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By REIN RÕÕM ∗, AARNE MÄNNIK and ANDRES LUHAMAA, Institute of Environmental Physics,
Tartu University, likooli 18, 50090 Tartu, Estonia

(Manuscript received 9 August 2006; in final form 19 March 2007)

ABSTRACT
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate
equations, constituting a modified Miller–Pearce–White model, in hybrid-coordinate framework. Neutral background
is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and loga-
rithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A dis-
closure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for
omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create
a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory
computation algorithms and interpolation routines, as well as the physical parametrization package are maintained
from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the
initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative
departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit
term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

1. Introduction

Since the original demonstration of the efficiency advantage of
the semi-implicit semi-Lagrangian (SISL) method by Robert
(1981), this numerical integration scheme is being used in an
increasing range of atmospheric models.

First the SISL-ideology to integrate the hydrostatic (HS) prim-
itive equations numerically was proposed by Robert for shallow
water equations (1981, 1982), encouraged by the earlier posi-
tive experience with the semi-implicit Eulerian scheme (Robert,
1969; Robert et al., 1972). Two-time-level SISL schemes were
developed by Temperton and Staniforth (1987), Purser and Leslie
(1988), McDonald and Bates (1989) and Côté and Staniforth
(1988). Baroclinic, multilevel, HS primitive-equation SISL mod-
els soon followed: three-time-level σ -coordinate scheme by
Robert et al. (1985), Tanguay et al. (1989). Two-time-level
σ -coordinate versions were presented by Bates and McDonald
(1982), McDonald (1986), Leslie and Purser (1991), McDonald
and Haugen (1992) and Bates et al. (1993), the hybrid-coordinate
version was proposed by McDonald and Haugen (1992). Non-
hydrostatic (NH) versions of SISL were developed in three-time-
level version by Tanguay et al. (1990) and in two-time-level real-
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ization by Golding (1992). Operationally, the two-time-level HS
SISL was launched in 1995 at ECMWF (Ritchie et al., 1995),
at HIRLAM (McDonald, 1995) and at Meteo-France (Bubnova
et al., 1995).

In this paper, a novel two-time-level NH SISL extension
to the numerical weather prediction model HIRLAM (Undén
et al., 2002) is presented. The basis for NH updating is the
non-hydrostatic pressure coordinate model, initially developed
by Miller (1974), Miller and Pearce (1974), Miller and White
(1984) and White (1989), which will be referred as the MPW
model hereafter. The MPW model derivation from general elas-
tic pressure-coordinate equations (Rõõm, 1990) is discussed also
in detail by Rõõm (2001).

Roughly speaking, the MPW model is a simplest generaliza-
tion of the HS pressure-coordinate primitive equations, which
takes vertical acceleration into consideration, while maintaining
in other respect the appearance and the main characteristics of
the hydrostatic model.

In acoustic wave handling, the MPW model behaves exactly
like the HS primitive-equation model does: it filters internal
acoustic waves while maintains the external Lamb waves. This
property gives reason to refer the model also to as ‘semi-elastic’
(Rõõm et al., 2006). An intercomparison of exact analytical so-
lutions of MPW equations with ‘full’ elastic model was carried
out by Rõõm and Männik (1999), who demonstrated that there
is no difference in two models on the synoptic and shorter scale,
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NON-HYDROSTATIC HYBRID-COORDINATE MODEL 651

including the HS and NH mesoscale domains. On shorter syn-
optic scale and on mesoscales the solutions of MPW equations
and fully elastic set are indistinguishable. The MPW equations
coincide asymptotically at horizontal scales >30 km with the
HS pressure-coordinate primitive-equation (PE) model. Thus, at
description of large-scale processes they are as accurate, as the
HS primitive equations which are currently applied in all global
NWP models.

Being the most simple and straightforward generalization of
the HS primitive equations, the MPW model is in numerical re-
alization very close to the hydrostatic model, which makes its
implementation in an existing HS numerical pressure-coordinate
environment rather straightforward. This closeness to the HS
model along with the simplicity should also result in the ro-
bustness, stability and computational efficiency of the numeri-
cal scheme, comparable to those of the HS ‘parent’ dynamics.
That has been the main motivation for the introduction of the
MPW model rather than of the ‘full’ pressure-coordinate dy-
namics (Rõõm, 1990). The MPW model has been already applied
with success in heretofore developed three-time-level, explicit-
Eulerian (Männik and Rõõm, 2001) and SI Eulerian (Rõõm and
Männik, 2002; Männik, 2003) schemes of HIRLAM. The aim
of this paper is to present the SISL extension of these implemen-
tations.

With the aim of further enhancement of the robustness of
numerical scheme, the applied equation set is modified substan-
tially in comparison with original MPW model and also in com-
parison with previous SI Eulerian scheme (Rõõm and Männik,
2002; Männik et al., 2003) prior to discretization and SISL im-
plementation. Modifications, absolutely not affecting neither the
physical nor hydrodynamic nature of the model, start with par-
tition of the temperature to a pressure-dependent reference state
and a fluctuative component. The temperature partition is ac-
tually required further anyway for the separation of forcing to
linear ‘main’ part, depending on the reference temperature, and
supplementary non-linear residual, depending on the tempera-
ture fluctuations. In the current treatment, however, the sepa-
ration is applied in the original continuous model, whereas the
height-dependent reference temperature is used instead of the
isothermal background state, common in traditional HS SISL
approach. The temperature partition involves further modifica-
tions of MPW equations. A very large by value but neutral in
dynamical respect (as not causing any forcing) constituent of
hydrostatic geopotential is removed. The remaining fluctuative
part of HS geopotential will depend on temperature and logarith-
mic surface pressure fluctuations. The surface pressure separates
to a mean component, which includes orography, but is in hy-
drostatic balance with the reference temperature, and a dynamic
fluctuative part, expressed by means of logarithmic surface pres-
sure fluctuations in the role of new independent dynamic field.
For this new variable, a prognostic equation is introduced instead
of the common surface pressure equation, representing a mod-
ified formulation of the ‘mean orography advection scheme’,

introduced by Ritchie and Tanguay (1996). Finally, equation for
full temperature is substituted to Lagrangian transport equation
for the fluctuative part of temperature with suitable modifica-
tion of energy conversion term. Due to the significance for SISL
approach, the applied modifications are discussed comprehen-
sively in the introductory part of model description. Keeping
in mind maximum generality and mathematical transparency of
presentation, all the intrinsic SISL description is carried out in
spatially continuous framework.

As the reference temperature is chosen in application as
an area mean for each fixed pressure-level, it becomes time-
dependent together with the reference surface pressure. This de-
pendence is actually weak and does not cause any sophistication
in computational aspect, except that the reference fields have to
be recalculated from time to time; neither does it cause any in-
stability. Thus, the model possesses adaptive reference temper-
ature and surface pressure. As a result, the actual temperature
and surface pressure deviations from the reference state become
minimal in certain respect, minimizing the non-linear explicit
residuals and giving rise to additional numerical stability. That
is the main idea and motivation for introduction of adaptive ref-
erence states.

Due to the used modifications, especially due to application
of adaptive height-dependent reference temperature, which helps
to minimize the explicit non-linear residuals, the developed two
time level SISL scheme proved to be numerically stable in lim-
ited area modelling (Rõõm et al., 2006). However, as the recent
computation (results of which will be demonstrated in the forth-
coming Part II of the paper) in conditions of extreme cross-area
temperature contrasts has shown, this stability may be violated
at traditional semi-implicit treatment of the forcing term in the
vertical momentum equation. Instability arises, when the hor-
izontal temperature contrasts exceed ∼30 K, and it is usually
absent in a limited area model with lateral flanks not exceeding
1000–1500 km, as the temperature contrasts remain subcritical
for sufficiently small areas. Even in the subcritical temperature
contrast conditions, this instability source manifests itself in the
time-step diminishing. It represents a variant of instability, first
reported by Simmons et al. (1978, SHB78 hereafter). However,
in this case, the instability source is not the non-constant refer-
ence temperature like in SHB78, but the explicit residual in the
vertical forcing term of the vertical momentum equation. In this
respect, the instability is more close to that, described by Benard
(2003, 2004) for fully elastic model. The instability rise can be
easily avoided, proceeding from the semi-implicit handling of
vertical forcing to the fully implicit treatment. Both variants of
numerical model, with semi-implicit (SVF) and implicit (IVF)
vertical forcing handling, are introduced in following. Though
the IVF is preferable in computations as the more stable one,
the SVF scheme is illuminating for comparative stability study.
The model stability is subject to numerical experimentation with
non-linear, complete SISL scheme, which will be carried out
in the forthcoming Part 2 of the paper. However, due to the
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652 R. RÕÕM ET AL.

importance of the stability properties to the model general qual-
ity, a linearized subcase of the MPW model is especially derived
in Section 4, suited for further theoretical stability treatment. The
linearization is carried out with respect to a resting but thermally
non-equilibrium initial state, thus following the SHB78 ideol-
ogy. Important point in linearization is the proper handling of
the Lagrangian finite time differencing formula in the vicinity
of resting state. The linearized model presents a SISL approxi-
mation of normal-mode equations with analytic presentation of
explicit linear thermal residuals. Coefficients in these residuals
depend on the reference state and are proportional to the initial
temperature departure. Though a detailed study of the linear sta-
bility is not in scope of this paper, some preliminary speculation
on the role of these coefficients for available time-step size is
made, which shall be proved in the Part II.

2. Continuous model

2.1. Coordinate system and integration area

The η-coordinate system, introduced by Simmons and Burridge
(1981), is a convenient tool for introduction of a terrain-following
coordinate system for equations, initially formulated in isobaric
coordinates. Pressure presents in η-coordinates

p = A(η) + B(η)ps(x, y, t), (1)

where ps(x , y, t) is the surface pressure. Transformation coeffi-
cients A and B can be in more detail presented as

A(η) = η[1 − q(η)]p0
s , B(η) = ηq(η), (2)

where p0
s = p0

s (t) is the area-mean surface pressure. Com-
monly, p0

s is chosen a standard constant mean seal level pressure
(101 326 Pa in the case of HS HIRLAM, for instance). How-
ever, in our case with the time-dependent adaptive reference
temperature (introduced further), the area mean surface pressure
becomes time-dependent; a detailed definition of p0

s (t) will be
given further.

Function q(η), satisfying conditions 0≤q(η)≤1, is the weight
of the terrain-following pressure component on level η, 1 − q(η)
is the weight of the ‘pure’ pressure coordinate component. For
q = 0 we get isobaric coordinate representation, while q = 1
yields a native σ -coordinate system with η in the role of the
σ -coordinate. The pressure-coordinate for optional q follows
also in the ‘water planet case’, when ps = p0

s . Choosing q(η)
monotonically decreasing with height from q(1) = 1 on the sur-
face to q(η) = 0 in the stratosphere, the hybrid coordinate will
behave like a σ -coordinate near surface, transforming steadily
to the pressure-coordinate near the top.

Horizontally the spherical geometry is considered, thus x, y
are local geographical coordinates on the mean sea level pressure
surface. The area of integration is

−Lx < x = r0 cos θλ < Lx , −L y < y = r0θ < L y,

with r0 as the mean radius of earth and with λ, θ as the polar
coordinates in a suitably chosen spherical coordinate system.

2.2. Primary modifications

The MPW model equations we will apply are in essence the
White extension of Miller and Pearce model, presented in
(White, 1989) as eqs (27)–(31). However, some prior modifi-
cations, not affecting the physical nature of the model, are re-
quired in formal presentation of these equations, conditioned
by hybrid coordinates and by SISL approach requirements. The
main modification, obligatory for a discrete SISL approxima-
tion anyway, but applied here in the continuous case prior to
any discretization, consist in separation of the temperature to the
main, horizontally homogeneous in pressure coordinates, that is,
barotropic component T 0(p) and fluctuative part T ′

T = T 0 + T ′. (3)

Choice of T 0(p) is somewhat optional with exception that it
should approximate the real temperature distribution at time t.
In applications, a good choice is to specify T0 as the area-mean
over isobaric surface p:

T 0(p) =
∫

S T (x, y, p, t) dx dy∫
S dx dy

. (4)

At such choice, the reference temperature is in general time de-
pendent. However, we will treat T0 locally in time as a constant
field. First, (4) is applied not necessarily at every time-step, but
from time to time. Second, if the reference field T0 is recalcu-
lated anew on some time level t, then T ′ is modified in (3) in the
way that the total field T(x, y, η, t) remains unchanged. Similar
approach is applied with regard to all reference fields in this pa-
per. This prevents from the further arrival of local tendencies like
∂T 0/∂t in the explicit residuals of SISL scheme, simplifying the
model both formally and in application.

The complete geopotential � = gz(x , y, η, t), where g is grav-
itational acceleration and z(x, y, η, t) is the height of a material
air particle with coordinates x, y, η at time t, can be presented
as the sum of hydrostatic geopotential ϕs and non-hydrostatic
residual φ,

� = ϕs + φ,

where

ϕs = gh +
∫ ps

p
RT d(ln p′) = gh +

∫ 1

η

RT

p
mdη,

h(x, y) is the surface elevation, R is the gas constant of moist air,
and

m = ∂ p

∂η
(5)

represents the η-coordinate ‘density’. Further, the hydrostatic
geopotential ϕs can be split with the help of (3) to the neutral
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background geopotential ϕ̂, baric fluctuation ϕ p , and thermal
part ϕT : and deviation ϕ:

ϕs = ϕ̂(p) + ϕ p(x, y, t) + ϕT (x, y, η, t), (6)

where

ϕ̂ = gh + R0

∫ p̂s

p
T 0 d(ln p′), (7a)

ϕ p = R0

∫ ps

p̂s

T 0 d(ln p′), (7b)

ϕT =
∫ ps

p
(RT )′ d(ln p′) =

∫ 1

η

(RT )′m
dη′

p
, (7c)

R0 is the gas constant for dry air, (RT)′ = RT − R0T 0, and
p̂s(x, y) is the reference pressure on the surface. If p̂s is cho-
sen to satisfy condition (which represents an implicit barometric
formula for reference surface pressure)

R0

∫ p0
s

p̂s

T 0 d(ln p′) = gh(x, y), (7d)

then ∇pϕ̂ = 0, that is, ϕ̂ does not cause forcing and may be safely
left out from geopotential composition. Thus, a rather large but
dynamically passive part of geopotential can be removed, im-
proving the smoothness of isobaric gradient ∇ pϕ = ∇ pϕ

s and
giving rise to numerical accuracy of the final discrete scheme.
Analogous temperature separation is partially applied already in
the original MPW model by Miller (1974) and White (1989), and
it is also used in some numerical schemes (Girard et al., 2005).

The thermal geopotential ϕT cannot be simplified further,
except that in the numerical implementation it will be sub-
stituted by a finite sum over discrete vertical levels. Due to
closeness of ps to p̂s , it is advantageous to evaluate the baric
geopotential ϕ p analytically, rather than numerically, using the
smoothness of T0 and representing it near surface as T 0(p) =
T 0( p̂s) + (dT 0/dp) p̂s (p − p̂s):

ϕ p = C2[χ + 2γ (eχ − 1 − χ )], (8)

where

χ = ln(ps/ p̂s), (9)

and

C2 = R0T 0[ p̂s(x, y, t)], γ =
(

p

2T 0

∂T 0

∂ p

)
p= p̂s (x,y,t)

.

Due to the smallness of χ (|χ | < 5 × 10−2 even in the most strong
cyclones) and |γ | < 0.1, (8) can be approximated as

ϕ p ≈ C2χ (1 + γχ ) ≈ C2χ, (8′)

the first approximation being valid within relative error ∼|γ |
χ 2/3 < 10−4 and the second within relative error ∼|γ | χ < 5 ×
10−3 . In the particular case of isothermal stratification if γ = 0,
(8) simplifies toϕ p =C2χ , and thus, the second approximation in

(8′) becomes exact. That is, in baric geopotential computations,
the error due to isothermal approximation γ = 0 does not exceed
0.5%.

Further, for hydrostatic geopotential fluctuation will be used
notation

ϕ = ϕ p + ϕT , (10)

with ϕ p and ϕT defined as (8) and (7c), consequently.
This fluctuative part is small, when measured in C2 units: the

amplitude of ϕ p/C2 is about 1/100, whereas the amplitude of
ϕT /C2 is about 1/10.

Asϕ is a function ofχ , it is advantageous to derive a prognostic
equation for χ instead of equation for total surface pressure ps .
The vertically integrated mass balance equation

∂ ps

∂t
= −∇ ·

∫ 1

0
v m dη,

where ∇· and v are the horizontal divergence operator and wind
vector on the sphere, can be presented with the help of (1) and
(5) in the form

dB ps

dt
= −

∫ 1

0
∇ · v m dη,

where

dB

dt
= ∂

∂t
+ vB∇, vB =

∫ 1

0
B ′vdη. (11)

Equation for log-pressure fluctuation χ becomes with the help
of these relationships

dBχ

dt
= − 1

ps

∫ 1

0
∇ · v m dη − vB · ∇ln p̂s ≡ Fχ , (12a)

representing a modified formulation of the ‘mean orography ad-
vection scheme’ of Ritchie and Tanguay (1996) and constituting
the first equation in the modified MPW model.

2.3. Semi-elastic equations in hybrid-coordinates

The surface pressure eq. (12a) is not incorporated into the MPW
equations (Miller, 1974; White, 1989) explicitly. Remaining re-
lationships present, however, the White extension of Miller and
Pearce model (White, 1989, eqs 27–31), rewritten here for vari-
ables ω, v, T ′, ϕ, φ, in hybrid-coordinates, as the vertical momen-
tum, horizontal momentum, fluctuative temperature and conti-
nuity equations:

dω

dt
= − p2

m H 2

∂φ

∂η
+ ω

(
cvω

cp p
− AT

T
− d ln R

dt

)
+ Aω ≡ Fω,

(12b)

dv
dt

= −∇p(ϕ + φ) − f k × v + Av ≡ Fv, (12c)

dT ′

dt
= Sω + AT ≡ FT , (12d)
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∇p · v + 1

m

∂ω

∂η
= 0, (12e)

where

∇p = ∇ − ∇ p

m

∂

∂η

and ∇ presents the horizontal (in η-coordinates) gradient and
divergence over a sphere with the mean radius of the Earth. The
Lagrangian material derivative is

d

dt
= ∂

∂t
+ v · ∇ + η̇

∂

∂η
= ∂

∂t
+ v · ∇p + ω

m

∂

∂η
,

η̇ = ω − v · ∇ p

m
,

and the energy conversion coefficient in (12d) is

S =
(

κ
T

p
− dT 0

dp

)
.

In eqs (12), the HS geopotential fluctuation ϕ is defined as (10),
ω = dp/dt and η̇ = dη/dt are the pressure-coordinate and η-
coordinate vertical material velocities, φ is the non-hydrostatic
geopotential perturbation, H = RT/g is the scale height. Terms
Av, AT and Aω are general notation for diabatic forcing and spec-
tral smoothing, the last arriving in discrete case only. Coriolis
parameter f is a given function of geographical latitude, k is a
unit vector in local vertical of geographical location x;κ= R/cp,
cp and cv = cp − R are the isochoric and isobaric specific heats
of moist air. They depend in general on the water content of air,
due to which time derivative dln R/dt arrives in the right hand
side of (12b).

Model (12) is actually a ‘mixed representation’: η-coordinates
are used throughout the model, though in the role of vertical mo-
mentum equation stands (12b) for ω rather than for η̇. Equation
(12b) is preferred for consistency with the continuity eq. (12e).
The non-hydrostatic geopotential φ is caused by the departure of
the atmosphere from hydrostatic equilibrium. There is no closed
formula for it, like the integral (7c) for thermal geopotential or
formula (8) for baric geopotential are. It can be specified from
the continuity condition (12e), which will yield an elliptic equa-
tion for it (Rõõm et al., 2006). Another option, used in this paper,
is to derive such an elliptic equation first for the omega velocity,
and then calculate φ via ω. This procedure is in detail described
further in the Section 3.4.

3. SISL scheme

3.1. General principles

The SISL modification of system (12) is based on the appli-
cation of the two-time-level, semi-implicit, semi-Lagrangian
scheme (McDonald and Haugen, 1992, 1993; McDonald, 1995,
1998, 1999). We use for the evolution eqs (12a)–(12d) gen-
eral notation dψ/dt = F(ψ) and separate the right hand side
forcing to the linear main part Lψ and non-linear residual

N = N (ψ) = F(ψ) − Lψ :

dψ

dt
= Lψ +N .

The semi-Lagrangian approach to this equation is based on in-
tegration along a short piece of trajectory for every material
particle (in discrete case—for every particle, who’s end of tra-
jectory is a grid node). Denoting the departure point (initial point
of the trajectory sequence) coordinate of such a particle at time
t via x∗ = x (t) = {x(t), y(t), η(t)}, and the corresponding desti-
nation point (end-point) coordinate at time t + �t via x = x (t +
�t) = {x(t + �t), y(t + �t), η(t + �t)}, the semi-implicit, dis-
crete in time, semi-Lagrangean approximation of this equation
in point x reads

Dtψ = Lψ + 〈N 〉 , (13)

where the Lagrangean differencing operator Dt is

Dtψ = ψ(x, t + �t) − ψ(x∗, t)

�t
,

whereas

Lψ = 1

2
[(1 + ε)Lψ(x, t + �t) + (1 − ε)Lψ(x∗, t)] ,

〈N 〉 = 1

2
[(1 + ε)N (x, t + �t/2) + (1 − ε)N (x∗, t + �t/2)]

are the implicit and explicit averaging operators along trajectory.
The optional small parameter ε (0 ≤ ε ≤ 0.05) is introduced
to increase the weight of the final point in forcing formation.
Equation (13) can be alternatively presented as

(1 − �t+L)ψ(x, t + �t) = [(1 + �t−L)ψ](x∗, t) + �t 〈N 〉,
(14)

where �t± = (1 ± ε)�t/2. This equation is still implicit with
respect to ψ(x, t + �t). For disclosure, operator 1 − �t+L has
to be inverted:

ψ t+�t = (1 − �t+L)−1 {[(1 + �t−L)ψ](x∗, t) + �t 〈N 〉} .

The disclosure is not a trivial operation in our 5-D state vector
case, yet it can be solved numerically rather reliably.

The linear part of forcing is assumed to correspond to a ref-
erence sate with temperature T 0(p) and uniform surface ps

0. If
using for the forcing-vector notationF = F(ψ ; T 0, p̂s), the lin-
ear part and non-linear residual are

Lψ =
(

δF(ψ ; T 0, p0
s )

δψ

)
ψ=0

ψ, N = F(ψ ; T 0, p̂s) − Lψ,

where δF/δψ is the functional derivative—ordinary partial
derivative, if F is an ordinary function, and an operator, if F
presents an operator upon ψ . As an instance, δ(∂φ/∂η)/δφ =
∂/∂η.

The uniform mean surface pressure p0
s can be chosen—like

the mean temperature—as the area-mean actual surface pressure

p0
s =

∫
S ps(x, y, t) dx dy∫

S dx dy
,
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and can differ in general from the mean sea level
pressure.

The pressure and density distributions, corresponding to p0
s ,

are in accordance with (2)

p0 = A(η) + B(η)p0
s = p0

s η,

m0 = ∂ p0

∂η
= A′ + B ′ p0

s = p0
s .

3.2. Linear forcing and non-linear residuals

As numerical investigation with ideal fronts shows (examples
of which will be presented in Part II), SISL scheme can be-
come unstable for large cross-area temperature gradients, if the
geopotential term p2/(H 2m)∂φ/∂η in vertical forcing (12b)
is separated according to the above-described traditional man-
ner to the linear main part p0

s η
2/(H 0)2 ∂φ/∂η and non-linear

residual. Instability can be avoided, if this forcing is treated
completely as the implicit one. Thus, in parallel with tradi-
tional presentation, denoted in following as SVF, also a mod-
ification with full implicit treatment of term p2/(H 2m)∂φ/∂η

(IVF) is considered where appropriate. The application of both
variants in parallel permits to show and check that the main
potential instability source in the SISL MPW model is just
maintenance of the explicit residual in vertical forcing. Thus,
the main linear (except Lω, which becomes non-linear in IVF
case) parts of the forcing on the right hand side of (12a)–(12d)
are

Lχ =
∫ 1

0
∇ · v dη, Lω =


p0

s η2

(H0)2
∂φ

∂η
, SVF

p2

H2m
∂φ

∂η
, IVF

Lv = ∇(φ + ϕ0) LT = S0ω,

whereas the main part of continuity eq. (12e) is

LD = ∇ · v + 1

p0
s

∂ω

∂η
.

In these formulae operator ∇· presents the ‘plane’ divergence,
in which the planet’s sphericity is disregarded,

∇ · v = ∂vx

∂x
+ ∂vy

∂ y
,

as the linear dynamics is assumed to be planar, while the ef-
fects due to sphericity are considered as non-linear perturbations.
This is justified, if the flank of integration area does not exceed
4000 km.

The reference scale-height and stability parameters are

H 0 = R0T 0/g, S0 =
(

κ0 T 0

p
− dT 0

dp

)
p=p0

,

while ϕ0 is the HS geopotential fluctuation (10) in reference
pressure state p0(η)

ϕ0 = C2
0χ +

∫ 1

η

R0T ′ dη′

η′ , (15)

with C0 = √
R0T 0(p0

s ) as isochoric sound speed on the mean
surface p0

s .
The consequent explicit residuals of (12a)–(12d) are

Nχ =
∫ 1

0
∇ · v dη − 1

ps

∫ 1

0
∇ · v m dη − vB · ∇ln p̂s,

Nω =
p0

s η2

(H0)2
∂�

∂η
− p2

m H2
∂�

∂η
+ ω

(
cvω

cp p − AT
T − d ln R

dt

)
+ Aω , SVF

ω
(

cvω

cp p − AT
T − d ln R

dt

)
+ Aω , IVF

Nv = ∇(ϕ0 + φ) − ∇p(φ + ϕ) − f k × v + Av .

NT = (S − S0)ω + AT ,

whereas the explicit part of (12e) is

ND = ∇ · v + 1

m

∂ω

∂η
−

(
∇ · v + 1

p0
s

∂ω

∂η

)
.

3.3. SISL equations

The SISL equations in the form (13) are

Dtω + Lω = 〈Nω〉 , (16a)

Dt v + ∇(φ + ϕ0) = 〈Nv〉 , (16b)

Dt T
′ − S0ω = 〈NT 〉 (16c)

DBχ +
∫ 1

0
∇ · vdη

B

= 〈Nχ 〉B, (16d)

(
∇ · v + 1

p0
s

∂ω

∂η

)
= − 〈ND〉 . (16e)

The 2-D difference operator DB
t and averaging operators

(ψ)
B
, 〈ψ〉B are applied on the 2-D trajectories, corresponding

to velocity field vB (11).
The presented form of SISL equations, matching most closely

the initial set of equations, is suitable for theoretical investiga-
tion (as an example, for further linearization, as applied later
below). However, for numerical application and for disclosure,
more convenient is presentation in the form (14):

ω + �t+Lω = ω̂ (17a)

v + �t+∇(φ + ϕ0) = v̂, (17b)

T ′ − �t+S0ω = T̂ (17c)

χ + �t+

∫ 1

0
∇ · v dη = χ̂ , (17d)

∇ · v + 1

p0
s

∂ω

∂η
= −D̂. (17e)
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The quest quantities χ = χ (x, t + �t), . . . . T ′ = T ′(x, t +
�t) are concentrated on the left hand side, while on the right are
quantities, specified via known fields on time levels t and t +
�t/2:

ω̂ = (ω − �t−Lω)t
∗ + �t 〈Nω〉 , (18a)

v̂ = [v − �t−∇(ϕ0 + φ)]t
∗ + �t 〈Nv〉 , (18b)

T̂ = (T ′ + �t−S0ω)t
∗ + �t 〈NT 〉 , (18c)

χ̂ =
(

χ − �t−

∫ 1

0
∇ · vdη

)t

∗B

+ �t
〈
Nχ

〉B
, (18d)

D̂ = 1 − ε

1 + ε

(
∇ · v + 1

p0
s

∂ω

∂η

)t

∗
+ 2

1 + ε
〈ND〉 . (18e)

3.4. Disclosure

To get prognostic quantities explicitly, system (17) has to be
solved with respect to left side quantities ω, v, T ′, and χ . This
task can be accomplished, developing a diagnostic equation for
ω = ω(x, t + �t), solution of which then enables successive
step-by-step disclosure of remaining prognostic quantities.

First, some auxiliary relationships are required. Considering
(15) on time level t + �t and using formulae (17c), (17a) for
successive elimination of T ′ and ω, the total geopotential fluctu-
ation on time level t + �t can be presented as a sum of explicit
part Q and implicit contribution ξ

(φ + ϕ0) = Q + ξ, (19)

Q = R0

∫ 1

η

(T̂ + �t+S0ω̂)
dη′

η′ (20)

ξ = C2
0χ

t+�t + φt+�t − (�t+)2

∫ 1

η

N 2 ∂φt+�t

∂η′ dη′, (21)

where

N 2 =
R0 p0 S0

(H0)2 , SVF

R0 p2 S0

ηm H2 , IVF

is the reference state Brunt-Väisälä frequency in the cases of
semi-implicit and implicit treatment of the NH vertical forcing
term.

Using (19), the horizontal wind formula (17b) modifies to

v = v̂ − ∇Q − �t+∇ξ (22)

from which the ‘plane’ wind divergence is

(∇ · v) = ∇ · (v̂ − ∇Q) − �t+∇2
ξ. (23)

Application of ∂/∂η to (17e) with subsequent implementation
of (23) and (21) gives an elliptic equation for ω(x, t + �t)(

∂

∂η

)2

ω + ∇2
(W 2ω) = A, (24)

A = ∇2
(W 2ω̂) − p0

s

∂

∂η
[D̂ + ∇ · (v̂ − ∇Q)],

where

W 2 =


1+�t2+ N 2

η2 (H 0)2 , SVF,

1+�t2+ N 2

p2 p0
s m H 2, IVF.

This equation must be solved upon upper and lower boundary
conditions

ω|η=0 = 0, ω|η=1 = 0. (25)

Note that in the IVF case, W2 is a function of η and horizon-
tal coordinates via H and p, whereas in SVF case, it is solely
an η function. Meanwhile, the SVF includes additional explicit
residuals in D̂, absent in the IVF case.

In an earlier version (Rõõm et al., 2006), a similar to (24) equa-
tion was derived for the auxiliary potential ξ − C2χ . However,
due to the significant role of boundary conditions (25) in numer-
ical stability provision, in recent applications, the preference is
given to the omega-equation (24) and boundary conditions (25).

Solution of eq. (24) accomplishes the one-step Lagrangian
marching. The non-hydrostatic geopotential φ(x, t + �t) can be
subsequently specified, integrating (17a) in vertical

φ = 1

�t+


∫ 1

η
(ω − ω̂) (H0)2

p0
s η2 dη, SVF∫ 1

η
(ω − ω̂) H2m

p2 dη, IVF

whereas T ′(x, t + �t) is determined from (17c). To solve χ (x ,
y, t + �t), the following Helmholtz equation applies(
1 − �t2

+C2
0∇

2)
χ = χ̂ +

�t2
+∇2

∫ 1

0

(
φ + �t2

+ N 2η
∂φ

∂η

)
dη − �t+

∫ 1

0
∇ · v̂ dη, (26)

which follows with help of some algebra from (17d), (23) and
(21). The hydrostatic geopotential ϕ0(x, t + �t) is then calcu-
lated from (15), and finally, horizontal wind vector v(x, t + �t)
is found from (22).

4. Linearized SISL for stability study

4.1. General treatment

Linearization in SISL equations is essential for stability study. As
shown in SHB78, numerical SISL model can become unstable,
if the initial thermal fluctuation

T̃ (x, y, η) = (T − T 0)init
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becomes large, and the reference profile T0 is non-constant. Thus,
the choice of proper reference profile T 0(p) can be crucial for
model stability. The instability can arrive due to large explicit
thermal residuals, and can become evident in an resting yet ther-
mally non-equilibrium initial state already, when dynamics be-
comes linear in vicinity of this initial state.

It is illuminating to linearize the general eq. (13) first. Choos-
ing the state vector ψ = {χ, ω, v, T̃ + T ′, φ} as the sum of the
initial state and infinitesimal fluctuation

ψ = ψ̃ + ψ ′, ψ̃ = {0, 0, 0, T̃ , 0},
ψ ′ = {χ, ω, v, T ′, φ} ⇒ 0,

eq. (13) becomes

Dt (ψ̃ + ψ ′) = L(ψ̃ + ψ ′) + 〈N (ψ̃ + ψ ′)〉. (27)

The left-hand side presents as

Dt (ψ̃ + ψ ′) =
(ψ̃ + ψ ′)(x + 〈u〉 �t/2, t + �t) − (ψ̃ + ψ ′)(x − 〈u〉 �t/2, t)

�t
,

x = 1

2
[x(t + �t) + x∗(t)] ,

〈u〉 = 1

2
[u(x, t + �t/2) + u(x∗, t + �t/2)] ,

where u is the 3-D velocity with components {vx , vy, η̇}. As
u → 0, this expression linearizes to the form

Dt (ψ̃ + ψ ′) = 〈ui 〉 ∂ψ̃

∂xi
+ δt (ψ

′),

field ψ̃ , while the second-term presents Eulerian differencing of
ψ ′ in the fixed point x:

δt (ψ
′) = ψ ′(x, t + �t) − ψ ′(x, t)

�t
.

Linearizing also the right-hand side in (27), we get

δt (ψ
′) = A(ψ̃) + L(ψ ′) +

(
δN (ψ)

δψ

)
ψ̃

〈ψ ′〉 − 〈ui 〉 ∂ψ̃

∂xi
, (28)

where the steady source

A(ψ̃) = L(ψ̃) + 〈N (ψ̃)〉 = L(ψ̃) +N (ψ̃)

appears when the initial sate is unbalanced. Main conclusions
from the general treatment of SISL equation linearization with
respect to resting, unbalanced initial state are:

(1) There is no difference between Lagrangean and Eulerian
two-time-level approach in this (resting atmosphere) case.

(2) The solution of (28) has linear drift from the rest state
due to steady source A. To avoid such drift, the source must be
nullified. Resulting linear system is a SISL approximation of
normal mode equations.

(3) The implicit term remains implicit in linear regime, too.
(4) Two explicit terms arrive in the linear model, the first one

as a result of linearization of the explicit non-linear residual, the

other due to explicit advection of the initial state. This second-
term can become large, if the initial field fluctuation ψ̃ has large
gradient, and disappears, if ψ̃ becomes constant.

4.2. Linearized SISL equations

Applying described linearization technique to the eqs (16a) in the
simplest case of uniform ground ( p̂s = p0

s , p̂ = ηp0
s , m̂ = p0

s )
we obtain

δtω = −p0
s

η2

(H 0)2

(
∂φ

∂η
+ εφ

∂ 〈φ〉
∂η

)
, (29a)

δt v = −∇
[
φ + C2(χ + εχ 〈χ〉) + R

∫ 1

η

T ′ dη′

η′

]
+ F, (29b)

δt T
′ = S(p0)(ω + εω 〈ω〉), (29c)

δtχ = −
∫ 1

0

∂ D

∂η
dη, (29d)

∇ · v + 1

p0
s

∂ω

∂η
= 0. (29e)

The Coriolis term is omitted as having no relevance to numerical
stability in the resting atmosphere. Forcing F arrives due to initial
temperature fluctuation

F = −R∇
∫ 1

η

T̃
dη′

η′ .

The ε-coefficients in explicit terms of equations (29) are

εφ =


(
T 0

T 0+T̃

)2
− 1 ≈ −2 T̃ (x,y,η)

T 0(ηp0
s )

, SVF

0 , IVF
(30a)

εχ = T̃ (x, y, 1)

T 0
(

p0
s

) , (30b)

εω = κ T̃ − η∂ T̃ /∂η

κT 0 − η∂T 0/∂η
. (30c)

Coefficient εφ settles the explicit residual amplitude in vertical
forcing. The important quality εφ , having decisive role in sta-
bility provision, is that it turns zero in IVF case, which means
absence of the explicit residual in the non-linear SISL scheme.
Coefficient εω determines the explicit residual amplitude in
the temperature equation. With the help of the ‘static stability
temperature’

T∗ = κT − η
∂T

∂η
,

it can be presented also as

εω = T̃∗
T 0∗

= T init
∗ − T 0

∗
T 0∗

,

where T 0
∗, T init

∗ and T̃∗ are the static stability temperatures of ref-
erence state, initial state and fluctuative initial state, respectively.
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Solution of (29) consists of the special non-homogeneous so-
lution due to steady forcing F, describing the drift of ψ ′ from the
initial state of rest, and a general solution of homogeneous (i.e.
corresponding to F = 0) equations, describing free normal-mode
evolution of the perturbation field ψ ′ from a non-zero initial state.
In the actual numerical model, initial perturbations are always
present in the form of a numerical noise. For a unsuitable ex-
plicit residual choice, some normal modes can behave unstably,
having complex eigenfrequencies and growing exponentially in
time, which leads to exponential growth of initially small pertur-
bations and presents a numerical instability. Instability is more
likely to arrive, if the ε-coefficients (30) become substantial, and
vice versa, instability due to explicit residuals vanishes with (29)
becoming zero, which happens, if the initial steady temperature
perturbation T̃ disappears.

The stability analysis does not draw back to mere ε-coefficient
analysis but requires a detailed investigation of normal mode
equations with respect to the eigenfrequencies, which is not in the
scope of this paper. However, as a preliminary result, which will
strictly proved elsewhere, we present next properties of the linear
model (29). The linear model is defined conditionally stable,
if there exists a positive maximum time step �tmax such that
the eigenfrequencies of (29) are all real for time steps �t <

�tmax and (some of them) become complex for �t > �tmax.
Vice versa, the model proves to be numerically unstable, if such
limit does not exist and �tmax = 0. In these terms, the linear
model (29) proves to be conditionally stable, if the reference
state T 0(p) is statically stable, that is, T 0

∗ > 0, and |εφ |, |εω| <

1. At that, the maximum time step is unlimited in special case
|εφ | = 0. Concerning εχ , the model is stable with respect to the
size of this parameter so far the condition T 0(ps) + T̃ |η=1 > 0
holds.

Numerical simulations in real conditions show, that the most
influential coefficient with respect to the numerical stability is
εφ . In the non-linear case, instability can arrive already at |εφ |
∼ 0.1, which is far below the linear theory limit |εφ | = 1, and
which forces to introduce the IVF approach for situations with
large initial temperature fluctuation T̃ .

5. Numerical algorithm

The described NH scheme is an extension of the HS parent
HIRLAM and makes use of HIRLAM discretization schemes,
interpolation facilities and departure point calculation routines.
Vast components of the numerics are the tools for departure point
evaluation. As these routines do not depend on physical nature
of dynamical system, all the trajectory calculus, initially devel-
oped for HS dynamics, is applicable without changes also in the
NH model. For calculation of dynamic fields ψ at intermediate
time level t + �t/2 the Adams-Bashford extrapolation scheme
is used:

ψ t+�t/2 = 1.5ψ t − 0.5ψ t−�t .

The departure point evaluation is based on the non-linear
equation

x − x∗ = �tu[(x + x∗)/2, t + �t/2].

Initially, HIRLAM solved this equation iteratively (McDonald
and Haugen, 1993; McDonald, 1995). Later, McDonald intro-
duced a non-iterative algorithm (McDonald, 1998, 1999; Undén
et al., 2002), representing a generalization of the approach by
Temperton and Staniforth (1987):

x − x∗ = �tU,

U = aut
x + cut

x−ut
x�t

+ eut
x−2ut

x�t
+ but−�t

x + dut−�t
x−ut

x�t

+ f ut−�t
x−2ut

x�t
(31)

with constants a = −0.25, b = 0, c = 1.50, d = 0.5, e = 0.25,
f = −1.0.

The above-described two-time level SISL was derived in spa-
tially continuous form and the destination point x (t +�t) is prin-
cipally optional inside the domain of integration. However, for
obvious computational reasons it is inevitable to introduce some
spatial discretization. The destination points are then all grid-
points, while the corresponding departure points are located, in
common, in the intergrid space and the fields in departure points
are interpolated from their grid-point values at time level t or
t + �t/2. The grid applied is the 3-D staggered (Arakawa C)
grid. Interpolation routines are cubic spline interpolations in hor-
izontal and linear in vertical (so more rigorous routines can be
applied). In the discrete case, the horizontal and vertical differen-
tial operators are approximated by relevant difference formulae
and vertical integrals, like in (7c), (12a), (15), (21), (26), are
replaced by numerical quadratures:∫ 1

η

f (η′) mdη′ →
kmax∑
k′=k

fk′�pk′ ,

etc., though more complicated and probably more precise
(but certainly computationally more expensive) approximations
could be applied.

For reference temperature and reference pressure calculations,
the boundary fields, extracted from the nesting model, are used.
Let t j and t j+1 are the two successive boundary field updating
times (typically t j+1 − t j = 1, 3 or 6 hours). Let the extracted
boundary fields of temperature are T B

j (x , y, η), T B
j+1(x , y, η).

The ‘boundary’ reference temperature fields T 0
j (p), T 0

j+1(p) are
then calculated from T B

j and T B
j+1 in accordance with (4), while

the corresponding ‘boundary’ reference surface pressure fields
p̂s j , p̂s( j+1) are found solving the barotropic eq. (7d) with T 0

j and
T 0

j+1. The actual reference fields are then linearly interpolated
for each time level t (t j < t ≤ t j+1):

T 0(p) = (1 − α)T 0
j (p) + αT 0

j+1(p),

p̂s(x, y) = (1 − α) p̂s j (x, y) + α p̂s( j+1)(x, y),

α = t − t j

t j+1 − t j
.

Tellus 59A (2007), 5



NON-HYDROSTATIC HYBRID-COORDINATE MODEL 659

Thus, the reference field handling is rather economical and takes
little time.

In the numerical implementation, the central diagnostic
eqs (24) and (26) are solved, using the fast cosine-Fourier trans-
formation in horizontal coordinates. In the case of SVF approach,
when W is independent of horizontal coordinates, (24) draws for
each horizontal wavenumber back to an independent, 1-D, verti-
cally discrete second order difference equation, whish is solved
either using discrete eigen-vectors (Männik and Rõõm, 2001;
Rõõm and Männik, 2002), or the direct Gaussian solver (Rõõm
et al., 2006).

In the IVF case, (24) is resolved first to horizontally homoge-
neous part and non-homogeneous residual, using

W = W0(η) + W ′(x, y, η),

and the resulting equation is then treated iteratively, solving at
ith iteration equation(

∂

∂η

)2

ω(i) + W 2
0 ∇2

ω(i) = A+ ∇2[(
W 2

0 − W 2
)
ω(i−1)

]
.

The number of required iterations is typically three, though five
iterations can be required in the very beginning of time-stepping.
The same iterative scheme with implicit treatment of non-linear
vertical forcing term was in principal applied already in the for-
mer SI Eulerian scheme (Männik et al., 2003).

Main model is the IVF scheme. The SVF, which was for-
merly applied in pre-operational weather forecast (Rõõm et al.,
2006), is optional, its main purpose is to provide reference for
‘mild’ temperature contrast cases and for stability study. The
IVF scheme consumes in adiabatic mode in comparison with
SVF case approximately 1.5 times more computational time per
single time-step, but this superfluous time-consumption is in full
compensated by the gain in available time-step size and robust-
ness of the computational scheme.
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