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1 Introdu
tionThe adiabati
 kernel of the nonhydrostati
 (NH) HIRLAM with the semi-impli
it semi-Lagrangian (SISL) integration s
heme is presented in this pa-per. Our investigation 
ontinues the work, initiated in the Parts I − III(Rõõm 2001, Männik and Rõõm 2001, Rõõm and Männik 2002), where thefundamentals of NH atmospheri
 dynami
s in pressure�related 
oordinateswere presented, and, on that basis, the NH expli
it-Eulerian and semi-impli
it(SI) Eulerian versions of HIRLAM were developed.SISL has be
ome the popular integration s
heme in all advan
ed weather fore-
ast systems in last two de
ades. The main advantage of SISL (in 
ompari-son with 
ompeting s
hemes like the SI Eulerian s
heme or time-split-expli
its
heme) is the signi�
antly enhan
ed overall 
omputational e�
ien
y, whi
his a
hieved through substantial gain in numeri
al stability at the in
reasedtime step.The SISL-ideology to integrate the HS primitive equations numeri
ally was�rst proposed by Robert (1981, 1982), who pro
eeded from an earlier pos-itive experien
e with the SI Eulerian s
heme 1. A baro
lini
, multi-level,HS primitive-equation, three-time-level SISL model was �rst presented byRobert, Yee and Ri
hie (1985). An alternative approa
h with two-time-levels
heme was developed by Temperton and Staniforth (1987). In operationalfore
ast, SISL has implemented in the middle of the last 
entury nineties. AtECMWF the two-time-level SISL was operationally laun
hed in 1995 (Rit
hieet al 1995). For HIRLAM, the two-time-level SISL s
heme was introdu
ed byM
Donald and Haugen (1992), and further developed by M
Donald (1995).Finally, M
Donald (1998, 1999) 
arried out a further extensive investigationto improve the departure point evaluation. Developed by him non-iterativedeparture point 
al
ulation algorithm is 
urrently in use at the operationalHIRLAM.The �rst NH, fully 
ompressible (i.e. making use of 
omplete, non-simpli�edset of dynami
 equations) SISL was proposed already in 1990 (Tanguay,Robert and Laprise, 1990), but an a
ute a
tuality for operational fore
astingit has gained in last years in 
onne
tion with model transition into NH-resolution domain.1Three time level SI Eulerian s
heme was proposed by Robert (1969); the �rst baro-
lini
 multi-level SI Eulerian s
heme for HS primitive equations was des
ribed in (Robert,Henderson, Thurnbull 1972). 2



Adiabati
 dynami
s, applied in 
urrent NH SISL s
heme, is the White model(White 1989), whi
h represents a simpli�ed version of 
omplete NH pressure-
oordinate equations. Roughly speaking, White model is the simplest gener-alization of the hydrostati
, primitive-equation, pressure-
oordinate dynam-i
s whi
h in
orporates the verti
al momentum equation and takes verti
ala

eleration into 
onsideration. This 
loseness to HS model makes imple-mentation of NH dynami
s into existing HS environment of HIRLAM ratherstraightforward. The White model derivation from general elasti
 pressure-
oordinate equations with des
ription of main qualities is presented in de-tail in (Rõõm 2001). As 
omparison with the exa
t analyti
al solutions(Rõõm and Männik 1989), and with the 'full' elasti
 model (Fren
h NH Al-adin) on the non-linear test �ows have demonstrated (Männik 2003), thereis no sensible di�eren
e between 'exa
t dynami
s' and White model results.The White model has been already applied with su

ess in heretofore de-veloped three-time-level, expli
it-Eulerian (Männik and Rõõm 2001), and SIEulerian (Rõõm, Männik 2002, Männik, Rõõm, Luhamaa 2003) s
hemes. Inthose models, an additional approximation of the surfa
e pressure adjustmentwas introdu
ed, whi
h gave reason to 
all that approa
h 'anelasti
 pressure
oordinate model', as the a
ousti
 travelling waves were 
ompletely elimi-nated from dynami
s2. In the 
urrent NH SISL model, we will restore thenon-adjusted pressure treatment of the original White model, whi
h, how-ever, 
ould be still 
alled 'semi-anelasti
' be
ause it la
ks internal a
ousti
mode due to non-divergen
e of three-dimensional (3D) velo
ity in pressure-
oordinates.The most plain reason for dis
arding with surfa
e pressure adjustment wasthat the impli
it treatment of linear development in SISL does not requiresu
h an approximation anymore. Adjustment is a
tually essential in theexpli
it-Eulerian s
heme where it yields signi�
ant growth of 
omputationale�
ien
y, expressed in the in
rease of a
hievable time step, while in the im-pli
it s
hemes, the time-step rise is a
hieved by other, independent means(just by impli
it treatment of linear for
es). More 
onsiderable reason, how-ever, was the experimentally established fa
t that dynami
s with the adjust-2By the way, using of terminology 'anelasti
' served us a disservi
e, as it was often
onfused with anelasti
ity interpretations in shallow 
onve
tion (
onstant referen
e density
ρ = const) or deep 
onve
tion (�xed referen
e density ρ = ρ0(z)) models. A
tually, withthe term 'anelasti
' we tried just to underline that model la
ks a
ousti
 waves � exa
tlylike the HS primitive-equation model does, likewise being anelasti
 with respe
t to theinternal (verti
ally propagating) sound waves.3



ment approximation may lead to a dis
ontinuity of nonhydrostati
 geopoten-tial �eld at surfa
e, when the time step be
omes over one 
riti
al3. Finally,the non-adjusted, non-simpli�ed model is simpler to deal with in the formalplane. Thus, the non-adjusted surfa
e pressure evolution is restored in thispaper.Another mayor novelty 
onsist in pre
eding modi�
ations of geopotentialand surfa
e pressure treatment. The neutral referen
e states are subtra
tedfrom geopotential and surfa
e pressure in the very beginning, in 
ontinuousequations already, 
on�ning the treatment to evolution of geopotential andpressure �u
tuations. Ideologi
ally this approa
h is similar to 'Eulerian ad-ve
tion of orography' method by Ri
hie and Tanguay (1996). However, inthe 
urrent treatment, the modi�
ation is applied before any dis
retization,whi
h refers to generality of su
h an approa
h. The aim of the modi�
ation iselimination of large, dynami
ally passive �elds, otherwise just being a sour
eof additional noise in the numeri
al s
heme.The last model-spe
i�
 modi�
ation, yet no the least one, is the appli
ationof height-dependent referen
e temperature T 0(p) together with the a

ompa-nying height-dependent referen
e-state Brunt-Väisälä frequen
y N(p), bothgiving some rise to stability, as the non-linear residuals are minimized in theverti
al development equations.The NH model altogether aims to be an organi
 and straightforward ex-tension of the HS SISL 
ore to NH resolutions. Thus, ex
ept the ne
es-sary modi�
ations of dynami
 equations, almost all the numeri
al s
heme ismaintained from the HS parent. This in
ludes the use of the two-time-leveltime-stepping with the 
omplete maintenan
e of the departure point 
al
u-lation pro
edures (M
Donald 1998, 1999) and interpolation routines. And,of 
ourse, the diabati
 
ounterpart, 
onsisting the so-
alled 'physi
s', whi
his not 
on
ern of adiabati
 
ore development, is maintained untou
hed, andis overtaken from HS model without any 
hange and modi�
ation.3Criti
al time step in the sense of the Courant-Fiedri
hs-Lewy stability 
riterion.
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2 Basi
 equationsCon
erning the basi
 equations, as well as notations, this paper is a dire
tsu

essor of the papers (Rõõm. 2001, Männik and Rõõm, 2001, and Rõõm,Männik 2002), and keeps to the general HIRLAM standards (Manual 1996,Manual 2004). However, for reader's ease the basi
 de�nitions of 
onstants,variables, �elds and operators are summarised in Appendix 1.2.1 Primary modi�
ationsIn the 
ontinuous pressure-
oordinate 
ase, the basi
 equations of the WhiteModel are presented and 
omprehensively dis
ussed in our former paper(Rõõm, 2001, equations (3.2)). Two substantial di�eren
es with those equa-tions in 
urrent 
ase are, �rst, the use of full, evolutional surfa
e pressureequation, and, se
ond, modi�ed handling of geopotential and surfa
e pres-sure.2.1.1 Surfa
e pressure equationThe departure point equation for surfa
e pressure is the 
ontinuity equationin η�
oordinates
∂m

∂t
+ ∇ · (mv) +

∂mη̇

∂η
= 0,whi
h, in the verti
ally dis
rete 
ase (m = ∆kp/∆η), 
an be presented (afteromitting of 
onstant ∆η everywhere)

dh
k∆kp

dt
+ ∆kpDk + ∆k(mη̇) = 0, (2.1)where

Dk = ∇· vk,
dh

k

dt
=

∂

∂t
+ vk∇.Note that horizontal divergen
e in this de�nition is evaluated on �xed η-surfa
e and for spheri
al geometry with �xed 
urvature, equal to the meanradius of Earth. As pk+1/2 = Ak+1/2 + Bk+1/2ps, one has dh

k(∆kp)/dt =
∆kBdh

kps/dt and, after dividing by ps, equation (2.1) presents
∆kB

dh
k ln ps

dt
+

∆kp

ps

Dk +
∆k(mη̇)

ps

= 0.5



From this equation we will subtra
t the identity
∆kB

(

dh
k ln p̂s

dt
− vk · ∇(ln p̂s)

)

= 0, (∗)where referen
e surfa
e pressure p̂s is de�ned as
p̂s = p0

s exp

(

−g
∫ h

o

dz

R0T 0(z)

)

(2.2)for the given orography (surfa
e elevation) h, mean sea level pressure p0
s, andappropriate4 referen
e temperature T 0(z). As the result of the subtra
tionwe obtain a prognosti
 equation

∆kB
dh

kχ

dt
+

∆kp

ps
Dk +

∆k(mη̇)

ps
+ ∆kBvk · ∇(ln p̂s) = 0 (2.3)for logarithmi
 surfa
e pressure deviation

χ = ln(ps/p̂s) (2.4)on level k. Equation (2.3) is a partial equation with the weight ∆kB, des
rib-ing the 
ontribution of the layer k to the overall (total) 
hange of surfa
e pres-sure. To get the total evolution, partial equations (2.3) should be summedup over all layers. However, it is reasonable to postpone this summationuntil arriving at the �nal Lagrangian time-stepping formulae. The des
ribedsubtra
tion of equation (*) means fa
tually introdu
tion of the 'Eulerian ad-ve
tion of orography', �rst applied in Lagrangian s
heme by Ri
hie and Tan-guay (1996). The Eulerian adve
tion of the (mean) orography is presentedin Eq. (2.3) by term vk · ∇(ln p̂s).Despite of unusual (non-traditional) appearan
e, (partial) surfa
e pressureequation (2.3) is rather 
onvenient and useful for appli
ation, as the loga-rithmi
 pressure �u
tuation (2.4) is the prime quantity, des
ribing the surfa
epressure 
ontribution to the �u
tuations of hydrostati
 pressure (see below).2.1.2 Diagnosti
 relations for omega- and eta-velo
itiesThe SISL s
heme requires diagnosti
 evaluation of ω and η̇ on the past timelevels. For mη̇ the 
ontinuity equation (2.1) 
an be applied (employed) to4Horizontal mean over the domain of integration, as an example.6



get a re
urren
e
(mη̇)k+1/2 = (mη̇)k−1/2 −∇ · (v∆p)k − ∆kB

∂ps

∂t
, (2.6)where ∂ps/∂t is (a 
onsequen
e of (2.1) after use of Eulerian representationand summation over all levels)

∂ps

∂t
= −∇ ·

klev
∑

k=1

vk∆kp, (2.5)Diagnosti
 equation for ω follows, if one applies Lagrangian time derivation
d/dt to pressure expression in eta�
oordinates p = A(η)+B(η)ps and appliesthe result on the dis
rete eta-level k + 1/2:

ωk+1/2 = (mη̇)k+1/2 +Bk+1/2

(

v
η
k+1/2

· ∇ps +
∂ps

∂t

)

. (2.7)This is an diagnosti
 formula for ω, if 
onsidered together with (2.5) and(2.6).2.1.3 GeopotentialGeopotential for general NH model in pressure 
oordinates is dis
ussed in(Rõõm, 2001). In this paper, we will use division of the full geopotential tothe hydrostati
 
omponent ϕs and to the non-hydrostati
 supplementation
φ (see ibid, formula (2.5.2a))

Φ = ϕs + φ.Note that su
h separation is natural for a model with the non-adjusted(full) surfa
e pressure treatment, di�erently from the adjusted model withgeopotential separation to the bari
 and thermal 
omponents (ibid, formula(2.5.3a)).In 
ontinuous pressure-
oordinate presentation the hydrostati
 
omponent is
onventional:
ϕs = gh+

∫ ps

p

RTd(ln p′).7



It is useful (as a numeri
al noise redu
tion remedy) to subtra
t from thisgeopotential a neutral ba
kground geopotential
ϕ̂ = gh+

∫ p̂s

p

R0T 0(p′)d(ln p′),where p̂s is the referen
e surfa
e pressure, R0 is the gas 
onstant for dry air,and T 0(p) is the referen
e temperature distribution. If p̂s is 
hosen to satisfythe 
ondition (equivalent to the barometri
 formula (2.2))
∫ p0

s

p̂s

R0T 0(p′)d(ln p′) = gh(x, y),then
(∇ϕ̂)p = 0,i.e., the horizontal pressure-for
e from geopotential is zero and this geopoten-tial may be safely subtra
ted from φ∗ without dread of a
tual for
ing looseor virtual for
ing 
reation.Using alternative presentation

ϕ̂ = gh+

∫ ps

p

R0T 0(p′)d(ln p′) −
∫ ps

p̂s

R0T 0(p′)d(ln p′)

= gh+

∫ ps

p

R0T 0(p′)d(ln p′) − R0T 0(p̂s)χ.we arrive at expression for �u
tuative HS geopotential
ϕ = ϕ∗ − ϕ̂ = R0T 0(p̂s)χ+

∫ ps

p

(RT )′d(ln p′), (2.8)where
(RT )′ = RT −R0T 0(p).The derived formula (2.8) presents HS geopotential �u
tuation, whi
h isessential for dynami
s, while 
ausing the real for
es in the system. This�u
tuative part is small, when measured in units R0T 0: the amplitude of χis about 1/100, whereas the amplitude of the integral term in units R0T 0 isabout 1/10. 8



In hybrid 
oordinates the formula for ϕ reads
ϕ = R0T 0(p̂s)χ+

∫ 1

η

(RT )′
∂ ln p

∂η′
dη′,and in the dis
rete approximation we obtain

ϕk = R0T 0(p̂s)χ + Γk(RT )′, (2.9)where
Γkξ =

klev
∑

j=k+1

αjξj +
1

2
αkξk.

αk = 2
pk+1/2 − pk−1/2

pk+1/2 + pk−1/2

=
∆kp

pη
k

.Respe
tively, in momentum equations, the 
omplete geopotential Φ will berepla
ed with the �u
tuative geopotential, 
onsisting of HS and NH parts
Φ′ = ϕ+ φ.The non-hydrostati
 
omponent φ is 
aused by system departure from HSequilibrium. In detail its main features are dis
ussed in (Rõõm, 2001). Es-sential for 
urrent treatment is the lower boundary 
ondition
φ|ps

= 0, (2.10)whi
h represents the Diri
hlet' homogeneous BC (while treated in 
onjun
-tion with the Lapla
e equation for φ as demonstrated further).
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2.2 Initial equationsThe equations of motion and thermodynami
s, in verti
ally dis
rete hybrid
oordinate, Lagrangian presentation, yet in 
ontinuous time, and with mod-i�
ations for geopotential and surfa
e pressure equation introdu
ed in theprevious se
tion, are as follow:Verti
al momentum equation
dk+1/2ω

dt
= −(W∆φ)k+1/2 + (a0

ω)k+1/2, (2.11a)Horizontal momentum (wind) equation
dkv

dt
= −Ĝk(φ+ ϕ) − f × vk + A

vk ; (2.11b)Temperature equation (for �u
tuative part of temperature)
dkT

′

dt
= Skω

η
k + (AT )k; (2.11c)Surfa
e pressure k-level partial equation

∆kB
dh

kχ

dt
= −∆kp

ps
Dk −

∆k(mη̇)

ps
− ∆kBvk · ∇(ln p̂s). (2.11d)Continuity equation (
ondition of non-divergen
e of 3D velo
ity)

Ĝ
+

k · v +
∆kω

∆kp
= 0 . (2.11e)The 
oe�
ients in these equations are

Wk+1/2 =

(

(gp)2

(RT )2∆p
η

)

k+1/2

, Sk =

(

κT

pη

)

k

− ∆kT
0

∆kp
(2.12a)(where T 0 depends via pk(x, y) on horizontal 
oordinates x, y),

(a0
ω)k+1/2 = ωk+1/2

(

cvω

cpp
− AT

T
− d lnR

dt

)

k+1/2

+ Aω, (2.12b)Terms A
v
, AT and Aω are general notation for diabati
 for
ing and spe
tralsmoothing. 10



3 Semi-impli
it semi-Lagrangian dis
rete approx-imation of dynami
s3.1 Separation of linear main terms and nonlinear per-turbations in equationsDivision of for
ing in equations to the main and perturbation parts is basedon the treatment of the linear part of equations as a main for
ing and supple-mentation of these linear terms to the full for
ing by nonlinear residuals asthe perturbation. The linear terms are thereafter treated impli
itly, whereasthe nonlinear perturbations are 
onsidered in the expli
it manner.The linear part 
orresponds to a �xed, horizontally homogeneous referen
estate, 
hara
terized by the temperature T 0(p) and uniform ground surfa
ewith 
onstant surfa
e pressure p0
s.Departure of temperature from the referen
e state, and of the surfa
e pressurefrom the uniform, 
onstant value, are responsible for the perturbation terms.The partition in equation (2.11a) takes advantage of presentation

Wk+1/2 = W 0
k+1/2 +W ′

k+1/2, W 0
k+1/2 =

[

(gp0)2

(R0T 0(p0))2∆p0
η

]

k+1/2withW de�ned in (2.12a). Thus,W 0 is the main part andW ′ is the nonlinearperturbation of W , whi
h is evaluated at every instant as
W ′

k+1/2 = Wk+1/2 −W 0
k+1/2.For T 0(p), the mean a
tual temperature over the area at the �xed pressure(the p-mean temperature) is assumed. The referen
e pressure p0

k+1/2

orre-sponds to the even ground with 
onstant pressure p0

s:
p0

k+1/2 = Ak+1/2 +Bk+1/2p
0
s = ηk+1/2p

0
s.In appli
ation, the mean (averaged over area of integration at every instant)surfa
e pressure is used for p0

s.Division for 
oe�
ient S in equation (2.11
) is
Sk = S0

k + S ′

k, where S0
k =

κ
0T 0(p0

k)

p0
k

− ∆kT
0(p0)

∆kp0
.11



Horizontal p-gradient Ĝ(φ+ ϕ) in (2.11b) divides
Ĝk(φ+ ϕ) = ∇(φ+ ϕ0) + [Ĝk(φ+ ϕ)]′where the 'plain' gradient ∇ is the main part of Ĝ, while the main part ofhydrostati
 geopotential is

ϕ0
k = C2χ+R0Γ0

k(T )′, (3.1)where
C2 = R0T 0(p0

s),

Γ0
kξ =

klev
∑

j=k+1

α0
jξj +

1

2
α0

kξk.

α0
k = 2

p0
k+1/2

− p0
k−1/2

p0
k+1/2

+ p0
k−1/2

=
∆p0

k

p0
η

k

.(The nonhydrostati
 geopotential like other prime dynami
 �elds does notneed any separation, yet HS geopotential, whi
h is a fun
tion of T ′ and
χ with 
oe�
ients, depending on pressure, is subje
t to separation). Theperturbation part of horizontal pressure for
ing is presented without anysimpli�
ation as the di�eren
e between full and linear pressure for
es

[Ĝk(φ+ ϕ)]′ = Ĝk(φ+ ϕ) −∇(φ+ ϕ0).As a result, equations (2) present
i, j, k+1/2 :

dω

dt
= −W 0∆φ+ aω, (3.2a)

i+1/2, j, k :
du

dt
= −∇x(φ+ ϕ0) + au , (3.2b)

i, j+1/2, k :
dv

dt
= −∇y(φ+ ϕ0) + av , (3.2c)

i, j, k :
dT ′

dt
= S0ωη + aT , (3.2d)

i, j, k : ∆B
dhχ

dt
= −∆p0

p0
s

D0 − aχ, (3.2e)12



i, j, k : D0
k +

∆ω

∆p0
+ aD = 0 , (3.2f)where D0 is the 2D divergen
e in plane geometry

D0
k = ∇xu+ ∇yv.The nonlinear terms in these presentations are

aω = a0
ω −W ′∆φ, aT = S ′ωη + AT ,

au = −
[

Ĝx(φ+ ϕ) −∇x(φ+ ϕ0)
]

+ fv + Au ,

av = −
[

Ĝy(φ+ ϕ) −∇y(φ+ ϕ0)
]

− fu+ Av ,

aχ =
∆p

ps
D − ∆p0

p0
s

D0 +
∆(mη̇)

ps
+ ∆Bv · ∇(ln p̂s),

aD =

(

Ĝ
+
x u+ Ĝ

+
y v +

∆ω

∆p

)

−
(

D0 +
∆ω

∆p0

)

.3.2 SISL approximationEquations (3.2) are still in 
ontinuous time. Their further modi�
ation isbased on the appli
ation to them of the two-time-level, semi-impli
it, semi-Lagrangian s
heme (M
Donald and Haugen 1992, 1993, M
Donald 1995,1998, 1999).The SISL ideology is 
on
isely as follows. Let us present equations (3.a) -(3.2f) in general notation as
dψ

dt
= F + a,with the linear main part F and perturbation part a. The SISL approxima-tion of this equation is

ψt+∆t − ψt
∗

∆t
=

1 − ε

2
F t
∗

+
1 + ε

2
F t+∆t +

1 − ε

2
at+∆t/2
∗

+
1 + ε

2
at+∆t/2. (3.3)A

ording to this expression, an air parti
le arrives in the given lo
ation(wit
h is usually a grid-point) with 
oordinate x = x(t+ ∆t) at the moment13



t+ ∆t from the departure point x∗ = x∗(t), where it was at time t. Thevalues of the �elds ψ, F in the departure point and in the �nal point are
ψt
∗
, F t

∗
, ψt+∆t, F t+∆t, respe
tively. Expression on the left side of (3.3) isthe �nite-di�eren
e Lagrangian approximation for material derivative of ψ.For
es on the right side are weighted averages of those of the 
ontinuousmodel. The main linear term F is the weighted average of its departurevalue in the initial moment and �nal value at the arrival point. This use ofthe �nal value F t+∆t makes the s
heme impli
it with respe
t to the linearfor
e. The nonlinear term a is also a weighted average between its departure-and arrival-point values, but in this 
ase the averaging is 
arried out forintermediate time t+ ∆t/2 and thus, this term is approximated expli
itly.The small parameter ε is introdu
ed to in
rease the weight of the arrivalpoint in for
ing formation. Typi
ally the value of this parameter is in theinterval 0 < ε ≤ 0.1.Central issues of the appli
ation of des
ribed approa
h are the departurepoint x∗ evaluation, intermediate �eld at+∆t/2 
al
ulation, and interpolationof �elds F t and at+∆t/2 from grid-points to the departure point lo
ations.For 
al
ulation of a at intermediate time level the Adams-Bashford extrapo-lation s
heme is used:

at+∆t/2 = 1.5at − 0.5at−∆t.The departure point evaluation is based on the non-linear equation
x − x∗ = ∆tvt+∆t/2[(x + x∗)/2].Initially, this equation was solved iteratively (M
Donald and Haugen 1993,M
Donald 1995). Later, M
Donald introdu
ed an e�
ient non-iterative al-gorithm (M
Donald 1998, 1999, Manual 2002) (representing a generalizationof the approa
h by Tempertone and Staniforth, 1987)

x − x∗ = ∆tV̂,

V̂ = avt
x

+ cvt
x−v

t
x
∆t + evt

x−2vt
x
∆t + bvt−∆t

x
+ dvt−∆t

x−v
t
x
∆t + fvt−∆t

x−2vt
x
∆twith 
onstants

a = −0.25, b = 0, c = 1.50, d = 0.5, e = 0.25, f = −1.0.The great advantage of the des
ribed approa
h is that the departure point
al
ulation and interpolation issues do not depend on physi
al details of14



the modelled system. Thus, all the des
ribed traje
tory 
al
ulus, initiallydeveloped for HS dynami
s, is appli
able without 
hanges also in the NHmodel.Solution of equation (3.3) with respe
t to �elds at time level t+ ∆t yields
ψt+∆t − ∆t+F

t+∆t = ψ̂, (3.4)where
ψ̂ =

(

ψt + ∆t−F
t + ∆t−a

t+∆t/2
)

∗
+ ∆t+a

t+∆t/2and
∆t± =

1 ± ε

2
∆t,The general formula (3.4) for evaluation of �nal �elds at the arrival point isthe basis for further transformation of equations (3.2).3.3 One-step integrals of SISL-model equationsAppli
ation of formula (3.4) to equations (3.2a) - (3.2e) yields one-time-step-integrals

i, j, k+1/2 : ωt+∆t + ∆t+W
0∆φt+∆t = ω̂ , (3.5a)

i+1/2, j, k : ut+∆t + ∆t+∇x

(

φ+ ϕ0
)t+∆t

= ũ, (3.5b)

i, j+1/2, k : vt+∆t + ∆t+∇y

(

φ+ ϕ0
)t+∆t

= ṽ , (3.5c)

i, j, k : T ′t+∆t − ∆t+S
0(ωη)t+∆t = T̂ , (3.5d)

i, j : χt+∆t + ∆t+

klev
∑

k=1

∆p0
k

p0
s

(D0
k)

t+∆t = χ̃, (3.5e)while the 
ontinuity equation (3.2f) gives
i, j, k :

(

D0 +
∆ω

∆p0

)t+∆t

= −D̂, (3.5f)The partial surfa
e pressure equations (3.2e) are eventually summed up toget the relationship (3.5e). 15



The quest �elds/quantities are 
on
entrated on the left side, while the knownquantities at time levels t and t+ ∆t/2 on the right side are:
ω̂ =

[

ωt − ∆t−W
0∆φt + ∆t−a

t+∆t/2
ω

]

∗
+ ∆t+a

t+∆t/2
ω , (3.6a)

ũ =
[

ut − ∆t−∇x

(

ϕ0 + φ
)t

+ ∆t−au
t+∆t/2

]

∗

+ ∆t+au
t+∆t/2, (3.6b)

ṽ =
[

vt − ∆t−∇y

(

ϕ0 + φ
)t

+ ∆t−av
t+∆t/2

]

∗

+ ∆t+av
t+∆t/2, (3.6c)

T̂ =
[

T ′t + ∆t−

(

S0(ωη)t + a
t+∆t/2

T

)]

∗

+ ∆t+a
t+∆t/2

T , (3.6d)

χ̃ =
klev
∑

k=1

{[

∆kBχ
t − ∆t−

(

∆kp
0

p0
s

(D0
k)

t + a
t+∆t/2

χk

)]

∗2D

− ∆t+a
t+∆t/2

χk

}

,

(3.6e)

D̂ =
1 − ε

1 + ε

(

D0 +
∆ω

∆p0

)t

∗

+
1 − ε

1 + ε
(aD)t+∆t/2

∗
+ (aD)t+∆t/2. (3.6f)As an intermediate notation we use here ũ, ṽ.χ̃, the �nal quantities û, v̂, χ̂arrive after some further modi�
ation a while later.The subs
ript '∗' at the bra
kets means that the quantity in bra
kets is evalu-ated in the departure point x

t
∗ijk, 
orresponding to the �nal grid-point under
onsideration x

t+∆t
ijk , whereas subs
ript '∗2D' means that that the 
orrespond-ing expression in the bra
kets is evaluated in the lo
ation of departure pointproje
tion onto kth η-level.The velo
ities ω and mη̇, required at time levels t ja t+ ∆t/2 in several a-terms in (3.6), are diagnosed in 
orresponden
e with formulae (2.5) � (2.7).4 Dis
losureTo get prognosti
 quantities expli
itly, the system (3.6) has to be solvedwith respe
t to ωt+∆t, v

t+∆t, (T ′)t+∆t, and φt+∆t. For that we �rst expressquantities ωt+∆t, v
t+∆t, (T ′)t+∆t, (ϕ0)t+∆t and φt+∆t via a new auxiliarypotential ξ using equations (3.6a) � (3.6e), and then apply equation (3.6f) toget an ellipti
 equation for diagnosis of ξ.
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4.1 Redu
tion of prognosti
 quantities to the auxiliarypotential ξThe aim is to express all prognosti
 quantities via a new auxiliary potential
ξ. The task 
onsists of four steps.(1) Expression of (ϕ0 + φ)t+∆t via auxiliary potential ξ and χt+∆t.Considering (3.1) on time level t+ ∆t, and using formulae (5) and (7) yieldsequation for φ+ ϕ0

i, j, k : (φ+ ϕ0)t+∆t = Q+ C2χt+∆t + ξ (4.1)(note that χ = χij is independent of height index k), where
i, j, k : Q = R0Γ̂0

(

T̂ + ∆t+S
0ω̂

η
)

, (4.2)

C = √R0T 0(p0
s) is the iso
hori
 sound speed in referen
e state, and ξ is anauxiliary potential

i, j, k : ξ = φt+∆t − (∆t+)2R0Γ̂0(S0W 0∆φt+∆t
η
). (4.3)From this de�nition, a re
urren
e follows for every �xed pair of indexes i,j:

∆k+1/2ξ = ∆k+1/2φ
t+∆t + (∆t+)2R0α0S0W 0∆φt+∆t

ηη

k+1/2, (4.4)whi
h is 
onvenient to use for transition from φ to ξ and vi
e versa. Theboundary 
ondition for ξ pro
eeds from (4.3) as
ξ

η

klev+1/2 = φ
η

klev+1/2 = 0. (4.5)The presentation holds
R0α0S0W 0∆φt+∆t

ηη

k+1/2 = N2
k+1/2∆k+1/2φ

t+∆t + O2(∆φ
t+∆t)where

N2
k+1/2 = R0W 0

k+1/2α
0S0

η

k+1/2 (4.6)is the squared Brent-Väisälä frequen
y of the referen
e state on levek k+1/2and
O2(∆φ

t+∆t) =
R0

4
∆
[

α0S0∆
(

W 0∆φt+∆t
)]

.17



This term 
an be estimated as O2(∆φ
t+∆t) ∼ ∆2(N2∆φ) ∼ (∆η)2|N2∆φ|and thus, it tends to zero with the level number in
rease like 1/klev2 (be-
ause ∆η ∼ 1/klev). In a 30�level model its relative value with repse
tto the �rst term is ∼ 10−3, and ∼ 10−4 in a 100�level model. Thus, term

O2(∆φ
t+∆t) 
an be omitted, after whi
h (4.4) be
omes

i, j, k+1/2 : ∆ξ = (1 + ∆t2+N
2)∆φt+∆t (4.7)(where N2

k+1/2
does not depend on horizontal indexes i,j).(2) Expression of horizontal wind via χ and ξ.Using (4.1), horizontal wind equations (3.5b), (3.5
) 
an be modi�ed to

i+1/2, j, k : ut+∆t = û− ∆t+∇x

(

C2χ+ ξ
)t+∆t

, (4.8a)

i, j+1/2, k : vt+∆t = v̂ − ∆t+∇y

(

C2χ+ ξ
)t+∆t

, (4.8b)

û = ũ−∇xQ, v̂ = ṽ −∇yQ, (4.8c)Applying of ∇· to (4.8) yields expression for 2D divergen
e (horizontal winddivergen
e)
i, j, k :

(D0)t+∆t = (∇xû+ ∇y v̂) − ∆t+∇
2 (

C2χ+ ξ
)t+∆t

. (4.9)(3) Expression of logarithmi
 pressure �u
tuation χ via auxiliarypotential ξ.Substitution (4.9) into (3.5e) yields after some algebra
i, j :

χt+∆t −Hξt+∆t = χ̂, (4.10a)

Hξt+∆t = ∆t2+
∇2

1 − ∆t2+C
2∇2

klev
∑

k=1

∆p0
k

p0
s

ξt+∆t
k , (4.10b)

χ̂ =
1

1 − ∆t2+C
2∇2

(

χ̃− ∆t+

klev
∑

k=1

∆p0
k

p0
s

(∇xû+ ∇yv̂)k

)

, (4.10c)
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(4) Equation for ξ.As now χt+∆t is expressed via ξ with the help of (4.10a), prognoses of verti
alwind (3.5a), temperature (3.5d), and horizontal wind (4.8) in
lude still justone unknown variable ξ. To �nd this auxiliary potential, we apply 
ontinuity
ondition (3.5f). Substitution of wind 
omponents (3.5a), (4.8) into (3.5f),and using (4.7) gives the following Lapla
e equation for ξ
i, j, k : (L + ∇2

)ξ = −C2∇2
χ+ D ,where

(Lξ) =
1

∆p0
∆

(

W 0

1 + ∆t2+N
2
∆ξ

)

,

D =
1

∆t+

(

D̂ + ∇xû+ ∇yv̂ +
∆ω̂

∆p0

)

.As the right side in
ludes χ, this equation must be treated simultaneouslywith (4.10a).Solution method is rather analogous with those, applied in the Eulerian 
ases(Männik and Rõõm 2001, Rõõm and Männik 2002). Major di�eren
e is thelower boundary 
ondition, whi
h is the homogeneous Diri
hlet' 
ondition(4.5) in the present 
ase. To take the lower BC into 
onsideration, we add asingular boundary sour
e at the lower boundary, γδklev+1,k, to the right sideof the Lapla
e equation5. Thus, the ellipti
 system is �nally
i, j :

[

Lξ + ∇2
ξ
]

k
= Dk − C2∇2

χ+ γδklev+1,k , (4.11a)

i, j : (Bξ) ≡ ξ
η

klev+1/2 = 0, (4.11b)

i, j : χ− (Hξ) = χ̂, (4.11c)This set of equations has to be solved with respe
t to unknowns ξijk, χij, and
γij.5A
tually, the singular boundary sour
e is not obligatory. The same spe
ial solution 
anbe des
ribed by a solution of homogeneous equation. However, singular sour
e introdu
tionallows for appli
ation of the same inversion algorithm for all 
omponents of the 
ompletesolution. 19



4.2 Solution of the ellipti
 systemAs ∇2 is horizontally homogeneous, i.e. it has 
onstant grid-steps in bothdire
tions, the 2D dis
rete Fourier transformation of system (4.11) will beadvantageous. Using for spe
tral transforms of ξ, χ, γ notation ξ̃ijk, χ̃ij , γ̃ij ,for ea
h pair of spe
tral numbers i, j we get an independent system
i, j : (Lk − Λ) ξ̃ = D̃k + C2Λχ̃+ γ̃δklev+1,k , (4.12a)

i, j : (Bξ̃) ≡ ξ̃
η

klev+1/2 = 0, (4.12b)

i, j : χ̃− (Hξ̃) = ˜̂χ, (4.12c)where D̃k ≡ D̃ijk and ˜̂χ ≡ ˜̂χij are the spe
tral transforms of sour
es
D and χ,

Λij =
4

〈∆x〉2 sin2

(

π

2

i− 1

klon− 1

)

+
4

〈∆y〉2 sin2

(

π

2

j − 1

klat− 1

)

,is the Fourier presentation of −∇2 with 〈∆x〉, 〈∆y〉 representing the averagegrid-steps in x- and y-dire
tions.The solution of (4.12a) is
ξ̃k = ξD

k + χ̃kξ
χ
k + γ̃ijξ

γ
k , (4.13a)where ξD

k , ξχ
k , ξγ

k are solutions of eq. (4.12a) for respe
tive right-hand sour
es
D̃k, C2Λ and δklev+1,k, i.e., they are solutions of the equations
(Lk − Λ) ξD = D̃k, (Lk − Λ) ξχ = C2Λ, (Lk − Λ) ξγ = δklev+1,k (4.13b)respe
tively. After these solutions are spe
i�ed, the substitution of (4.13a)into 
onditions (4.12b), (4.12
) results in a two-dimensional linear system for
χ̃ij and γ̃ij

i, j : χ̃(Bξχ) + γ̃(Bξγ) = −BξD, (4.14a)

i, j : χ̃(1 −Hξχ) − γ̃(Hξγ) = χ̂+ HξD. (4.14b)20



Solution of this linear set a

omplishes the solution of the ellipti
 system andaltogether it does a

omplish the whole time-stepping pro
edure.For intermediate 
al
ulations, the nonhydrostati
 geopotential φ is required,for whi
h a re
urren
e, resulting from (4.7), 
an be used:
φk = φk+1 +

ξk − ξk+1

1 + ∆t2+N
2
k+1/2

,with initial value
φklev =

ξklev

1 + ∆t2+N
2
klev+1/2

,following from boundary 
ondition (4.5).For solution of equations (4.13a), the elementary Gaussian eliminationmethodis applied, instead of previous, more sophisti
ated eigenve
tor (normal mode)approa
h, used in Eulerian 
ase (Männik and Rõõm 2001, Rõõm and Männik2002) 6.6However, the eigenve
tor approa
h has its value and may be needed in future, whenthe domain of integration is 
hosen/be
omes su
h large (area size 5000 km or larger), thatthe 
urvature of the domain 
annot be 
onsidered as a small perturbation anymore, and,
onsequently, the Fourier transform in y-dire
tion be
omes invalid.
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5 Numeri
al testsThe nonhydrostati
 semi-impli
it semi-Lagrangian s
heme, des
ribed in theprevious se
tions, is realized numeri
ally as the extension of the hydrostati
HIRLAM. The departure-point 
al
ulation algorithms of HS SISL are main-tained 
ompletely. The pre- and post-pro
essing fa
ilities are also 
ompletelythose of the hydrostati
 HIRLAM, and the lateral boundary treatment is thesame as well (the Davies' boundary relaxation s
heme). The numeri
al 
odein
ludes all the previous stu�: hydrostati
 Eulerian expli
it s
heme, Euleriansemi-impli
it s
heme, Lagrangian semi-impli
it s
heme, and Eulerian NHexpli
it and semi-impli
it sub-models, in
luded as options whi
h may beswit
hed on/o� . The numeri
al 
ode has a parallel realization on the Linux-
lusters (Tartu Observatory 
luster, EMHI fa
ility, and the Tartu UniversityEnvironmental Institute's 
luster, all in Estonia). In prin
iple, the numeri
al
ode should work on all ar
hite
tures whi
h are supported by HIRLAM. Inthe following, some provisional results are presented, the purpose of whi
h isto demonstrate the 
omputational e�
ien
y and pre
ision 
hara
teristi
s ofthe NH SISL model. All results are obtained with NH SISL version whi
hhas been ported to o�
ial HIRLAM release 6.4.0.5.1 Flow over arti�
ial orographyAim of the model experiments is (1) debugging, and (2) model quality 
ontrol.In these experiments adiabati
 stationary �ow regimes over given orographyare studied and 
ompared to the known analyti
al solutions of the lineariseddynami
s. The �rst test experiment 
ontains a high-resolution adiabati
 sim-ulation with arti�
ial orography and an arti�
ial initial state whi
h, however,is quite 
lose to the reality. For orography, as usual, a 'Wit
h of Agnesi'-typeisolated hill serves with the orography fun
tion
h(x, y) =

h0

[1 + (x/ax)2 + (y/ay)2]s
, (4.1)where h0 is the mountain height and ax, ay are the half-widths of the hillalong 
oordinate axes. We use s = 1.5 when examining �ow over an isolatedmountain and s = 1 when looking at one dimensional �ow with ay = ∞.The initial state is 
hara
terized with the referen
e temperature T 0(p), andwind U(p), whi
h is initially taken independent of x, y 
oordinates and then22
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Figure 2: Verti
al velo
ity waves (isoline interval 0.05 m/s) at stationary �owover Agnesi ridge. Top: linear model, bottom: 5 h fore
ast with NH SISL,
∆t = 30 s.transformed to the mass-balan
ed wind (see formulae (6.1.1) - (6.1.3) in PartII). The referen
e surfa
e pressure �eld p̂s is spe
i�ed from orography h(x, y),using the barometri
 formula (2.2) with 
onstant temperature T (z) = T 0(p0

s).The Coriolis for
e is zero in this experiment (f = 0). Boundary 
onditionsare presented by the boundary �elds, whi
h 
oin
ide with the ba
kground�elds: ub = U(p), vb = 0 , Tb = T 0(p). The wind and temperature pro�lesare relatively 
ompli
ated and 
an be seen in Figure 1.As an example, in Fig. 2 the stationary �ow over Agnesi ridge with half-width
ax = 3 km and maximum height h = 100 m is presented. This mountainis su�
iently low to assume linearity of the �ow. The grid is 276x100x100points, horizontal resolution is 0.55 km. At su
h a referen
e state, the wavespresent a stationary wave-train downstream of the mountain, ea
h wave ver-ti
ally dire
ted and penetrating the whole depth of the atmosphere. It is24



rather di�
ult to model this wave pattern 
orre
tly and the simulation qual-ity is a good indi
ator of the quality of the numeri
al s
heme. Shown areverti
al velo
ity waves generated by the ridge. The upper panel representsthe output of 2D linear, fri
tionless stationary model and the lower panelis the output of NH SISL. The interval between isolines is 0.05 m/s. Asseen from Figure 2, NH SISL 
an qualitatively represent the wave stru
turegenerated by �ow over obsta
le rather well. However, a small phase error inupdraft-downdraft zone lo
ation is visible. In addition, the amplitude of thewaves is slightly too strong near the obsta
le and damped downstream. Mostof su
h behaviour is possibly linked to boundary zone intera
tion with �ow�elds. It should be noted that the presented model situation is nonhydro-stati
 by its nature. HS model is not 
apable to simulate su
h down-streamwave-traines at all.5.2 Real-
ondition experimentsFollowing se
tion presents several experiments with real observational ini-tial and boundary data. The output of NH SISL is 
ompared to HS SISLresults as referen
e model. HS SISL has been widely used in operationalenvironments and 
an be 
onsidered as well-tested model. Similarity of theresults with HS model o�ers high degree of reliability and is here regardedas quality measure. The spe
i�
 additional nonhydrostati
 and high resolu-tion e�e
ts require deeper studying and mu
h more sophisti
ated veri�
ationmethodologies and are left for further resear
h.The NH SISL adiabati
 
ore was investigated in two 
ases: In mountainousregion with resolution 5.5 km and in lowland 
onditions with resolution 3.3km. Additionally, operational performan
e was evaluated in a two week
ontinuous run experiment.5.2.1 Norwegian experiment (mountains)An arbitrarily 
hosen weather situation with fore
ast initial time at 00 GMT5th August 2003 is modelled. The resolution of the model domain is 5.5 km,grid size is 156x156 points, 31 levels. The physi
s is swit
hed on. Fore
astperiod is 24 h, and the time step is 4 minutes. Analysis �les from FMIoperational fore
ast model are used as initial and boundary �elds.The results of the modelling experiments are presented on Figures 3 - 5. The25



Figure 3: Mean sea-level surfa
e pressure in 24 h Norwegian fore
ast at 5.5km resolution with 4 minute time-step. Left: Mean sea level pressure; right:Surfa
e pressure di�eren
e from the HS SISL resultsweather situation represents a high pressure system over S
andinavia. Theperforman
e of the NH SISL over mountainous area (Norwegian mountains)is evaluated. The left panel of the Figure 3 shows pressure redu
ed to meansea level of the NH SISL fore
ast and the di�eren
e from HS SISL is on theright panel. As Figure 3 demonstrates, the surfa
e pressure of NH model isapproximately 1 mb higher over the mountains.The fore
asted lowest level temperature (Figure 4) does not di�er from HSSISL results more than ± 1.0 K in average. However, s
attered spots of smallareas, where the temperature di�eren
es rea
h 3 K, do exist. Figure 5 depi
ts
ross-se
tion of Ux 
omponent of the wind taken in south-north dire
tion at6.0E longitude (HIRLAM rotated 
oordinates). In general, the di�eren
esof NH and HS models are small with the ex
eption of a small region in theboundary layer near model equator where the di�eren
e rea
hes almost 10m/s. This large wind di�eren
e is 
aused by a small-s
ale yet relatively strongwind gust in this site, whi
h is present in HS model but la
ks in the NH 
ase.It is possible 
on
lude from Figures 3 - 5 that generally NH and HS modelprodu
e similar fore
asts though lo
al small-s
ale di�eren
es 
an appear insome areas, 
aused mainly by slightly di�erent disposing of lo
al fronts (re-gions with steep 
hange) of meteorologi
al �elds by HS and NH models. Thismeans that NH SISL 
ould be used as a fore
ast model without problems,26



Figure 4: Lowest level temperature in 24 h Norwegian fore
ast at 5.5 kmresolution with 4 minute time-step. Left: Temperature; right: Temperaturedi�eren
e from the HS SISL results

Figure 5: Verti
al 
ross-se
tion of the wind 
omponent Ux in 24 h Norwegianfore
ast at 5.5 km resolution with 4 minute time-step. Left: Verti
al 
ross-se
tion of Ux; right: Departure of Ux from the 
orresponding HS SISL wind27



Figure 6: Surfa
e pressure in 36 h Estonian B-area fore
ast at 3.3 km res-olution with 2.5 minute time-step. Left: Sea level pressure. Right: Surfa
epressure di�eren
e from the HS SISL results.but lo
al e�e
ts and di�eren
es from HS model, most probably resulting fromdi�erent intera
tion of HS and NH models with the 'physi
s', present interestand require additional sudying.5.2.2 Estonian B-area experiments (lowlands)Experiments, similar to the previous 
ase, were 
arried out over relatively�at area. Referen
e physi
s was in
luded. The date was arbitrarily 
hosento be 7th September 2004 and a 36h fore
ast was produ
ed starting from 00GMT. The area is the 3.3 km resolution modelling domain used at EMHI-s experimental high resolution NWP environment � so 
alled Estonian B-area (ETB). The grid in this 
ase is 186 × 170 points, 40 levels in verti
al.It is worth mentioning that the former Eulerian SI model based domaingrid was 104 × 100 points. Thus, the in
rease in the fore
ast area due toimplementation of more e�
ient NH SISL s
heme is about 3.3 times (1.7times in ea
h horizontal dire
tion). The time-step in this experiment was 2.5min (150 s).In Figure 6 and 7, the 36 h MSL surfa
e pressure and lowest level temperatureare presented. Left panels show NH SISL fore
ast and right panels representdi�eren
es from HS SISL fore
ast. The di�eren
es with the HS SISL modeldo not ex
eed in the 
urrent lowland 
ase ±0.7 mb in surfa
e pressure, and28



Figure 7: Lowest level temperature T40 in 36 h Estonian B-area fore
ast at3.3 km resolution with 2.5 minute time-step. Left: Temperature. Right:Temperature di�eren
e from the HS SISL results.

Figure 8: Verti
al 
ross-se
tion of the wind 
omponent Ux in 36 h EstonianB-area fore
ast at 3.3 km resolution with 2.5 minute time-step. Left: Verti
al
ross-se
tion of Ux; Right: Departure of Ux from the 
orresponding HS SISLwind. 29



±1.5 o C in the lowest level temperature �elds. Figure 8 shows the 
ross-se
tion of the u-
omponent of the wind of 36 hour fore
ast and its di�eren
efrom HS model run. The 
ross se
tion is taken along 11.5E meridian. Ingeneral the �ow �elds are very similar in stru
ture. The di�eren
es betweentwo models rea
h 2 m/s.On large s
ale, the NH SISL and HS SISL models give similar results likein the previous model experiment. The di�eren
es between them are lo-
al, although 
learly observable. The regions of di�eren
es are small-sized,relatively sporadi
 and di�
ult to verify against the real situation.In general, the overall quality of NH SISL looks satisfa
tory and its perfor-man
e 
an be 
onsidered reliable.5.2.3 Comparison with observationsA two week long modelling experiment was 
arried out to obtain quantitativemeasures of NH SISL performan
e in 
omparison with the observations. Themodelling domain in the experiment was the hereinabove des
ribed ETBarea. Integration time the was 150 s. The sele
ted time period was fromJanuary 01 to January 14, 2005. High 
y
loni
 a
tivity was observed in thearea during the period and it in
luded also the devastating storm on 8thJanuary. The standard veri�
ations s
ores against observations were used.To get a referen
e information, the same veri�
ation statisti
s were 
olle
tedfrom HS SISL on the same area and from HS SISL with 11 km resolution.To be able to 
ompare the models with di�erent areas and resolutions, aspe
i�
 set of observational sites was 
hosen 
ontaining all WMO sites in theETB area. The quality of observational sites in the list was not 
riti
allyevaluated.The results are presented in Figures 9 and 10. In Figure 9, the veri�
ationstatisti
s for sea-level pressure, 2 m temperature, 10 m wind and 2m relativehumidity of all three models are presented. Both high resolution models givesimilar performan
e with the ex
eption of mean sea level pressure statisti
s.The mean sea level pressure bias of NH SISL is slightly better during earlyfore
ast and worse at longer fore
ast times. High resolution models improvethe 10 m wind errors and 2m relative humidity biases, while the low resolu-tion HS model tend to have better 2m temperature s
ores and 2 m relativehumidity root mean square errors. Possible explanation is that the betterwind fore
ast from high resolution models results from better resolution of30



orography, while the better temperature fore
ast of the lower resolution HSmodel results from better tuning of various physi
al parameterizations. Fig-ure 10 shows veri�
ation s
ores of 36h fore
asts of all three models againstverti
al sounding observations. The di�eren
es between all three models ex-ist, but they are not big and it is relatively hard to spe
ulate whi
h model isbetter.From the Figures 9 - 10 it is possible to 
on
lude that in the �at lowland 
ase,NH model o�ers the same fore
ast quality as its hydrostati
 parent does. Onthe basis of the standard veri�
ation s
ores, there is no remarkable bene�t norfrom the in
reased resolution neither from the appli
ation of nonhydrostati
s
heme. This 
on
lusion is valid for �at areas. The bene�ts of high resolutionand NH treatment be
ome evident, if the wave generation by orography andthe orographi
 drag be
omes substantial. Another potential improvementarea are the expli
itly resolved 
onve
tive events with strong verti
al 
ir
u-lation. However, the 
onve
tion events need to be investigated on the 
aseby 
ase basis with appli
ation of spe
ial model veri�
ation s
hemes.5.3 Computational e�
ien
yA set of numeri
al experiments on two di�erent grids were used to analyzethe 
omputational resour
e requirements of NH SISL in 
omparison with HSSISL. 1-hour fore
asts were 
omputed with both s
hemes on 114 × 100 × 40and 186 × 170 × 40 grids. The time-step was 400 s for the smaller gridand 150 s for larger grid. The 
omputations were performed on four-nodeLinux 
luster 
omputer whi
h has 3 GHz pro
essors 
onne
ted with GigabitEthernet 
ards. The results are presented in Table 1. Table 1.Grid HS SISL 
omp.time (net pro
es-sor time/grosstime/ratio) NH SISL 
omp.time (net pro
es-sor time/grosstime/ratio) NH / HS ratio
114 × 100 × 40 15.2/18.6/0.82 23.8/28.4/0.83 1.53
186 × 170 × 40 84.3/99.6/0.85 119.6/144.1/0.83 1.45In the table net pro
essor time refers to the 
omputing time spent on pro
es-sors measured by HIRLAM routines. Gross time refers to the time, spent31
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on 
omputing, measured by routinee MPI_Wtime. The di�eren
e is 
ausedby the limited 
ommuni
ation bandwidth. The table shows that the ratio of
omputation and 
ommuni
ation 
osts is roughly the same for both s
hemes.The NH SISL s
heme requires 1.5 times more 
omputational resour
es thanHS SISL when the time-step is equal.It ought to be possible some further in
rease of e�
ien
y of the NH 
ode bymeans of 
ode optimization.6 Con
lusionsWe 
onsider the NH SISL development as the 
ompleted task. The stabilityand the time step 
hara
teristi
s of the new model are reasonable. Com-parison with theoreti
al results (mountain �ows), as well as with HS SISLshows that NH SISL is reliable and ready for appli
ations. The in
rease of
omputational e�
ien
y is substantial in 
omparison with Eulerian 
ase andlooks reasonable in 
omparison with HS SISL in similar 
onditions.Currently, the NH SISL is implemented as the adiabati
 
ore in Estonian B-area model (3.3 km resolution, grid 186x170, 40 levels). Sin
e August 2005,the NH SISL 
ode is ported to the latest o�
ial HIRLAM referen
e version6.4.0, and its preoperational testing is laun
hed at EMHI. As the preliminarystatisti
al testing reveals, the NH-spe
i�
 e�e
t is moderate at these resolu-tions for the given physi
al paramterization and lowlands 
ondition. MoreNH behaviour will be expe
ted at very high spatial resolutions (0.5 - 1km,100 levels), in whi
h 
ase NH SISL will be a suitable tool for developmentand testing of new physi
s, in
luding the 
omplex terrain, boundary layer,and moist 
onve
tion.
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Appendix 17 Notations7.1 Physi
s 
onstants
r0 - radius of the Earth
g - gravitational a

eleration
R0, c0v, c0p, κ = R0/c0p - dry air 
onstants
R, cv, cp - moist air 
onstants
f = 2Ω sinϕ - Coriolis parameter as the fun
tion of geographi
al latitude ϕ7.2 Model 
onstants
T 0(z), T 0(p) - referen
e temperature as a fun
tion of height or pressure
p0

s = 1013.26 hPa - 
limatologi
al mean sea-level pressure
C =

√
R0T 0 - iso
hori
 sound speed

N,Nk+1/2 - Brunt-Väisälä frequen
y of referen
e state
S0

k - referen
e state stati
 stability7.3 Area, geometry and 
oordinates
t - time
∆t - time-step ∆t± = 1±ε

2
∆t

k - lo
al verti
al unit ve
tor
k - index of full η-level
k + 1/2 - index of η half-level
klev - number of dis
rete η-levels
η - η�
oordinate
ηk, ηk+1/2 - full and half η-levels
klon, klat - number of grid-points in x- and y-dire
tions
i, j - indexes of mass-points in x- and y-dire
tion35



i+ 1/2 - index of u-point in x-dire
tion
j + 1/2 - index of v-point in y-dire
tion
λi = i∆λ, θj = j∆θ - angular 
oordinates of a mass-point in rotatedspheri
al 
oordinates
hxij = cos θj , hyij = 1 - stereometri
al 
oe�
ients for spheri
al geometry(ECMWF originated HIRLAM notation)
xij = r0hxijλi , yij = r0hyijθj - physi
al 
oordinates of a mass-point
∆xij = r0hxij∆λ , ∆yij = r0hyij∆θ ;7.4 Operators
aη

k = (ak−1/2 + ak+1/2)/2, aη
k+1/2

= (ak + ak+1)/2 - verti
al averaging
ax

i = (ai−1/2 + ai+1/2)/2, ax
i+1/2

= (ai + ai+1)/2 - horizontal averaging in
x-dire
tion
ay

j = (aj−1/2 + aj+1/2)/2, ay
j+1/2

= (aj + aj+1)/2 - horizontal averaging in
y-dire
tion
〈u〉k = 1

klonklat

∑

ij uijk - averaging over η-levels with given orographyVerti
al di�eren
e operator∆:
∆kϕ = ϕk+1/2 − ϕk−1/2, ∆k+1/2ξ = ξk+1 − ξk;Gradient ∇a = i

x∇xa+ i
y∇ya and divergen
e ∇ · b = ∇xbx + ∇yby:

• In horizontally 
ontinuous model:
∇xa =

∂a

∂x
=

∂a

hxr0∂λ
, ∇ya =

∂a

∂y
=

∂a

hyr0∂θ
,

∇ · b =
∂hybx

hxhyr0∂λ
+

∂hxby
hxhyr0∂θ

,

• In horizontally dis
rete model:
(∇xa)i+1/2j =

ai+1j − aij

hxi+1/2jr0∆λ
, (∇ya)ij+1/2 =

aij+1 − aij

hyij+1/2r0∆θ
.

(∇·a)ij =
(hy

x
ax)i+1/2,j − (hy

x
ax)i−1/2,j

(hxhy)ijr0∆λ
+

(hx
y
ay)ij+1/2 − (hx

y
ay)ij−1/2

(hxhy)ijr0∆θ
,36



Horizontally averaged dis
rete gradient, divergen
e and Lapla
ian:
(∇xa)i+1/2 =

ai+1 − ai

〈∆x〉 , (∇ya)j+1/2 =
aj+1 − aj

〈∆y〉 ,

(∇ · b)ij =
bxi+1/2,j − bxi−1/2,j

〈∆x〉 +
byi,j+1/2 − byi,j−1/2

〈∆y〉 ,

(∇2
a)ij =

ai+1,j + ai−1,j − aij

〈∆x〉2 +
ai,j+1 + ai,j−1 − aij

〈∆y〉2 .Isobari
 gradient and divergen
e in η-
oordinate presentation:
• In 
ontinuous 
ase:

Ĝ = Ĝ
+ = ∇− ∇p

m

∂

∂η

• In horizontally 
ontinuous, verti
ally dis
rete model:
Ĝkϕ = ∇ϕk −

1

∆pk
∇p∆ϕη

k

Ĝ
+

k · v = ∇ · vk −
1

∆pk
∇p · ∆v

η

k

• In 3D dis
rete model
(Ĝxφ)i+1/2jk =

1

hx
x

[

δxφ− (δxp)∆ηφ
xη

∆ηp
x

]

i+1/2jk

,

(Ĝyφ)ij+1/2k =
1

hy
y

[

δyφ− (δyp)∆ηφ
yη

∆ηp
y

]

ij+1/2k

.

(Ĝ+ · v)ijk = (Ĝ+
x u+ Ĝ+

y v)ijk =

1

(hxhy)ij

[

δx(hy
x
u) − hy

x
(∆ηu)δxp

xη

∆ηp
+ δy(hx

y
v) − hx

y
(∆ηv)δyp

yη

∆ηp

]

ijk

,
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Lagrangian time derivatives:
• 
ontinuous 2D:

dh
kf

dt
=
∂f

∂t
+ vk · ∇f,

• Dis
rete 2D:
dh

kf

dt
=
f(xk, t+ ∆t) − f(x∗, t)

∆t
,where x∗ is the proje
tion of departure point, whi
h destination is xk,onto surfa
e ηk;

• 
ontinuous 3D:
df

dt
=
∂f

∂t
+ v · ∇f + η̇

∂f

∂η
,Dis
rete 3D:

dkf

dt
=
f(xk, t+ ∆t) − f(x∗, t)

∆t
,where x∗ is the departure point for xk.7.5 Meteorologi
al �elds

A(η), B(η) � 
oe�
ients of verti
al 
oordinate p ↔ η transformation
Ak = A(ηk), Bk = B(ηk)

p(η) = A(η) +B(η)ps - pressure in η-
oordinate presentation
pk = Ak +Bkps

p0
s, ps(x, y, t) -surfa
e pressure
p̂s = exp(−fh/C2) - surfa
e pressure in referen
e state
χ = ln(ps/p̂s) - logarithmi
 pressure �u
tuation
m = ∂p/∂η - non-dimensional density of matter in η-
oordinates
ω = dp/dt , ωk+1/2 ωijk+1/2- 'omega-velo
ity', speed of pressure 
hange inelementary air volume
η̇ = dη/dt - η-velo
ity
v, vk, - horizontal wind ve
tor
u, uk, ui+1/2,jk, v, vk, vij+1/2,k, - 
omponents of the horizontal wind ve
tor
Dk = ∇· vk - horizontal divergen
e 38



T , Tk - temperature
T ′ = T − T 0

Φ - 
omplete geopotential
φ - nonhydrostati
 geopotential
ϕ , ϕ∗, ϕ0 hydrostati
 geopotential
aω, av, aT , aχ, aD nonlinear parts of for
ing
ω̂, v̂, T̂ , χ̂ - expli
it developments of ω, v, T ′ and χ at time-level t+ ∆t.
Aω,Av

, AT diabati
 and spe
tral smoothing terms
D, D̂ � sour
es in φ�equation
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