to the departure point locations.

For calculation of a at intermediate time level the Adams-Bashford extrapo-
lation scheme is used:

atAY? = 1.5a08 — 0.5a 4.

The departure point evaluation is based on the non-linear equation
X —x, = AtviTA2[(x 4+ x,)/2].

Initially, this equation was solved iteratively (McDonald and Haugen 1993,
McDonald 1995). Later, McDonald introduced an efficient non-iterative al-
gorithm (McDonald 1998, 1999, Manual 2002) (representing a generalization
of the approach by Tempertone and Staniforth, 1987)

X — X, = Atv,

7 __ t t t t—At t—At t—At
V= avVy + Cvx—v;At + 6VX—2V§(At + bvx + dvx—vcht + fvx—2v§(At

with constants
a=-—0.25, b=0, c¢=150, d=0.5 =025  f=-1.0.

The great advantage of the described approach is that the departure point
calculation and interpolation issues do not depend on physical details of

14



the modelled system. Thus, all the described trajectory calculus, initially
developed for HS dynamics, is applicable without changes also in the NH
model.

Solution of equation (3.3) with respect to fields at time level ¢ + At yields

¢t+m _ At+Ft+At _ 1;’ (34)
where
lﬁ _ (djt NN At_at+At/2)* At gttAY?
and 14
Aty = 5 At,

The general formula (3.4) for evaluation of final fields at the arrival point is
the basis for further transformation of equations (3.2).
3.3 One-step integrals of SISL-model equations

Application of formula (3.4) to equations (3.2a) - (3.2¢) yields one-time-step-
integrals

g k12 WD AL TOAGH — (3.50)
i+1/2,7,k : WA ALY, (64 S00)1t+At _g (3.50)
i j+1/2,k VAL ALY, (94 90) T = (3.5¢)
NN THHA AL SO @A =T (3.5d)
klev po
ij: XA ALY D =E(DY)TA = 1 (3.5¢)
k=1 *s
while the continuity equation (3.2f) gives
o Aw | A X
v, k: (DO + A—po) = —D, (35f)

The partial surface pressure equations (3.2e) are eventually summed up to
get the relationship (3.5e).
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The quest fields/quantities are concentrated on the left side, while the known
quantities at time levels ¢ and ¢ + At¢/2 on the right side are:

W= [ — At_WA¢" + At_aifm/z} .+ At alfA? (3.6a)
i= |u' = ALV, (¢ + ) + Ata,FAR] 4 At A2 (3.60)
U= [vt — At_V, (" + qb)t + At_avHAt/ﬂ + Aty a, A2, (3.6¢)
T= |7+ A (S°@) + )| + Aty (3.6d)
klev A 0
=) { [Akat ~ At ( P (DY) + a;*,;w)} — Atiay 2} :
k=1 D *2D
(3.6¢)
~ o 1—c¢ Aw\' 1-¢
P=1re (DO ' A—p°> + T (@) 4 (ap) R (36f)

As an intermediate notation we use here w,v.y, the final quantities u, v, x
arrive after some further modification a while later.

The subscript '«’ at the brackets means that the quantity in brackets is evalu-
ated in the departure point Xiijk, corresponding to the final grid-point under
consideration xﬁjkm, whereas subscript '«2D’ means that that the correspond-
ing expression in the brackets is evaluated in the location of departure point

projection onto kth n-level.

The velocities w and m), required at time levels ¢ ja t + At/2 in several a-
terms in (3.6), are diagnosed in correspondence with formulae (2.5) (2.7).

4 Disclosure

To get prognostic quantities explicitly, the system (3.6) has to be solved
with respect to w!TAt vIFAL (T")HAL and ¢!*+A!. For that we first express
quantities w!TAL yIHAL (THHFAL - (Q0)FAL and @A via a new auxiliary
potential £ using equations (3.6a) — (3.6e), and then apply equation (3.6f) to
get an elliptic equation for diagnosis of &.

16



4.1 Reduction of prognostic quantities to the auxiliary
potential &

The aim is to express all prognostic quantities via a new auxiliary potential
&. The task consists of four steps.
(1) Expression of (¢°+ ¢)*4! via auxiliary potential ¢ and y'T4%.

Considering (3.1) on time level £ + At, and using formulae (5) and (7) yields
equation for ¢ + ¢°

i’j’ k- (¢ + SOO)IH-At _ Q + C2Xt+At +§ (41)
(note that y = x;; is independent of height index k), where

ivjk Q= R (7 + AL D) (4.2)
C — /RYTO(pY) is the isochoric sound speed in reference state, and & is an
auxiliary potential

ij.k € = @A — (AL, )2 RTO(SOWOAGHAL. (4.3)

From this definition, a recurrence follows for every fixed pair of indexes 14,7

——————— "
Apy1/2€ = D120 + (At+)2ROQOSOW0A¢t+Atnk+1/2> (4.4)

which is convenient to use for transition from ¢ to £ and vice versa. The
boundary condition for £ proceeds from (4.3) as

=N -
fklev+1/2 = ¢kzev+1/2 = 0. (4-5)

The presentation holds

p—
ROO&OSOWOACbHNnkHﬂ = Nii1pDri1/p0 2 4+ 0o (A2)

where
—5 a0’
N1?+1/2 = ROWIS+1/204050k+1/2 (4.6)

is the squared Brent-Viiséla frequency of the reference state on levek k+1/2
and R0
02(A¢t+At) — ZA [OéOSOA (WOAQSH_At)} )

17



This term can be estimated as Oy(A¢*2Y) ~ AZ(N2Ag) ~ (An)?|N2A¢)|
and thus, it tends to zero with the level number increase like 1/klev? (be-
cause An ~ 1/klev). In a 30 level model its relative value with repsect
to the first term is ~ 1073, and ~ 10~* in a 100 level model. Thus, term
Oy(A@!2Y) can be omitted, after which (4.4) becomes

i, k+1/2: AE = (14 At2 N?) A2 (4.7)

(where Nk+1/2 does not depend on horizontal indexes i,j).
(2) Expression of horizontal wind via x and ¢£.
Using (4.1), horizontal wind equations (3.5b), (3.5¢) can be modified to

i+1/2, 4,k : WA — G ALY, (CFx + §>t+At (4.80)
0, j4+1/2,k : VA = § — ALY, (C2x + €)Y (4.8b)
i=1u-V,Q, 9=109-V,Q, (4.8¢)

Applying of V- to (4.8) yields expression for 2D divergence (horizontal wind
divergence)

~ ~ - A
ik (DO)H2 = (Vi 4 V,0) — AL,V (CPx + €)™ (4.9)

(3) Expression of logarithmic pressure fluctuation x via auxiliary
potential &.

Substitution (4.9) into (3.5e) yields after some algebra

i’j : Xt—i—At o H£t+At _ >A<7 (410@)
=2 klev
HEHAL = At2 Z Apy t—l—At (4.10)
At2 2 = Pl ’

klev
O J— 1 A A
X = At2 e (X Aty g 0 V u Vyv)k> , (4.10¢)

18



(4) Equation for ¢.

As now ' is expressed via & with the help of (4.10a), prognoses of vertical
wind (3.5a), temperature (3.5d), and horizontal wind (4.8) include still just
one unknown variable £. To find this auxiliary potential, we apply continuity
condition (3.5f). Substitution of wind components (3.5a), (4.8) into (3.5f),
and using (4.7) gives the following Laplace equation for &

ijk (L+V)E=—CN'x+D,
where . 170
(£€) = ApOA (1 + At3N2A§) ’
1 [+ — . = Ad

As the right side includes y, this equation must be treated simultaneously
with (4.10a).

Solution method is rather analogous with those, applied in the Eulerian cases
(Ménnik and Room 2001, Room and Ménnik 2002). Major difference is the
lower boundary condition, which is the homogeneous Dirichlet’ condition
(4.5) in the present case. To take the lower BC into consideration, we add a
singular boundary source at the lower boundary, ¥dxep+1,k, to the right side
of the Laplace equation®. Thus, the elliptic system is finally

I [55 + Vzg} =Dy - 2" X + YOutevs i (4.11a)
6] (Bf) = ngev+1/2 =0, (411b)
6,7 X — (HE) = X, (4.11c)

This set of equations has to be solved with respect to unknowns &;;x, x;;, and
Yij-

® Actually, the singular boundary source is not obligatory. The same special solution can
be described by a solution of homogeneous equation. However, singular source introduction
allows for application of the same inversion algorithm for all components of the complete
solution.
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4.2 Solution of the elliptic system

As V™ is horizontally homogeneous, i.e. it has constant grid-steps in both
directions, the 2D discrete Fourier transformation of system (4.11) will be
advantageous. Using for spectral transforms of £, x, v notation éijk, Xij» Vij
for each pair of spectral numbers 7,7 we get an independent system

VR (L, — A) € = Dy, + C®AX + A0ktevr1.k (4.12a)

o ~ =

b (BE) = &hievr12 = 0, (4.120)

0 X — (HE) = X, (4.12¢)
where ﬁk = ﬁijk and f( = f(ij are the spectral transforms of sources
D and Yy,

A= ! sin? ( = i1 + ! sin? L
U A2 \2kon—1) T (A2 \2klat—1)°

is the Fourier presentation of —V with (Az), (Ay) representing the average
grid-steps in z- and y-directions.

The solution of (4.12a) is
& = & + XX + A&l (4.13a)

where £, £X, & are solutions of eq. (4.12a) for respective right-hand sources
Di, C?A and Okiev+1,k, 1.€., they are solutions of the equations

(Ly —AN)EP =Dy, (L —N)E=CA, (L —N) & = Spgenprp (4.13D)

respectively. After these solutions are specified, the substitution of (4.13a)
into conditions (4.12b), (4.12¢) results in a two-dimensional linear system for

Xij and ’%‘j
ij UBE) +4(BE7) = —BeP, (4.14a)
R (L — HEX) — A(HEY) = § + HEP. (4.140)
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Solution of this linear set accomplishes the solution of the elliptic system and
altogether it does accomplish the whole time-stepping procedure.

For intermediate calculations, the nonhydrostatic geopotential ¢ is required,
for which a recurrence, resulting from (4.7), can be used:

§k — Skt1
= + 7
¢k ¢k+1 1 —l— At?’_NI?_i_l/Q
with initial value
_ gklev
¢klev —

L+ ABND i)

following from boundary condition (4.5).

For solution of equations (4.13a), the elementary Gaussian elimination method
is applied, instead of previous, more sophisticated eigenvector (normal mode)

approach, used in Eulerian case (Ménnik and R66m 2001, Ro6m and Ménnik

2002) ©.

SHowever, the eigenvector approach has its value and may be needed in future, when
the domain of integration is chosen/becomes such large (area size 5000 km or larger), that
the curvature of the domain cannot be considered as a small perturbation anymore, and,
consequently, the Fourier transform in y-direction becomes invalid.
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5 Numerical tests

The nonhydrostatic semi-implicit semi-Lagrangian scheme, described in the
previous sections, is realized numerically as the extension of the hydrostatic
HIRLAM. The departure-point calculation algorithms of HS SISL are main-
tained completely. The pre- and post-processing facilities are also completely
those of the hydrostatic HIRLAM, and the lateral boundary treatment is the
same as well (the Davies’ boundary relaxation scheme). The numerical code
includes all the previous stuff: hydrostatic Eulerian explicit scheme, Eulerian
semi-implicit scheme, Lagrangian semi-implicit scheme, and Eulerian NH
explicit and semi-implicit sub-models, included as options which may be
switched on/off . The numerical code has a parallel realization on the Linux-
clusters (Tartu Observatory cluster, EMHI facility, and the Tartu University
Environmental Institute’s cluster, all in Estonia). In principle, the numerical
code should work on all architectures which are supported by HIRLAM. In
the following, some provisional results are presented, the purpose of which is
to demonstrate the computational efficiency and precision characteristics of
the NH SISL model. All results are obtained with NH SISL version which
has been ported to official HIRLAM release 6.4.0.

5.1 Flow over artificial orography

Aim of the model experiments is (1) debugging, and (2) model quality control.
In these experiments adiabatic stationary flow regimes over given orography
are studied and compared to the known analytical solutions of the linearised
dynamics. The first test experiment contains a high-resolution adiabatic sim-
ulation with artificial orography and an artificial initial state which, however,
is quite close to the reality. For orography, as usual, a "Witch of Agnesi’-type
isolated hill serves with the orography function

ho
1+ (z/az)? + (y/ay)’]*
where hg is the mountain height and a,, a, are the half-widths of the hill

along coordinate axes. We use s = 1.5 when examining flow over an isolated
mountain and s = 1 when looking at one dimensional flow with a, = oo.

h(z,y) = (4.1)

The initial state is characterized with the reference temperature 7°(p), and
wind U(p), which is initially taken independent of z,y coordinates and then

22



25000

T i T T T !
a Dl‘. L
o)
A ol .
A 0 "‘ o
20000 s o] g
a g
Pavi
oAl .
oA ,
oL a e
[ & ;
oo a ,
o a ,;
15000 [ A , 4
o N .
E il fa
— m A,
< o | N
2 [HI AN
(<) o | v a
T oo . A
[ / N
10000 [ 4 o q
[E1 v A
IS / a
[6R \ ; a
ni] Y\ . A
o \ IN
] \ ! a
0 \ A
0 \ ia
0 \ A
5000 il oA b
o & i
B g I U(10mis) &
g e Vo P (kPa)
2, - B(K) -
B e VS TH) ——
0 g2 1 ‘\’ 1 1 1 N(*10 |S ) E
0 100 200 300 400 500 600

700
Figure 1: Vertical profiles of wind U, pressure p, potential temperature O,
temperature T, and Brunt-Viisila frequency N in the experiment with arti-
ficial orography.
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v,: d(v,) =0.05 m/s, h =0.1 km, a, = 3 km, zlev = 200, dz = 0.1 km, dx = 0.55 km
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Figure 2: Vertical velocity waves (isoline interval 0.05 m/s) at stationary flow
over Agnesi ridge. Top: linear model, bottom: 5 h forecast with NH SISL,
At — 30 s.

transformed to the mass-balanced wind (see formulae (6.1.1) - (6.1.3) in Part
IT). The reference surface pressure field p; is specified from orography h(z,y),
using the barometric formula (2.2) with constant temperature T'(z) = T°(p?).
The Coriolis force is zero in this experiment (f = 0). Boundary conditions
are presented by the boundary fields, which coincide with the background
fields: w, = U(p), v, = 0, T, = T°(p). The wind and temperature profiles
are relatively complicated and can be seen in Figure 1.

As an example, in Fig. 2 the stationary flow over Agnesi ridge with half-width
a; = 3 km and maximum height h = 100 m is presented. This mountain
is sufficiently low to assume linearity of the flow. The grid is 276x100x100
points, horizontal resolution is 0.55 km. At such a reference state, the waves
present a stationary wave-train downstream of the mountain, each wave ver-
tically directed and penetrating the whole depth of the atmosphere. It is
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rather difficult to model this wave pattern correctly and the simulation qual-
ity is a good indicator of the quality of the numerical scheme. Shown are
vertical velocity waves generated by the ridge. The upper panel represents
the output of 2D linear, frictionless stationary model and the lower panel
is the output of NH SISL. The interval between isolines is 0.05 m/s. As
seen from Figure 2, NH SISL can qualitatively represent the wave structure
generated by flow over obstacle rather well. However, a small phase error in
updraft-downdraft zone location is visible. In addition, the amplitude of the
waves is slightly too strong near the obstacle and damped downstream. Most
of such behaviour is possibly linked to boundary zone interaction with flow
fields. It should be noted that the presented model situation is nonhydro-
static by its nature. HS model is not capable to simulate such down-stream
wave-traines at all.

5.2 Real-condition experiments

Following section presents several experiments with real observational ini-
tial and boundary data. The output of NH SISL is compared to HS SISL
results as reference model. HS SISL has been widely used in operational
environments and can be considered as well-tested model. Similarity of the
results with HS model offers high degree of reliability and is here regarded
as quality measure. The specific additional nonhydrostatic and high resolu-
tion effects require deeper studying and much more sophisticated verification
methodologies and are left for further research.

The NH SISL adiabatic core was investigated in two cases: In mountainous
region with resolution 5.5 km and in lowland conditions with resolution 3.3
km. Additionally, operational performance was evaluated in a two week
continuous run experiment.

5.2.1 Norwegian experiment (mountains)

An arbitrarily chosen weather situation with forecast initial time at 00 GMT
5th August 2003 is modelled. The resolution of the model domain is 5.5 km,
grid size is 156x156 points, 31 levels. The physics is switched on. Forecast
period is 24 h, and the time step is 4 minutes. Analysis files from FMI
operational forecast model are used as initial and boundary fields.

The results of the modelling experiments are presented on Figures 3 - 5. The
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Figure 3: Mean sea-level surface pressure in 24 h Norwegian forecast at 5.5
km resolution with 4 minute time-step. Left: Mean sea level pressure; right:
Surface pressure difference from the HS SISL results

weather situation represents a high pressure system over Scandinavia. The
performance of the NH SISL over mountainous area (Norwegian mountains)
is evaluated. The left panel of the Figure 3 shows pressure reduced to mean
sea level of the NH SISL forecast and the difference from HS SISL is on the
right panel. As Figure 3 demonstrates, the surface pressure of NH model is
approximately 1 mb higher over the mountains.

The forecasted lowest level temperature (Figure 4) does not differ from HS
SISL results more than 4+ 1.0 K in average. However, scattered spots of small
areas, where the temperature differences reach 3 K, do exist. Figure 5 depicts
cross-section of U, component of the wind taken in south-north direction at
6.0E longitude (HIRLAM rotated coordinates). In general, the differences
of NH and HS models are small with the exception of a small region in the
boundary layer near model equator where the difference reaches almost 10
m/s. This large wind difference is caused by a small-scale yet relatively strong
wind gust in this site, which is present in HS model but lacks in the NH case.

It is possible conclude from Figures 3 - 5 that generally NH and HS model
produce similar forecasts though local small-scale differences can appear in
some areas, caused mainly by slightly different disposing of local fronts (re-
gions with steep change) of meteorological fields by HS and NH models. This
means that NH SISL could be used as a forecast model without problems,
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Figure 4: Lowest level temperature in 24 h Norwegian forecast at 5.5 km
resolution with 4 minute time-step. Left: Temperature; right: Temperature
difference from the HS SISL results
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Figure 5: Vertical cross-section of the wind component U, in 24 h Norwegian
forecast at 5.5 km resolution with 4 minute time-step. Left: Vertical cross-
section of U,; right: Departure of U, from the corresponding HS SISL wind
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Figure 6: Surface pressure in 36 h Estonian B-area forecast at 3.3 km res-
olution with 2.5 minute time-step. Left: Sea level pressure. Right: Surface
pressure difference from the HS SISL results.

but local effects and differences from HS model, most probably resulting from
different interaction of HS and NH models with the 'physics’, present interest
and require additional sudying.

5.2.2 Estonian B-area experiments (lowlands)

Experiments, similar to the previous case, were carried out over relatively
flat area. Reference physics was included. The date was arbitrarily chosen
to be 7th September 2004 and a 36h forecast was produced starting from 00
GMT. The area is the 3.3 km resolution modelling domain used at EMHI-
s experimental high resolution NWP environment — so called Estonian B-
area (ETB). The grid in this case is 186 x 170 points, 40 levels in vertical.
It is worth mentioning that the former Eulerian SI model based domain
grid was 104 x 100 points. Thus, the increase in the forecast area due to
implementation of more efficient NH SISL scheme is about 3.3 times (1.7
times in each horizontal direction). The time-step in this experiment was 2.5
min (150 s).

In Figure 6 and 7, the 36 h MSL surface pressure and lowest level temperature
are presented. Left panels show NH SISL forecast and right panels represent
differences from HS SISL forecast. The differences with the HS SISL model
do not exceed in the current lowland case 0.7 mb in surface pressure, and

28



T_nh_40, 2004.09.07.00+36

3.5N
2.5N - 12

1.5N Y . 10

10E10.5E11E11.5E12E12.5E1 3E1 3.5E14E14.5E15E

T nh —-T hs , 2004.09.07.00+36

1:5

‘ 1
0.5

‘ 3 0
-0.5
-1
-1.5

WE 105 ME 1L5E 12 1256 I3E 1356 146 MASE 15E

Figure 7: Lowest level temperature Ty in 36 h Estonian B-area forecast at
3.3 km resolution with 2.5 minute time-step. Left: Temperature. Right:
Temperature difference from the HS SISL results.
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Figure 8: Vertical cross-section of the wind component U, in 36 h Estonian
B-area forecast at 3.3 km resolution with 2.5 minute time-step. Left: Vertical
cross-section of U,; Right: Departure of U, from the corresponding HS SISL

wind.
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+1.5 ¢ C in the lowest level temperature fields. Figure 8 shows the cross-
section of the u-component of the wind of 36 hour forecast and its difference
from HS model run. The cross section is taken along 11.5E meridian. In
general the flow fields are very similar in structure. The differences between
two models reach 2 m/s.

On large scale, the NH SISL and HS SISL models give similar results like
in the previous model experiment. The differences between them are lo-
cal, although clearly observable. The regions of differences are small-sized,
relatively sporadic and difficult to verify against the real situation.

In general, the overall quality of NH SISL looks satisfactory and its perfor-
mance can be considered reliable.

5.2.3 Comparison with observations

A two week long modelling experiment was carried out to obtain quantitative
measures of NH SISL performance in comparison with the observations. The
modelling domain in the experiment was the hereinabove described ETB
area. Integration time the was 150 s. The selected time period was from
January 01 to January 14, 2005. High cyclonic activity was observed in the
area during the period and it included also the devastating storm on 8th
January. The standard verifications scores against observations were used.
To get a reference information, the same verification statistics were collected
from HS SISL on the same area and from HS SISL with 11 km resolution.
To be able to compare the models with different areas and resolutions, a
specific set of observational sites was chosen containing all WMO sites in the
ETB area. The quality of observational sites in the list was not critically
evaluated.

The results are presented in Figures 9 and 10. In Figure 9, the verification
statistics for sea-level pressure, 2 m temperature, 10 m wind and 2m relative
humidity of all three models are presented. Both high resolution models give
similar performance with the exception of mean sea level pressure statistics.
The mean sea level pressure bias of NH SISL is slightly better during early
forecast and worse at longer forecast times. High resolution models improve
the 10 m wind errors and 2m relative humidity biases, while the low resolu-
tion HS model tend to have better 2m temperature scores and 2 m relative
humidity root mean square errors. Possible explanation is that the better
wind forecast from high resolution models results from better resolution of
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orography, while the better temperature forecast of the lower resolution HS
model results from better tuning of various physical parameterizations. Fig-
ure 10 shows verification scores of 36h forecasts of all three models against
vertical sounding observations. The differences between all three models ex-
ist, but they are not big and it is relatively hard to speculate which model is
better.

From the Figures 9 - 10 it is possible to conclude that in the flat lowland case,
NH model offers the same forecast quality as its hydrostatic parent does. On
the basis of the standard verification scores, there is no remarkable benefit nor
from the increased resolution neither from the application of nonhydrostatic
scheme. This conclusion is valid for flat areas. The benefits of high resolution
and NH treatment become evident, if the wave generation by orography and
the orographic drag becomes substantial. Another potential improvement
area are the explicitly resolved convective events with strong vertical circu-
lation. However, the convection events need to be investigated on the case
by case basis with application of special model verification schemes.

5.3 Computational efficiency

A set of numerical experiments on two different grids were used to analyze
the computational resource requirements of NH SISL in comparison with HS
SISL. 1-hour forecasts were computed with both schemes on 114 x 100 x 40
and 186 x 170 x 40 grids. The time-step was 400 s for the smaller grid
and 150 s for larger grid. The computations were performed on four-node
Linux cluster computer which has 3 GHz processors connected with Gigabit
Ethernet cards. The results are presented in Table 1.

Table 1.
HS SISL comp. | NH SISL comp.
Grid time (ne’F proces- | time (ne’F proces- | o / HS ratio
sor time/gross | sor time/gross
time/ratio) time/ratio)
114 % 100 x 40 | 15.2/18.6/0.82 93.8/28.4/0.83 1.53
186 x 170 x 40 | 84.3/99.6/0.85 119.6/144.1/0.83 1.45

In the table net processor time refers to the computing time spent on proces-
sors measured by HIRLAM routines. Gross time refers to the time, spent
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Figure 9: RMS errors (rthomb) and biases (triangle) for sea-level pressure, 2
m temperature, 10 m wind and 2 m relative humidity at different forecast
lengths. Red line marks HS SISL with 3.3 km resolution, green line NH SISL
at 3.3 km resolution and blue line HS SISL with 11 km resolution.
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Figure 10: RMS errors (thomb) and biases (triangle) for geopotential height,
temperature, wind and relative humidity of 36 h forecast at different pressure
levels. Red line marks HS SISL with 3.3 km resolution, green line NH SISL
at 3.3 km resolution and blue line HS SISL with 11 km resolution.
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on computing, measured by routinee MPI Wtime. The difference is caused
by the limited communication bandwidth. The table shows that the ratio of
computation and communication costs is roughly the same for both schemes.
The NH SISL scheme requires 1.5 times more computational resources than
HS SISL when the time-step is equal.

It ought to be possible some further increase of efficiency of the NH code by
means of code optimization.

6 Conclusions

We consider the NH SISLL development as the completed task. The stability
and the time step characteristics of the new model are reasonable. Com-
parison with theoretical results (mountain flows), as well as with HS SISL
shows that NH SISL is reliable and ready for applications. The increase of
computational efficiency is substantial in comparison with Eulerian case and
looks reasonable in comparison with HS SISL in similar conditions.

Currently, the NH SISL is implemented as the adiabatic core in Estonian B-
area model (3.3 km resolution, grid 186x170, 40 levels). Since August 2005,
the NH SISL code is ported to the latest official HIRLAM reference version
6.4.0, and its preoperational testing is launched at EMHI. As the preliminary
statistical testing reveals, the NH-specific effect is moderate at these resolu-
tions for the given physical paramterization and lowlands condition. More
NH behaviour will be expected at very high spatial resolutions (0.5 - 1km,
100 levels), in which case NH SISL will be a suitable tool for development
and testing of new physics, including the complex terrain, boundary layer,
and moist convection.
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Appendix 1

7 Notations

7.1 Physics constants

ro - radius of the Earth
g - gravitational acceleration
R, &), &), k= R"/c) - dry air constants

R, ¢,, ¢, - moist air constants

f — 2Qsin ¢ - Coriolis parameter as the function of geographical latitude ¢

7.2 Model constants

T°(z), T°(p) - reference temperature as a function of height or pressure
p? = 1013.26 hPa - climatological mean sea-level pressure

C' = v/ ROTO - isochoric sound speed

N, Nj1/2 - Brunt-Viisala frequency of reference state

S - reference state static stability

7.3 Area, geometry and coordinates

t - time
At - time-step At* — =AY
k - local vertical unit vector

k - index of full n-level
k + 1/2 - index of n half-level

klev - number of discrete n-levels

1 - n coordinate

N> Miet1/2 - full and half n-levels

klon, klat - number of grid-points in x- and y-directions

1,7 - indexes of mass-points in x- and y-direction
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i+ 1/2 - index of u-point in x-direction

j +1/2 - index of v-point in y-direction

Ai = 1A\, 0; = jAO - angular coordinates of a mass-point in rotated
spherical coordinates

hgij = cost; , hy;j =1 - stereometrical coefficients for spherical geometry
(ECMWEF originated HIRLAM notation)

Tij — TohwijNi . Yi; — Tohy;0; - physical coordinates of a mass-point
Al'ij = ’r’ohmjA)\ , Ayw = TOhyz’jAe :

7.4 Operators

ay = (ag-1/2 + a112)/2, EZ+1/2 = (ag + ary1)/2 - vertical averaging

@ = (a—1)2 + Qiy1/2)/2, Ay jg = (a; + a;+1)/2 - horizontal averaging in
z-direction
—y _

@) = (aj_1/2 + ajy1/2)/2, ;5 = (a;j + a;11)/2 - horizontal averaging in

y-direction

(u)p = m Zij u;ji, - averaging over n-levels with given orography

Vertical difference operatorA:
Apo = Orr1/2 — Pr—1/2, Dir1/2§ = Spr1 — ks
Gradient Va = i*V,a + iV a and divergence V - b = Vb, + V,b,:

e [n horizontally continuous model:

oa oa oa oa
Rl s S Ll Wi hy7000"
Oh,b Oh,b
b= yVz zVy
Vb = G hredn | hahrodd’

e In horizontally discrete model:

Ait1j — Qij

Aij+1 — Qij
Y
hm‘+1/2j7“0A)\

(vya)ijﬂp B hyij+1/27’0A9 .

(V:ca)z‘+1/2j =

(V-a);; =

T T Ty Y
(hy az)ivryg — (hy az)icijag | (he ay)ijyie — (he ay)ij-172

(hxhy)ij’l“oA)\ (hxhy)ij’l“er
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Horizontally averaged discrete gradient, divergence and Laplacian:

A4 Qi1 — Q4 — Qiv] — @5
(Vativry2 = W’ (Vya)js1/2 = W7
(V-b);; = beit1/2,j — bzi-1/2,5 n byi1/2 — byij1/2

J (Az) (Ay) ’
—2 Qit15 + Qi1j — Qig | Qi j41 T Qi j—1 — Qij

Va) =

( a) J <A:L’>2 (Ay>2

[sobaric gradient and divergence in 7-coordinate presentation:

e In continuous case:

G:G+:v_@3
m On

e In horizontally continuous, vertically discrete model:
G v L Spag
wp = Vor — 2—Vp

~ 1 —
Gz_'VIV-Vk—EVp'AVZ
k

e In 3D discrete model

_ -
R 1 0.p)A
(Ge9)iv1/2jk = = 0z — (pA)TZ? ;
r oL nP dit1/25k
.l 6,0 0,8 ]
A p
(Gy®)ijr1/2e = =7 0y — Z/ATZ
voL P dij+1/2k

— 1
1 — hy (Ayu)d.p +5y(h_myv) B

h_:cy(Anv)éyp

yn

O,(h, u) —
(hahy)ij (ry ) Ayp Ayp
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Lagrangian time derivatives:

e continuous 2D: dhf of
ko _ 2 .
a "o TV

e Discrete 2D:
dif f(xa,t 4+ At) — f(x,1)
dt At ’

where x, is the projection of departure point, which destination is xy,

onto surface n;

e continuous 3D: df  of of
Discrete 3D:
def  f(xut+ AL = f(x., 1)
dt At |

where x, is the departure point for x.

7.5 Meteorological fields

A(n), B(n) — coefficients of vertical coordinate p « 7 transformation
A = A(m), Br = B(ni)

p(n) = A(n) + B(n)ps - pressure in n-coordinate presentation

Pe = Ak + Bips

Y, ps(z,y,t) -surface pressure

ps — exp(—fh/C?) - surface pressure in reference state

X = In(ps/ps) - logarithmic pressure fluctuation

m = dp/0n - non-dimensional density of matter in n-coordinates
w=dp/dt , Wht1/2 Wijk+1/2- omega-velocity’, speed of pressure change in
elementary air volume

1 = dn/dt - n-velocity

V, Vi, - horizontal wind vector

U, Uk, Uit1/2,jk, Vs Uk, Vijy1/2,k, - components of the horizontal wind vector

Dy = V- vi - horizontal divergence
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T, T}, - temperature

T =T —T°

® - complete geopotential

¢ - nonhydrostatic geopotential
v, ©*, ¥ hydrostatic geopotential

Ay, Ay, A, Gy, ap nonlinear parts of forcing

A
~

w, v, T, x - explicit developments of w, v, T and x at time-level ¢ + At.
Ao, Ay, Ar diabatic and spectral smoothing terms

D, D — sources in ¢p—equation
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