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Abstract

The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic

numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordin-

ate equations, is tested in model experiments with flow over given orography

(elliptical hill, mountain ridge, system of successive ridges) in a rectangular

domain with emphasis on the numerical accuracy and nonhydrostatic effect

presentation capability. Comparison demonstrates good (in strong primary

wave generation) to satisfactory (in weak secondary wave reproduction in

some cases) consistency of the numerical modelling results with known sta-

tionary linear test solutions. Numerical stability of the developed model is

investigated with respect to the reference state choice, modelling dynam-

ics of a stationary front. The horizontally area-mean reference temperature

proves to be the optimal stability warrant. The numerical scheme with ex-

plicit residual in the vertical forcing term becomes unstable for cross-frontal

temperature differences exceeding 30 K. Stability is restored, if the vertical

forcing is treated implicitly, which enables to use time steps, comparable with

the hydrostatic SISL.
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1 Introduction

In a recent paper (Rõõm et al 2006, PartI hereafter) we described the ar-

chitecture, SISL–implementation and numerics of a nonhydrostatic pressure

coordinate equation set, so-called MPW model (developed in works by Miller,

1974; Miller and Pearce, 1974; Miller and White, 1984; White, 1989). The

numerical scheme was specifically applied in the environment of HIRLAM

(Unden et al, 2002) with the aim to generate a numerically efficient non-

hydrostatic (NH) kernel to this numerical weather prediction model. The

developed NH SISL, (i) is a non-hydrostatic model in pressure-based, ter-

rain following hybrid-coordinates; (ii) makes use of a simplified, semi-elastic

NH scheme; (iii) presents a semi-Lagrangian advection model, aimed to work

at very short scales with grid step 1.0 km and finer; (iv) makes use of the

non-isothermal reference state with adaptive, isothermally area-mean refer-

ence temperature. All this makes the model rather novel even in comparison

with its explicit and semi-implicit Eulerian predecessors ( Männik and Rõõm,

2001; Männik et al, 2003), requiring careful check, whether the new scheme is

capable of short-scale dynamics modelling, and especially, of short-scale NH

effect resolving. In this paper we will report the high-resolution simulation

tests with the new numerical model. The applied testing method is rather

traditional and is used previously in many investigations (Laprise and Peltier,

1989; Ikawa and Saito, 1991; Pinty et al, 1995; Richie and Tanguay, 1996;

Nance and Durrand, 1998; Bouttier, 2002; Schär et al, 2002; Männik et al,
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2003; Klemp et al, 2003; Girard et al, 2005). For given orography, the flow is

modelled from a nonstationary initial state and boundary fields, both charac-

terised by given, height-dependent reference wind and temperature profiles,

until the modelled system – the dry-adiabatic atmosphere – reaches the sta-

tionary state with given accuracy. Depending on the area size, wind speed,

spatial and temporal resolutions, this may take about hundred to thousand

time steps, approximately corresponding to time interval ranging from one

to ten hours in the real time-scale. The obtained quasi-stationary solution

is then checked against the exact stationary solution, corresponding to the

same orography, stratification and boundary conditions. As the numerical

modelling experience shows, the traditional use in the role of reference stan-

dard of analytical model solutions with constant temperature, stability and

wind is not sufficient due to over-simplification of the atmospheric model. In-

stead, in the current research, the reference standard solutions are obtained

by numerically solving the linear discrete wave equation for given optional

stratification and wind shear conditions. The solution of this equation, re-

cently developed by Rõõm and Zirk (2006), though numerical, can be treated

as an exact reference standard, if solved at sufficiently high spatial resolu-

tion. Thus, more different model situations become accessible, and the model

quality check gains in reliability.

Another major subject of the investigation in this paper is the stability of

the created numerical model. The stability problem becomes actual, as an

height-(pressure-)dependent adaptive reference temperature is used in this
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numerical scheme, which has been reported previously as a source of in-

stability in the hydrostatic primitive-equation case (Simmons, Hoskins and

Burridge, 1978, SHB78 hereafter). Especially unstable proved to be situa-

tions with large negative initial temperature difference from reference state,

which occurs, for instance, if the reference temperature corresponds to the

tropical troposphere and the initial state is considered an arctic cold tem-

perature distribution. To avoid the instability occurrence, SHB78 proposed

to apply a relatively warm isothermal atmosphere for the reference state.

This choice has been afterwards applied with success in different hydrostatic,

primitive equation based numerical schemes, including the ECMWF model

(Ritchie et al 1995) and HIRLAM (McDonald and Haugen, 1993). With the

implementation of fully elastic hybrid-coordinate equations (Tanguay et al,

1990; Laprise, 1992; Bubnova et al, 1995), the constant warm reference tem-

perature approximation was reported to be unstable either for 2-time level

SISL schemes by Benard (2003), who found that no one reference profile can

warrant stability in the fully elastic case and the only solution will be an ap-

plication of the fully implicit linear sub-system. Later on, the destabilization

was found by Benard (2004) to be originating from a systematic negative cor-

relation of explicit parts of gravity and sound wave terms in SISL equations,

and the application of two different constant reference temperatures simul-

taneously in SISL equations was proposed by him as a solution for stability

restoration (ibid).

In the light of these investigations, the approach with an height-dependent
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reference temperature profile presents rather challenging. However, the lin-

earised with respect to initial temperature fluctuation system, presented in

Part I, allowed to suggest that the height-dependent reference temperature

might not be a limiting factor in the present model, and the conditional sta-

bility of linear sub-model with respect to initial temperature fluctuations was

claimed. These claims will be backed up with results of numerical simula-

tions presented in the second half of this paper. The stability investigation is

performed, modelling straight geostrophically balanced thermal fronts. Front

modelling proves to be a powerful tool for stability study, as it provides ana-

lytical initial and boundary condition for numerical model, allowing at that

for independent manipulation with cross-frontal temperature contrast and

maximum wind speed.

Equations of the Part I will be referred in this paper as (I.#) with # standing

for actual equation number.
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2 Orographic wave modelling

2.1 Models of orography and atmosphere

The modelling area is a rectangular domain

0 ≤ x ≤ Lx = Nx∆x, 0 ≤ y ≤ Ly = Ny∆y,

with grid of Nx × Ny of equidistant points xi, yj.

For orography, a ’Witch of Agnesi’-type isolated hill is described with the

function

h(x, y) =
h0[

1 + (x − x0)2/a2
x + (y − y0)2/a2

y

]s , (1)

where h0 is the mountain height, ax, ay are the half-widths of the hill along

coordinate axes, and x0, y0 are the coordinates of the hill-centre. Parameter

s is either 1.5 or 1. Also an orography is used, proposed by Schär et al (2002)

h(x) = h0 exp

[
−

(
x − x0

ax

)2
]

cos2

(
π

x − x0

λ

)
(2)

which presents a system of successive mountain ridges, perpendicular to the

incoming flow, with the main ridge having height h0, located at x0, and

secondary ridges on both sides from the main ridge at distances ±λ, ±2λ ...,

decreasing in top-heights according to the normal law. In recent years, this

profile has gained popularity due to ability to reveal the model quality with

respect to numerical accuracy (Schär et al, 2002; Klemp and Skamarock,
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2003; Girard et al, 2005).

The model input parameters are pressure-dependent background tempera-

ture T 0(p), basic wind profile U(p) and the reference surface pressure, spec-

ified parametrically for given orography via barometric formula

gh(x, y) = R0

∫ p0
s

p̂s

T 0(p)

p
dp,

where R0 is the gas constant of dry air and p0

s = 105 Pa presents the mean

sea level pressure.

The initial state is characterised by reference temperature T 0(p) and wind

profile iU(p), where i is the unit vector in x-direction. The wind profile is

taken independent of x, y coordinates initially and then adjusted to a mass-

balanced initial wind profile V(x, y, p), satisfying condition

∇ ·

∫ p̂s

0

Vdp = 0.

The adjustment procedure is described in (Männik and Rõõm, 2001).

Profiles V(x, y, p) and T 0(p) also serve as boundary fields, specifying the flow

conditions at lateral boundaries.

The used initial wind and reference temperature profiles together with the

corresponding Brunt-Väisälä frequencies are presented in Fig. 1. Temper-

ature model T1 is the isothermal atmosphere case with T 0 = Ts = 280 K

and constant N = g/
√

cpTs = 0.018 s−1. Model T2 describes an atmosphere
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with constant N = 0.01 s−1. Temperature profile T3 corresponds to the

constant ratio T 0

∗
(p)/T 0(p), where T 0

∗
(p) is the ’stability’ temperature (see

Part I). Model T4 is based on experimentally sounded temperature profile

(Shutts and Broad, 1993) and used in several numerical modelling studies

(Nance and Durran, 1998; Bouttier, 2002, Männik 2003). The wind profile

U3 (Fig. 1c) is also based on the same experimental sounding. Other two

profiles present constant 10 m s−1 wind (U1) and 25 m s−1 wind (U2).

The adiabatic model NH SISL HIRLAM is launched from initial conditions,

described above, and modelled until a quasi-stationary limiting flow regime

is achieved. This stationary state is then checked against an appropriate

exact stationary solution of the corresponding linear model. To have results,

comparable with linear solution, the mountain height h0 must be chosen

moderate ( < 300 m), though qualitative coincidence is observable up to h0

= 1 km (but the small slant condition h0/ax ≤ 0.1 must be maintained in all

cases). For the reference, exact stationary solutions of the discrete (in the

spirit of SISL-scheme) linear model (Rõõm and Zirk, 2006) are applied.

2.2 Modelling of quasi-stationary buoyancy waves

Experiments with different atmospheric and orographic conditions are pre-

sented in following. The purpose of these experiments is to demonstrate that

the developed adiabatic NH SISL scheme gives reliable results and catches

all nonhydrostatic phenomena properly. General features, common to all
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following experiments with NH SISL model, are (i) absence of any sponge

layer on the top, (ii) weak fourth-order spectral filtration with 0.1 smoothing

level (the standard level 1 corresponding to damping of the highest spectrally

resolved horizontal disturbances at each time step by factor two), (iii) use

of zero-level decentering, ε = 0 (see Part I) at time-averaging procedures.

Exception is a particular experiment, where the damping influence of ε > 0

will be investigated especially.

2.2.1 Hydrostatic flow tests

In the first experiment, presented in Figure 2, the mountain is an one-

dimensional ridge (1) with height h0 = 250 m and half-widths ax = 30 km,

ay = ∞. The atmosphere is considered isothermal with T = Ts = 280 K,

N = g/
√

cpTs = 0.018 s−1 and the wind is constant U = 25 m s−1, ie. the

atmospheric model is T1U2 in Fig. 1.

A dimensionless parameter Nh/U is often used (Laprise and Peltier, 1989;

Baines, 1995) to characterise the flow properties. In the current case Nh/U =

0.18, which is small enough to assume the linearity of the flow. The second

well-known parameter Nax/U is a valid indicator of the nonhydrostatic char-

acter of the flow. For the first experiment its value is much larger than 1,

which corresponds to the hydrostatic flow regime. Thus, here we deal with

the typical linear hydrostatic flow regime. Figure 2 shows the results of 6

hour integrations with (a) NH SISL and (b) HS SISL compared to the an-

alytic solution (c). This is the only example in the present investigation,
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where analytical test-solution is applicable without admission, though the

numerical linear model would give exactly the same result. The used grid is

114×100 horizontal points with 11 km resolution and 62 levels, which is the

HIRLAM doubled 31-level eta-grid, slightly smoothed to avoid oscillation of

the layer depth ∆ηk with height.

As it can be seen, the mutual coincidence of the NH and HS numerical mod-

els, as well as the coincidence with the analytical solution is perfect in the

lower and middle atmosphere. In the upper atmosphere the coincidence is

satisfactory as well. The experiment shows that the developed nonhydro-

static model can adequately simulate hydrostatic flows over mountains.

2.2.2 Non-hydrostatic flow tests

In the second experiment, presented in Figure 3, the performance of the

model in the linear nonhydrostatic flow regime is investigated. A mountain

ridge with 250 m height and the half-widths ax = 2.5 km, ay = ∞ is chosen.

The atmospheric model is T3U2 In Fig. 1, i.e the temperature is decreas-

ing, the stability is increasing exponentially with height, while wind remains

constant on all levels. The model grid is 206 × 100 × 62 with 550 m hori-

zontal resolution, and the integration time is 1 h. Parameters Nh/U ∼ 0.1

and Nax/U ∼ 1 indicate that the observable flow regime is linear and non-

hydrostatic. It can be seen that the NH SISL (panel a) is almost perfect in

representing the flow, giving the right location and amplitude of the cells. As

expected, in this highly nonhydrostatic regime the HS SISL (Fig. 3b) is not
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able to catch the downstream tilt of the wave pattern. Its wave amplitude

has a wrong, considerably stronger growth rate with the height than the NH

linear model predicts. Due to such strong growth rate, the HS model requires

a top sponge layer and intensive horizontal fourth order spectral smoothing.

For comparison, the NH SISL does not require any damping on the top at

all.

In the model experiment, presented in Figure 4, simulation of the nonhy-

drostatic flow over a circular hill with ax = ay = 2.5 km, h0 = 250 m is

carried out. The atmospheric model (T3U2) as well as the grid parameters

are the same as for previous experiment. Panels (a) and (b) in Fig. 4 present

simulations from NH SISL and HS SISL, respectively, panel (c) presents the

linear stationary solution. The horizontal cross-sections of the vertical wind

at 500 hPa are given. As it can be seen, the nonhydrostatic model is close to

the linear reference model in the simulation of the nonhydrostatic flow fea-

tures, though sensible weakening of the wave-amplitude in comparison with

test case (c) is already evident on the 500 hPa level. At the same time,

the wave pattern of the hydrostatic model (panel b) is completely different,

though consistent with the theory of hydrostatic flow.

2.2.3 Experiments with flow over mountain ridge system

In these experiments, the orography is modelled with profile (2), presenting

a system of mountain ridges, perpendicular to the main flow. Parameters

are chosen equal to those used by Schär et al (2002): h0 = 250 m, λ = 4
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km, ax = 5 km. The atmospheric model is T2U1 in Fig. 1, ie., the model

with constant stability N = 0.01 s−1, consistently decreasing with the height

temperature, and constant moderate wind U = 10 m s−1 throughout the

atmosphere. The grid is 276×100 points horizontally, with 550 m grid-step,

and the standard HIRLAM 100-level eta-grid in vertical.

Simulation results are presented in Figure 5. In the close vicinity of the

mountains, the separate ridges are resolved by flow, which is observable as

an intense, vertically oriented, evanescent wave pattern below 700 hPa level.

Above that level, the mountains together with the trapped waves are treated

by flow as a single bell-shaped orographic feature, generating a slant upward

propagating, quasi-hydrostatic wave-train of relatively large amplitude. Be-

low 400 hPa the coincidence between NH SISL HIRLAM and and reference

model is quite good. Above 400 hPa level the wave crest locations start to

diverge, the NH SISL model places them slightly downs-stream and on the

lover levels. At the same time, the wave amplitudes are right. Additional

weak secondary waves with ∼ 0.1 ms−1 amplitude, propagating up to 50 km

distance down-stream from the ridge system centre in the NH SISL model,

and 80 km distance in the linear stationary case, are generated by primary

waves. In this weak secondary wave pattern, the differences between non-

stationary NH SISL model and test case are most remarkable. NH SISL

produces some stronger secondary waves in the upper troposphere, observ-

able as the down-stream prolongation of primary hydrostatic waves. The

reference model (Fig. 5b) gives only some weak waves in the form of isolated

13



bubbles in the same area. At the same time, the nonstationary model is not

able to reproduce weak pattern at the upper boundary between 80 to 100

km down-stream.

The general conclusion from this model experiment is, that in these rather

complex orographic conditions, the NH SISL scheme manages well with pri-

mary wave generation but is not sufficiently eager to reproduce weak down-

stream secondary waves in the upper troposphere, in creation of which it

succeeds qualitatively but not much quantitatively.

2.2.4 Experiments with sounded wind and temperature profiles

The variability of wind with height and the tropopause presence in the tem-

perature profile, manifesting itself in the abrupt jump of the Brunt-Väisälä

frequency at the tropopause transition, alters the orographic wave pattern

radically. Long, intense, down-stream propagating stationary wave-trains

appear in the troposphere.

Modelling of such an elongated, stationary wave pattern from an initially

wave-free laminar flow conditions is a rigorous challenge for any nonstation-

ary numerical model in several aspects. First, the down-stream weakening of

wave amplitude and shifts in wavelength are sensitive indicators of multiple

energy dissipation mechanisms hidden in nonstationary numerical schemes,

most of them of numerical rather than physical origin, like the fourth order

spectral filtration, the Robert - Asselin (Robert, 1969; Asselin, 1972) time
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smoothing, which is usual in leap-frog schemes, application of top sponge lay-

ers (second order filtration and/or Rayleigh damping), the multiple interpo-

lations, which are common in SISL schemes, and approximation of trajectory

integrals with two-point quadratures with decentering parameter ε, applied

optionally also in the current model (see (I.11)). Second, the wave trains,

reaching in some cases (assuming a frictionless flow) up to thousand kilome-

tres in longitude, will leave the integration area through lateral boundary.

Thus, the boundary relaxation scheme quality will be tested in two aspects:

(i) whether it is reflective or not with respect to incident waves, and (ii) how

deep into the internal regions of the domain of integration the boundary zone

damping influence will reach.

In Fig. 6 , the results of modelling with wind profile U3 and temperature

profile T3 are presented. The grid and the resolution is the same as in the

previous experiment. The orography is presented by isolated ridge (1) with

h0 = 100 m and ax = 3 km, ay = ∞. In Fig. 6a, modelling with NH SISL

scheme is presented. The integration time step is 50 s, and the integration

time is 4 h. In Fig. 6b, the reference solution of stationary linear problem

is presented, while Fig. 6c reproduces the results NH SISL again, but the

decentering parameter is put ε = 0.1 (in all previous experiments it was zero).

Comparison of Fig. 6a to the test solution in Fig. 6b reveals very good

coincidence of both models in wave amplitude, wave crest location, and wave-

length presentation. However, differences are apparent in the fine structure of

waves which increase with the height. In Fig. 6a, a weakening and dissipation
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of incident wave in the right-end lateral boundary relaxation zone is apparent,

but no reflection and propagation of dissipation into domain outside the

boundary relaxation zone is observable. The reference solution (Fig. 6b)

gives much longer wave train than shown in figure, spreading about 250

km in longitude and reaching far outside the modelling domain of the NH

SISL scheme (151.25 km in present experiment). At the same time, some

weak spurious waves are generated at the left top edge of the area and some

weak waves are reflected upstream from mountain in Fig. 6a. From Fig.

6c follows, that the nonzero decentering parameter ε = 0.1 is a cause of

significant down-stream wave energy dissipation. The purpose of ε is to

increase the weight of final state in trajectory integrals, and in this way, to

increase the stability of numerical scheme, which is acute, if the initial and

boundary data are noisy (typical to real forecast situation). However, as the

presented examples reveals, nonzero ε should be avoided, applying rather

additional spectral smoothing to initial and boundary data.

3 Numerical stability

3.1 Stability problem

As it was stated in the Part I, the linear sub-model (I.29) of the present

SISL scheme proves to be numerically stable for sufficiently short time steps

(which was called as the conditional stability), if the reference atmosphere is
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hydrostatically stable, T 0

∗
> 0, and the explicit residual coefficients (I.30a),

(I.30c) satisfy conditions |εφ| < 1, |εφ| < 1. It can be expected, that the

maximum stable time-step is dependent on these coefficients in the nonlinear

numerical scheme, also. In addition, in the moving media, the available time

step will be certainly affected by the maximum material speed Umax (which

determines the maximum Lagrangian trajectory length during a single time-

step). However, the size of actual maximum stable time step remains for the

nonlinear full scheme open and must be established experimentally.

In SHB78 it was shown that a SISL scheme can prove unstable, if the non-

isothermal reference atmosphere is applied, while the actual atmosphere is

systematically colder and has an essentially lowered tropopause. Such condi-

tions we shall refer further as the SHB test. We will investigate the numerical

stability of the full nonlinear SISL scheme on the SHB test example. How-

ever, the experiment set-up is a little tricky, as in our case, a systematic

lowering of the initial temperature (i.e. systematic negative initial tempera-

ture fluctuation T̃ ) from T 0(p) in the whole modelling domain is impossible

due to the choice of T 0(p) as the area-mean of actual temperature for fixed p

at every instant. We can only reach and study model situations, where one

half of the domain is much colder than the other. This assumes a thermal

front introduction with systematic change of tropospheric temperature and

tropopause height through the front. Then, the atmosphere is much colder

and the tropopause is much lower on the one side of the front, where the

SHB test conditions become locally relevant.
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The dynamical situation build-up is shown in Fig. 7. A front with straight

parallel isotherms on all levels and with geostrophic thermal wind vT , blowing

along isotherms, moves as a shape-maintaining body with constant velocity

vb, which is the barotropic geostrophic wind, caused by a constant surface

pressure gradient. Thus, the complete velocity of an air particle is formed

as the sum of the local thermal wind velocity and front replacement veloc-

ity. Numerically, front development inside of the inner rectangle (integration

domain) is modelled using the SISL scheme. As the analytical solution is

known, it is used for the lateral boundary condition specification.

With front dynamics modelling, another concurring instability mechanism

can appear, which is the baroclinic instability. This is essentially different

from the numerical instability and manifesting itself in a long-wave, slow

bending and deformation of the initially straight front. Such large develop-

ment can be easily distinguished from the numerical instability, presenting a

short-scale noisy pattern. Also, the time scale of baroclinic development is

much longer than the numerical instability time scales. In addition, the lat-

eral boundary conditions, fixed in our case via Davies’ boundary relaxation

scheme, exhibit certain stabilizing effect, preventing from baroclinic instabil-

ity growth. Thus, in the following modelling experiments with maximum 24

h development time no sensible front bending is fixed, though the numerical

scheme actually supports such kind of dynamical instability development.
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Temperature profile in the frame, moving with front, is given by formula

T (ζ, η) = max {Ts(ζ)a(η), T1} , (6)

Ts(ζ) = T0 +
∆Ts

π
arctg(ζ/ζ0), a(η) = Q + (1 − Q)ηκ.

where ζ is the distance from the front central axis, Ts(ζ) is the surface tem-

perature, T0 =285 K, T1 = 225 K are the mean surface and constant strato-

spheric temperatures, respectively, ∆Ts is the surface temperature difference

through the front, which is the main variable modelling parameter; ζ0 = 100

km presents the half-width of the front, whereas parameter Q is chosen from

condition a(η1) = T1/T0, where η1 = 0.3 is the mean tropopause height in

eta-coordinates.

In Fig. 8, (a) temperature profiles and corresponding amplitude factors of the

linear model (c) εφ, and (e) εω in the front with tilted tropopause are shown

for ∆Ts = 20 K (referred Front A hence on). For comparison, in panels (b),

(d), and (f), the corresponding graphs are presented for the same cross-frontal

surface temperature difference but with front extinction to the tropopause

level with the consequent tilt-free tropopause (Front B). TC = T (−∞, η) and

TW = T (∞, η) in panels (a) and (b) present the ultimate local temperature

profiles far from the front central axis, while T 0(η) is their average in the role

of the area-mean reference temperature. The cross-frontal temperature jump

∆T = 20 K is near the observed maximum in local area models. Thus, the

amplitude factors εφ, εω, which are expectedly the main stability influencers,
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give some idea on the maximum size of these parameters in real conditions:

|εφ|max ∼ 0.07 and |εω|max ∼ 0.5. For comparison, the maximum values for

the same temperature distributions, but for isothermal reference state T0 =

285 K would be |εφ|max ∼ 0.07, |εω|max ∼ 0.8. Thus, reference temperature

manipulations would affect mostly the size of εω. Note, that εφ, εω in Fig.

8 present characteristic of the linear model and are explicitly absent in the

nonlinear scheme. To εφ → 0, in nonlinear case the transition from SVF to

IVF scheme corresponds.

3.2 Stability experiments

Experimentation shows that model performance and stability properties do

not depend on the transitional movement of the front neither on the front

orientation. In following, results of the modelling of a steady front, tilted at

45 deg with respect to the x-axis are presented. The grid in this simulation

is a 114x100x62 set, with 11 km (0.1 arc degree) horizontal resolution and

standard HIRLAM η-distribution. For the resolution effect study, also the 22

and 3.3 km resolutions have been applied in comparative experiments. No top

sponge layer is applied; the 4rth order spectral filtration has 0.1 smoothing

level. The standard for maximum wind speed, which is reached on the top

of front centre, is chosen ≈ 100 m/s. The wind speed is manipulated via

Coriolis parameter. As an instant, f = 0.0002 1/s gives umax = 101 m/s for

front A, while f = 0.0001 1/s gives umax = 102 m/s for front B.
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Fig. 9, panels (a) and (c) show the wind v-component (due to 45 deg angle of

the front, cross section of the u-component is identical by absolute value) and

fluctuative temperature T̃ vertical cross-sections along x-axis at y = 0 after

24 hour development. The exact (analytical) solutions are indicated with

broken lines. Modelling is carried out with SVF scheme. The SVF scheme

behaves in this example stably and the solution accuracy is good, though

the horizontal temperature difference ∆T = 20 K is quite meaningful. The

stability is achieved due to application of sufficiently short time step which is

120 s in this particular example. Modelling with IVF scheme gives the same

profiles, but the available time step will be 2.5 times longer, 300 s. Modelling

with SVF scheme in non-stable mood with ∆t = 180 s, exceeding the stable

time-step limit of SVF scheme, is shown in Fig. 9b and 9d. Short-scale

wind and temperature disturbances develop in the central part of the front,

while the temperature field becomes noisy also in the stratosphere. With the

further time step increase, the instability growth will speed up rapidly. In

the case of the constant reference temperature T 0 = 285 K, when εω takes

large negative value in the troposphere on both sides of the front, the SVF

scheme becomes unstable even at time step ∆t = 10 s.

The stable behaviour of the SVF scheme in real conditions, including rea-

sonably large temperature differences throughout the integration domain,

allowed to apply this model in numerical weather forecast at 3.3 km resolu-

tion (Rõõm et al 2006), though the time step gave up in comparison with

the hydrostatic model. The forecasting performance showed also reasonably
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good quality. However, as recent experimentation in more ’severe’ tempera-

ture difference conditions has revealed, this scheme becomes unstable, if the

cross-frontal reference temperature difference ∆Ts becomes very large. The

rapid time step decline starts soon after 20 K threshold is surpassed and ∆t

becomes zero, i.e., the SVF scheme becomes unstable, if ∆Ts > ∆Tcr ∼ 30

K, to which |εφ|η=1 ∼ 0.1, |εω|η=1 ∼ 0.5 correspond. The exact value of ∆Tcr

will depends also in some extent on the maximum wind speed. This result

exhibited that the SVF scheme possesses conditional stability with condition

∆Ts < ∆Tcr. Though not fatal in local-area modelling with the domain lat-

eral flanks not exceeding 1000 - 1500 km, as ∆Ts remains in common below 10

- 20 K, the associated conditional instability remains dangerous, as there is no

guaranty that the critical temperature difference can’t be locally surpassed

in extraordinary circumstances, despite of the optimum area-mean choice

of reference temperature. In addition, the available maximum time-step of

SVF scheme remains modest even in the conditions of moderate temperature

contrasts < 20 K. Thus, it would be eligible to get rid of the dependence of

stability on the cross-area temperature difference ∆Ts.

Numerical modelling shows that the time step size (as a stability measure) is

most sensitive with respect to the size of parameter εφ, which is proportional

to ∆Ts in front experiments. In particular, the SVF variant becomes uncon-

ditionally stable with respect to size of ∆Ts, if the explicit residual of vertical

forcing is nullified in numerical scheme, to which εφ ≡ 0 corresponds in the

linear case. By the way, this property agrees with the linear theory prediction
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(referenced in Part I) that the system becomes unconditionally stable, if |εω|

< 1 and |εω| = 0. Though much less by amplitude than εω, parameter εφ,

i.e. the explicit residual of vertical forcing, turns meanwhile to be the main

determinator of stability properties of the scheme. The natural way of the

explicit residual elimination in vertical forcing without distortion of physics

is to apply the IVF scheme. This modification really removes restrictions to

the size of ∆Ts. In Fig. 10, Front A type modelling is shown with the IVF

scheme, but in this example, the cross-frontal temperature difference ∆Ts =

60 K, which is approximately the difference in climatological mean tropical

and polar temperatures. The front half-width ζ0 = 200 km. To maintain the

maximum wind speed at 100 m/s level, the Coriolis parameter is chosen f =

0.0003 1/s . Left panels present T and v-component of wind for maximum

stable time step, which is 300 s (5 min) in this particular 11 km resolution

case. Right panels show unstable behaviour at 7 min time step. The max-

imum available time-step agrees with the time step of the hydrostatic SISL

scheme in similar conditions.

Numerical experimentation shows, that for IVF the best choice of T 0 still

remains the area-mean (I.4), but system stability is not so much sensitive to

the moderate departures of the reference temperature from the area-mean

distribution, as it was in the case of SVF scheme. As an example, the warm

isothermal reference atmosphere with T 0 = Ts = 285 K provides still a stable

profile, yet causes a 25 % decrease of the maximum time step from 5 to 4

minutes. The maximum available time step in IVF scheme becomes roughly
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independent of temperature contrast ∆T . Another important property of the

IVF scheme is, that the time step is inversely proportional to the maximum

wind-speed. As an example, for maximum wind speed 50 m/s, the maximum

time step becomes 9 min. This property was violated in the SVF scheme,

also. Finally, in the IVF case, the available maximum time step is roughly

inversely proportional to the horizontal resolution, though a certain relative

improvement is observable. For instance, a front A experiment like in Fig.

9 and with the same maximum wind, but on the horizontal resolution ∆x

= 3.3 km, gives ∆t = 120 s. Thus, the IVF approach proves to be really

effective, as it removes all shortcomings of the former SVF scheme.

4 Discussion

The modelling with developed semi-elastic NH SISL kernel dynamics with

artificial orography and model atmosphere has shown that this model is ca-

pable of adequate catching of NH effects. In most cases the coincidence with

stationary reference model prediction is quite good. There remain some un-

satisfactory results, where the model is not capable of adequate secondary

weak wave pattern reproduction, example of which was presented in Fig. 5a.

The reason for distortion of secondary waves in this experiment is not com-

pletely clear, but indicates, that a further model improvement is possible.

However, this unresolved problem concerns the modelling of marginal sec-

ondary wave details. The main wave pattern is modelled rather well, as also
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demonstrates the modelling with the realistic atmosphere (Fig. 6). More-

over, the generation of primary waves by mountains, responsible for wave

energy extraction from the main flow and for consequent wave-drag creation,

is modelled coincidently with the reference model.

The stability study, presented in Section 3 of this paper, reveals, that the

model stability depends mainly on the usage of the vertical forcing term in

the vertical momentum equation. The stability of the SVF scheme , sepa-

rating vertical forcing to the implicit linear main part and nonlinear explicit

residual, is limited to ’mild’ cross-area temperature contrasts less than 20

K and disappears completely, if the cross-area temperature difference over-

passes 30 K. However, the SVF becomes actually unfit for operational use at

20 K contrast already due to too small time step. The SVF scheme can be

applied, if the cross-area temperature contrast does not exceed 5 - 10 K, in

which case it even proves computationally more economical than IVF. The

dependence of the maximum time-step on the cross-area temperature con-

trast along with stability loss at large temperature differences present main

shortcomings of the SVF scheme.

Concerning the reference temperature choice, the SVF scheme is rather sen-

sitive to it. The most stable profile proves to be the area-mean temperature

(I.4). With T 0(p) departure from it, the time step becomes to decrease, while

instability arrives at lesser cross-area temperature contrasts. The isothermal

reference temperature proves absolutely unstable (ie. unstable at option-

ally small time step) at all instances. In this respect the instability in SVF
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scheme is different from the SHB78 type instability, where stability warrant

proved to be just the isothermal profile. Also, the instability in SVF case

appears to be insensitive to tropopause tilt. However, some kind of relation-

ship the SVF-type and SHB78-type instabilities possess, as both arrive at

large cross-area temperature contrasts.

Contrary to SVF case, the alternative IVF scheme, which treats the nonlinear

vertical forcing completely in implicit fashion, proves to be stable indepen-

dently of the cross-area temperature contrasts and enables time-steps, com-

parable with the time-step of HS SISL in similar conditions. The IVF scheme

is less sensitive to the reference temperature choice, though the area-mean

profile (I.4) remains still the most optimal one. As an example, it proves

stable with the isothermal reference temperature also, though the ’prise’ for

that will be 25 % loss in the time step size.

The IVF scheme consumes in adiabatic mode in comparison with SVF case

approximately 1.5 times more computational time per single time-step due to

the usage of the iterative scheme for omega-equation solution. However, this

superfluous time-consumption is in full compensated by the gain in the time-

step. At all, this scheme exhibits excellent stability properties independently

from the amplitude of the cross-frontal temperature difference, being robust

and safe for operational applications.
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Figure Captions

Figure 1.

Reference profiles of temperature T 0(p) , Brunt-Väisälä frequency N(p), and

wind U(p), used in model experiments.

Figure 2.

Waves of the vertical velocity field in hydrostatic flow over 2D obstacle.

Mountain parameters are h0 = 250 m and ax = 30 km. Isothermal at-

mosphere with N = 0.018 s−1 and U = 25 m/s (Model T1 U2). Contour

interval is ∆w = 0.05 m/s. 114 × 100 × 62 grid with 11 km resolution.

Figure 3.

Waves of the vertical velocity field in nonhydrostatic flow over 2D obstacle.

Mountain parameters are h0 = 250 m and ax = 2.5 km. Flow with increasing

with height N and constant U = 25 m/s (Model T3 U2). Contour interval

is ∆w = 0.2 m/s. 206 × 100 × 62 grid with 550 m resolution.

Figure 4.

Horizontal cross-section at 500 hPa of the vertical velocity waves in non-

hydrostatic flow over 3D obstacle. Mountain parameters are h0 = 250 m

and ax = ay = 2.5 km. Flow with increasing with height N and con-

stant U = 25 m/s (Model T3 U2). Contour interval is ∆w = 0.1 m/s.

276 × 100 × 62 grid with 550 m resolution.

Figure 5.

Waves of the vertical velocity field in flow over 2D obstacle consisting of
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group of mountains. Mountain group parameters are h0 = 250 m, λ = 4 km

and a = 5 km. Nonisothermal atmosphere with constant N = 0.01 s−1

and U = 10 m/s (Model T2 U1). Contour interval is ∆w = 0.1 m/s.

276 × 100 × 100 grid with 550 m resolution.

Figure 6.

Wave train formation in a flow with realistic wind shear and thermal stratifi-

cation (Model U3 T4). Mountain parameters are h0 = 100 m and ax = 3 km.

Contour interval is ∆w = 0.05 m/s. 276 × 100 × 100 grid with 550 m reso-

lution.

Figure 7.

Scheme of the moving front experiment. Straight lines are the isotherms on

an optional fixed η-level. ∇pT
′ and v are the temperature gradient and ther-

mal wind vectors on this level. The front moves as a rigid body with constant

(geostrophic) velocity vg. Inner rectangle is the integration area, in which

front movement is integrated numerically. Boundary fields are obtained from

analytical solution.

Figure 8.

Temperature profiles for a front with tropopause tilt (a) , and without

tropopause tilt (b). Tc and Tw - temperatures on the cold and warm sides of

the front far from the front central axis, T 0 - reference temperature for the

area of integration. The mean tropopause height is 300 hPa in both cases.

Panels (c) and (d) show the corresponding to (a) and (b) parameter εφ, (e)
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and (f) - parameter εω, for (W) warm and (C) cold area.

Figure 9.

Zonal (y=0) vertical cross sections of the meridional wind component (top

panels) and temperature fluctuation (bottom panels) for stable integration

mode (left panels, ∆t = 120 s, 24 h development) and for unstable integration

mode (right panels, ∆t = 180 s, 6 h development). Tropopause location is

marked by the heavy line. Dotted contours mark the exact solution. Isotachs

and isotherms are drawn with 5 m/s and 1.0 K interval, respectively.

Figure 10.

Zonal (y=0) vertical cross sections of the meridional wind component (top

panels) and temperature fluctuation (bottom panels) for stable integration

mode (left panels, ∆t = 300 s, 24 h development) and for unstable integration

mode (right panels, ∆t = 420 s, 6 h development). Tropopause location is

marked by the heavy line. Dotted contours mark the exact solution. Isotachs

and isotherms are drawn with 5 m/s and 2.0 K interval, respectively.
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Figure 1: Reference profiles of temperature T 0(p) , Brunt-Väisälä frequency
N(p), and wind U(p), used in model experiments.
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Figure 2: Waves of the vertical velocity field in hydrostatic flow over 2D
obstacle. Mountain parameters are h0 = 250 m and ax = 30 km. Isothermal
atmosphere with N = 0.018 s−1 and U = 25 m/s (Model T1 U2). Contour
interval is ∆w = 0.05 m/s. 114 × 100 × 62 grid with 11 km resolution.
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Figure 3: Waves of the vertical velocity field in nonhydrostatic flow over 2D
obstacle. Mountain parameters are h0 = 250 m and ax = 2.5 km. Flow with
increasing with height N and constant U = 25 m/s (Model T3 U2). Contour
interval is ∆w = 0.2 m/s. 206 × 100 × 62 grid with 550 m resolution.
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Figure 4: Horizontal cross-section at 500 hPa of the vertical velocity waves in
nonhydrostatic flow over 3D obstacle. Mountain parameters are h0 = 250 m
and ax = ay = 2.5 km. Flow with increasing with height N and constant U =
25 m/s (Model T3 U2). Contour interval is ∆w = 0.1 m/s. 276 × 100 × 62
grid with 550 m resolution.
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ing of group of mountains. Mountain group parameters are h0 = 250 m,
λ = 4 km and a = 5 km. Nonisothermal atmosphere with constant
N = 0.01 s−1 and U = 10 m/s (Model T2 U1). Contour interval is
∆w = 0.1 m/s. 276 × 100 × 100 grid with 550 m resolution.

39



0

200

400

600

800

1000
0 20 40 60 80 100 120 140

P
re

ss
ur

e 
(h

P
a)

X (km)

(a) nonhydrostatic

0

200

400

600

800

1000
0 20 40 60 80 100 120 140

P
re

ss
ur

e 
(h

P
a)

X (km)

(b) stationary linear

0

200

400

600

800

1000
0 20 40 60 80 100 120 140

P
re

ss
ur

e 
 (

hP
a)

X (km)

(c) nonhydrostatic, ε = 0.05

Figure 6: Wave train formation in a flow with realistic wind shear and thermal
stratification (Model U3 T4). Mountain parameters are h0 = 100 m and
ax = 3 km. Contour interval is ∆w = 0.05 m/s. 276 × 100 × 100 grid with
550 m resolution.
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Figure 7: Scheme of the moving front experiment. Straight lines are the
isotherms on an optional fixed η-level. ∇pT

′ and v are the temperature gra-
dient and thermal wind vectors on this level. The front moves as a rigid
body with constant (geostrophic) velocity vg. Inner rectangle is the inte-
gration area, in which front movement is integrated numerically. Boundary
fields are obtained from analytical solution.
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Figure 8: Temperature profiles for a front with tropopause tilt (a) , and
without tropopause tilt (b). Tc and Tw - temperatures on the cold and warm
sides of the front far from the front central axis, T 0 - reference temperature
for the area of integration. The mean tropopause height is 300 hPa in both
cases. Panels (c) and (d) show the corresponding to (a) and (b) parameter
εφ, (e) and (f) - parameter εω, for (W) warm and (C) cold area.
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Figure 9: Zonal (y=0) vertical cross sections of the meridional wind com-
ponent (top panels) and temperature fluctuation (bottom panels) for stable
integration mode (left panels, ∆t = 120 s, 24 h development) and for unstable
integration mode (right panels, ∆t = 180 s, 6 h development). Tropopause
location is marked by the heavy line. Dotted contours mark the exact so-
lution. Isotachs and isotherms are drawn with 5 m/s and 1.0 K interval,
respectively.
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Figure 10: Zonal (y=0) vertical cross sections of the meridional wind com-
ponent (top panels) and temperature fluctuation (bottom panels) for stable
integration mode (left panels, ∆t = 300 s, 24 h development) and for unstable
integration mode(right panels, ∆t = 420 s, 6 h development). Tropopause
location is marked by the heavy line. Dotted contours mark the exact so-
lution. Isotachs and isotherms are drawn with 5 m/s and 2.0 K interval,
respectively.

44


