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I. INTRODUCTION

1. Nonhydrostatic effects in shorter meso-scale.

Hydrostatic approximation in equation of vertical development:

dw Op dp
Py =95, T gp+$—0-

This approximation is not valid for large vertical accelerations:

— convection: — resolved short-scale

orographic disturbances:

dw
~ ~0.01 —1m/s?
dt /

dw ow (Aw)2 dw A Aw A AulAz

a Yo" Az di AT T AL
Aw ~ 10(50)m/s , Au ~ 10m/s, Ax ~ 0.1—1km,

Az ~ 1km Az ~ 0.1 —1km



Flow modelling over bell-shaped orography

demonstrates that nonhydrostatic and hydrostatic wave—pattern

differ essentially for horizontal scales [ < 10 — 20 km.
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Moreover, as it is proved theoretically, the hydrostatic model
is not capable of some nonhydrostatic phenomena description

(trapped lee waves (Durran 1990) are an example).
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2. Pressure-related coordinates at nonhydrostatic mod-
elling (What is their advantage?)

Initially pressure coordinates and pressure-related coordinates

were developed for HS modelling purpose:
Eliassen, 1949: isobaric or p—coordinates
Phillips, 1957: sigma-coordinates, 0 = p/p

Hybrid- or n—coordinates (ECMWEF, HIRLAM):

Advantages:
— natural coordinates at sounding and analysis

— simplification of equations due to the non-divergent

("anelastic” in the pressure—space terms) nature of the flow:

Ow dp
V, - — =0 = —
& V+8p @ dt



How to be at the entering of the NH -domain? :

A) leave the pressure coordinates in favour of the ordinary Carte-

sian coordinates?

B) develop nonhydrostatic dynamics in the pressure-coordinate

representation?

The second alternative is attractive. Yet for its correctness the
pressure must be a monotonous function of z. From the

vertical development equation a restriction follows:

v LU [P
- P g dt g

That is, transition from z to p—coordinates (and appli-
cation of p—space concept) is correct so far, as vertical
accelerations do not exceed the gravitational accelera-

tion!
There are developed different versions of NH p—space dynamics.

Anelastic models: Miller 1974 and Miller and Pearce 1974, White
1989, Salmon and Smith 1994.

Exact (non-simplified) NH model: R66m 1989, 1990.
Elastic acoustically filtered NH model: Room 1997, 1998.

The anelastic model by Salmon and Smith
(which coincides in essence with the White model) is employed
for the development of the NH HIRLAM.

Details of this model are discussed further.



II. ANELASTIC MODEL

IN PRESSURE-RELATED COORDINATES

3. Anelastic model in p—coordinates. Adiabatic formula-
tion (Eq. "NEW?” are the ones which the hydrostatic dynamics

lacks)

(NEW :)

(NEW :)

H = RT/g
w = dz/dt

vV =1u + jv

dw p 0¢
P Pt K.,
dt H op Tl
dv
dt
dI' gH w
= —+ P K
dt Cpp—l_ T—I_ T
Oow
vp°V—|—a—p = O,
dpS_ |
de "7
O _ _gH
dp p
w w 1 ds

(1a)

— =-V,(¢+¢)— fkxv+P, + K, (1b)

(1¢)

(1d)

(19)

height—scale

vertical velocity

vector of horizontal velocity

NH component of the geopotential
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4. n-coordinate formulation of the anelastic model.

Adiabatic case
Let us make following modification in (1):
i. Eliminate w in favour of w in the continuity equation;
ii. employ hybrid coordinates;
d

see . . Q . i.
111. use expansion ; = z; +V VvV, + Mg

iv. express horizontal velocity advection via vorticity and energy

gradients like in the hydrostatic HIRLAM.

As the result of these transformations, (1) becomes to

ow

(la) = — = Fu+ S¢ (2a)
ou A ov .
(1[))# E—FU—G)\Qb, E—Fv—Ggqb, (2[))
A A A N -
(1d) = Giu+Giv—StTw=0 [: St ?8] . (2d)

Equations for temperature T (1c), ground pressure ps (le), and
HS geopotential ¢ (1f) do not change and will exactly coincide
with those of the ”"standard”, HS HIRLAM in hybrid coordi-

nates.

F, is the right side of the corresponding equation of the HS
HIRLAM, and (continuous case)

9
Fp=—v-Vyw—i=— + Py + K,
on



Operators G, Gt are representations of the horizontal pressure—

coordinate gradient and divergence in hybrid coordinates:

( % (%) : continuous p—space
p
A 1 (99 _ 1 09p09¢ ' i
G =4 ( T - = 77)77, continuous 7-space
! :
. [5>\qb — A_1A (0Ap) Ay ] , discrete n-space
A P i+1/2,5,k

)
hl—e (%)p : continuous p—space
N 0 Jp 0 :
Godp = hl—e (—? = %—58—7» : continuous n-space
—o"! :
L1 [59¢ — A_le (06p) Ay ] , discrete n-space
\ i P 'ij+1/27k

Notation here is the standard HIRLAM notation, except



—5>\pA,7u

7\

continuous p—space

o continuous 7-space

n
AN :
) ] , discrete n-space
W5,k

continuous p—space

) g_:; ; continuous 7-space
7

continuous p—space

continuous 7-space

discrete n-space

continuous p—space

continuous 7-space

, discrete n-space



III. NONHYDROSTATIC EULERIAN SCHEME

5. Poisson equation for NH geopotential height fluctua-

tion

Action on eq. (2d) with 9/t yields the Poisson equation for ¢

(Discrete n-coordinate case, all relations are defined at internal

grid-points {7, 7, k}):

L=GIG\+GfGy+ 585,
aé+ oG oS+ Hw

A:é+Fu GAH_FU_A
At G ot ot " ot p
A o
7 o' A
Fy, = — u—(s)\w ‘|‘—59w ‘|‘m77( w) + Py + Ky
h>\ he Ap

Source function A represents the 3D divergence of HS tendency
+ small contribution (last three terms), proportional to tenden-

cies of operators.

In the continuous p-coordinate representation £ would be:

o ([ p* 0¢
o=vio + 5 (s )
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6. Boundary conditions for ¢

i. Lateral boundaries: Zero normal gradient (no acceleration
due to NH geopotential)

(%)L = 0 (=TIr(¢) as option) (4a)

ii. Boundary condition on the bottom:

Normal gradient 0¢/0n
at the bottom (n = 1)

must maintain air

dv/dt At

(t +At)

particles at free—slip

V(t+At)

on the surface

The required condition can be obtained, acting with % on the
free—slip condition w|,=1 = Vv|;=1 - VZ. The result reads (after

some ’algebra’; the continuous 7-space representation is assumed)

(g_;j) —T04T1(9) . (40
0 _ mHF 1/ 0\ mH*Vp-Vé
b = {p[l T (HVp/p)] }nzl a0 = {pz[l + (HVp/p)’] }":1
F =—-F,—HVp-F,/p.

If horizontal scale is > 5000 m — 1 km, then (4b) can be approx-
imated as homogeneous (I'’, T'' — 0).
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iii. Boundary condition at the top follows from the require-
ment that ¢ is finite at » — 0, if the source function A is finite.
This condition can be formulated quantitatively in the Fourier
representation by the horizontal coordinates.

We define the main part of £ as its horizontally averaged com-

ponent:

L- (ﬁa%* (ﬁ%* <nlz> aan <p</”lj>>2 38"

where (-) is the operation of horizontal averaging:

1
{k} ' <a> - NlatNlon Zai‘jk

(2%

Let us consider the main-part approximation to the exact Poisson

equation for ¢

Lo= A

Its Fourier transform in z,y reads

1 9 (p/H)’ 04,

— "{2 ~/<; — Aﬁ;
) on (my og "¢

~

where qg,{, A, are Fourier amplitudes of ¢ and A, and k = {k;, Ky }
is the wave-vector, whereas x* = (k,)*> + (k,)* is the Fourier

transform of the horizontally averaged Laplacian.
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The upper boundary condition for ¢, is

M (am) — @i (ne) = H) Axln,) : (4¢)

te + 1

where

,LLK:\/1/4—|—<H>31'€2—1/2,

n. is a level near the top and (H)_ is mean value of (H) above

*

that level.
12 n=0
1 - _MAn_ o ____._
oY -
\l’ n=4n
In the discrete model, A NN
n=24n
M« corresponds to 4o _/ ______________________
the level k = 3/2,
N« = An. @ A, @ Ay (H),
( A9
An J 312

The discrete approximation (wave index « is omitted) to (4c) is

o Aij1 + Aijo

=GA.
" 2(py + 1)

j;gg = (qgijg — Qgijl) — %(nggl ‘|‘95ij2) — <H>
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7. Solution of elliptic equation for ¢

Iterative algorithm is employed, which supports the fast Fourier
cosine-transform (FFCT).

Initial equation and boundary conditions are presented as

Lo=A—L'¢,

O _ 0, 1 % _ 10, 71 P AL AL
(3_77>77:1 = I',+1';0, (8n)L =I74116, Lo = G(A—L'9).

Here £’ is the perturbation component of the elliptic operator,
L =L-L

which becomes zero for flat, plain ground and horizontally ho-

mogeneous stratification: Z = 0, H = H(n), ps = po.

The idea is to use the iterative process, in which the ith approx-

imation ¢’ is solution of the equation

quz :A—EIQbi_l :

8qbi> 0 ol i1 (&bi) 0 | Pl 4iei
— Fs + qubz ’ =T + I qb@ ’
( m /=1 on ), L L

lA_JQbIL — GA(A . EIQbi_l),

starting with
#’ =0.
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Application of the FFCT requires expansion (Winninghoff 1968,
Williams 1969)

¢ =&+,
where ¢ has zero normal gradient at lateral boundary and qbzb 1S

zero in the internal points of the domain. Thus,

¢

aﬁbé 0 1 ,2—1 aﬁbé 0 1 4—1 7T 14 A ! a—1
= F F ¢ — F F ? L [— A— 1
( 877 )1 S—I_ sqb 9 an . L—I_ qu ’ be G( £ qb )

LE=A—Lo — L7 = A,

88) = 0 (a§i> = 0 L& =0
(an 77:1 ? an L ? é- ?

di=C gl €=0, ¢?=0.

As arule, 4 - 5 iterations are required to compute nonhydrostatic

geopotential height fluctuation ¢/g with error < 1 cm.
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8. Numerical scheme
Described algorithm is realized on the variant of HIRLAM 2.5:

50 x 50 x 24 points; horizontal resolution 11.1 km; area 555 X
555 km?.

Modifications concern subroutine '"TEULER’:

— routine ’DYN’, which is called from '"EULER’ is modified to
include computation of w and dw/0t.

— thereafter routine ’ellipt’ is called, which computes ¢.

— NH tendencies of u, v are added to the hydrostatic counterparts

to get full tendencies.

Present NH version assumes the Eulerian time integration (FEx-
plicit Leapfrog Scheme). Common Explicit Leapfrog requires a
small time step, At < Az/C,, where C, ~ 280 m/s is the exter-
nal buoyancy wave (Lamb wave) speed. To increase At, external
waves are eliminated using the rigid bottom approximation in
the pressure — space: % — 0 . Thus, the modelling domain
0 < p <P, = pslt=o is the same for all integration period.
The actual surface pressure is considered as an adjusted field
and is computed via the boundary value of the NH geopotential

fluctuation ¢ at the lowest model surface p,:

_ ¢ )
pS - pS — (1 —I_ .
RT),_,

Such approximation for lower boundary is good so far, as the

modelling domain is small (up to 1000 — 2000 km in horizontal).
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Yet the problem has temporary nature, as the time—step restric-
tion (and along with it a need to fix the ground pressure) are
in practice eliminated in the implicit scheme, which would be a

next modification to the present NH version anyway.
Lateral boundary relaxation scheme.

The existing boundary relaxation scheme of the HS HIRLAM
does not work properly in the NH modification. It is too inflex-
ible and causes buoyancy wave reflection on lateral boundaries
and consequent standing— wave formation near the boundary re-

laxation zone:

Potential temperature ©,A@ = 1K,t=0s Potential temperature ©, A@ = 1K,t=1h

15

Vertical velocity WAW =0.025m/s.t=0s
- T

=TS T TS
2 gbv

Fig. Potential temperature 6 (upper panels) and vertical ve-
locity w (lower panels) in vertical plane ;5 = 25 in the initial

moment (left panels) and after 1 h (120 steps of integration).
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Next figure illustrates what changes undertakes the source func-
tion A in the ¢g—equation (3) during a short integration (1 hour of
real time), if the common relaxation scheme of the HS HIRLAM

1s used.
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Fig. Source function A along line k£ = 13, 5 = 25 for istep = 1
and istep = 120. At = 30 s.

There exist two principal schemes to avoid buoyancy wave reflec-
tion at lateral boundaries. The first applies radiative bound-
ary condition and in this way makes the boundaries transparent
to gravity waves (Orlanski 1976, Raymond and Kuo 1984). This
approach is, for instance, applied in the NH sigma-coordinate
models NH3D (Miranda 1990, Miranda and James 1992) and
NHAD (R66m 1997), and in the NH mesoscale model of the MRI
(Ikawa and Saito 1991). The other makes use of the Davies-type
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absorbing layer (Davies 1976), introducing the Newton-Rayleigh
friction near boundaries. This relaxation scheme is implemented
in the Lokal-Modell of the DWD (Doms and Schaettler 1997).
The mechanism is similar to the one, used at upper boundary

(n — 0) by Klemp and Lilly (1978).
Instead of the rigid relaxation scheme of the HS HIRLAM,

which applies relaxation scheme in the boundary zone L —

AL < =z < L
am(a:) — arel(az) = am(a:) (1 —w(x)) + aref(:c)w(a:)

(a is arbitrary field to be relaxed, and w(z) is the given
weight-function), the Davies mechanism makes rather use of the

Newton—Rayleigh friction

da
i . _ref
5 F,— K(z)(a—a"")

where K (z) is a positive friction coefficient:

() — 0, x< L —AL
(z) = c(z—L+AL?, L-AL<z<L

and F, represents the ordinary tendency for a (without friction).

In the case of the NH HIRLAM the Davies scheme is more
preferable as the HS HIRLAM makes already use of the relax-
ation zone, and modellings carried out by Davies (1976), and by
Saito, Doms, Schaettler and Steppler (1998), shows that relax-
ation zone with a depth of 5 — 6 grid-points is already sufficient
for the NH buoyancy wave absorption.
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IV. CONCLUSIONS

A preliminary version of the nonhydrostatic HIRLAM is close to
be completed. For completion the lateral BC should be modi-
fied. The model employs Eulerian integration scheme and enables
computation of additional tendencies due to nonhydrostatic ac-
celerations, which are caused by the orography and by inertial
forcing. The model is quasi-planar : Earths sphericity is treated
as a small perturbation to the plain geometry, which restricts the
domain of integration to be less than 1500 — 2000 km.

Actual problems (as seen in October 1998):

— Modification of lateral boundary conditions and implementa-

tion of the Davies relaxation scheme.

— Implementation of the spherical geometry. Requires a new
solution scheme for the elliptic equation, which, similarly to the
existing Helmholtz-scheme of the HS HIRLAM, employs eigen-

vector technique in the vertical dimension.

— Resolution enlargement (AX = 11 km — AX = 5.5, 2.25 km).
— Tests on larger grids.

— Development of the semi-implicit NH scheme.

— Implementation of NH algorithm with the Lagrangian time-

integration scheme.
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