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I� INTRODUCTION

�� Nonhydrostatic e�ects in shorter meso�scale�

Hydrostatic approximation in equation of vertical development�
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This approximation is not valid for large vertical accelerations�

	 convection� 	 resolved short
scale

orographic disturbances�
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Flow modelling over bell�shaped orography

demonstrates that nonhydrostatic and hydrostatic wave	pattern

di�er essentially for horizontal scales l � �� 	 �� km�
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Moreover� as it is proved theoretically� the hydrostatic model

is not capable of some nonhydrostatic phenomena description

�trapped lee waves �Durran ����
 are an example
�

�



�� Pressure�related coordinates at nonhydrostatic mod�

elling �What is their advantage��

Initially pressure coordinates and pressure
related coordinates

were developed for HS modelling purpose�

Eliassen� ����� isobaric or p	coordinates

Phillips� ����� sigma�coordinates� � � p�ps

Hybrid
 or �	coordinates �ECMWF� HIRLAM
�

� �
p

��p
p� � ��� ��p
�ps
� � � ��p
 � �

Advantages�

	 natural coordinates at sounding and analysis

	 simpli�cation of equations due to the non
divergent

��anelastic� in the pressure	space terms
 nature of the �ow�

rp � v�
�	

�p
� � � 	 �

dp

dt
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How to be at the entering of the NH �domain� �

A
 leave the pressure coordinates in favour of the ordinary Carte


sian coordinates�

B
 develop nonhydrostatic dynamics in the pressure
coordinate

representation�

The second alternative is attractive� Yet for its correctness the

pressure must be a monotonous function of z� From the

vertical development equation a restriction follows�

�p
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 �g

That is� transition from z to p�coordinates �and appli�

cation of p�space concept� is correct so far	 as vertical

accelerations do not exceed the gravitational accelera�

tion


There are developed di�erent versions of NH p	space dynamics�

Anelastic models� Miller ���� and Miller and Pearce ����� White

����� Salmon and Smith �����

Exact �non
simpli�ed
 NH model� R�o�om ����� �����

Elastic acoustically �ltered NH model� R�o�om ����� �����

The anelastic model by Salmon and Smith

�which coincides in essence with the White model
 is employed

for the development of the NH HIRLAM�

Details of this model are discussed further�

�



II� ANELASTIC MODEL

IN PRESSURE�RELATED COORDINATES

�� Anelastic model in p�coordinates� Adiabatic formula�

tion �Eq� �NEW� are the ones which the hydrostatic dynamics

lacks


�NEW �

dw

dt
�

p

H

��

�p
�Pw�Kw� ��a


dv

dt
� �rp��� �
� fk� v �Pv �Kv ��b


dT

dt
�

gH

Cp

	

p
� PT �KT � ��c


rp � v�
�	

�p
� � � ��d


dps
dt

� 	jps ��e


��

�p
� �

gH

p
��f


�NEW �

w

H
� �

	

p
�
�

R

ds

dt
��g


H � RT�g 	 height	scale

w � dz�dt 	 vertical velocity

v � iu � jv 	 vector of horizontal velocity

� 	 NH component of the geopotential

�



�� ��coordinate formulation of the anelastic model�

Adiabatic case

Let us make following modi�cation in ��
�

i� Eliminate 	 in favour of w in the continuity equation�

ii� employ hybrid coordinates�

iii� use expansion d

dt �
�
�t � v � r� � � �

�� �

iv� express horizontal velocity advection via vorticity and energy

gradients like in the hydrostatic HIRLAM�

As the result of these transformations� ��
 becomes to
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Equations for temperature T ��c
� ground pressure ps ��e
� and

HS geopotential � ��f
 do not change and will exactly coincide

with those of the �standard�� HS HIRLAM in hybrid coordi


nates�

Fv is the right side of the corresponding equation of the HS

HIRLAM� and �continuous case


Fw � �v � r�w � ��
�w

��
� Pw �Kw
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Operators �G� �G� are representations of the horizontal pressure	

coordinate gradient and divergence in hybrid coordinates�
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Notation here is the standard HIRLAM notation� except
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III� NONHYDROSTATIC EULERIAN SCHEME

�� Poisson equation for NH geopotential height 
uctua�

tion

Action on eq� ��d
 with ���t yields the Poisson equation for �

�Discrete �
coordinate case� all relations are de�ned at internal

grid
points fi� j� kg
�
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Source function A represents the �D divergence of HS tendency

� small contribution �last three terms
� proportional to tenden


cies of operators�

In the continuous p
coordinate representation L would be�
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�� Boundary conditions for �

i� Lateral boundaries� Zero normal gradient �no acceleration

due to NH geopotential
�
��

�n

�
L

� � ��  L��
 as option 
 ��a


ii� Boundary condition on the bottom�

Normal gradient �����

at the bottom �� � �


must maintain air

particles at free	slip

on the surface

V(t)
V(t +∆t)

dV/dt t∆

V(t+∆t)

The required condition can be obtained� acting with �
�t on the

free	slip condition wj��� � vj��� � rZ� The result reads �after

some !algebra!� the continuous �
space representation is assumed
�
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If horizontal scale is 
 ���� m 	 � km� then ��b
 can be approx


imated as homogeneous � ��  � � �
�
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iii� Boundary condition at the top follows from the require


ment that � is �nite at � � �� if the source function A is �nite�

This condition can be formulated quantitatively in the Fourier

representation by the horizontal coordinates�

We de�ne the main part of L as its horizontally averaged com


ponent�
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where h�i is the operation of horizontal averaging�
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�
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Let us consider the main
part approximation to the exact Poisson

equation for �

L� � A

Its Fourier transform in x� y reads
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where ���� �A� are Fourier amplitudes of � andA� and �� f�x� �yg

is the wave
vector� whereas �� � ��x

� � ��y


� is the Fourier

transform of the horizontally averaged Laplacian�
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The upper boundary condition for �� is
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q
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�� is a level near the top and hHi� is mean value of hHi above

that level�

In the discrete model�
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The discrete approximation �wave index � is omitted
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�� Solution of elliptic equation for �

Iterative algorithm is employed� which supports the fast Fourier

cosine
transform �FFCT
�

Initial equation and boundary conditions are presented as

L� � A� L�� ��
��

��

�
���

�  �s� 
�
s� �

�
��

�n

�
L

�  �L� 
�
L� � �L� � �G�A� L��
 �

Here L� is the perturbation component of the elliptic operator�

L� � L �L

which becomes zero for �at� plain ground and horizontally ho


mogeneous strati�cation� Z � �� H � H��
� ps � p��

The idea is to use the iterative process� in which the ith approx


imation �i is solution of the equation
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Application of the FFCT requires expansion �Winningho� ��#��

Williams ��#�


�i � �i � �ib

where �i has zero normal gradient at lateral boundary and �ib is

zero in the internal points of the domain� Thus�
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As a rule� � 
 � iterations are required to compute nonhydrostatic

geopotential height �uctuation ��g with error � � cm�

��



�� Numerical scheme

Described algorithm is realized on the variant of HIRLAM ����

�� � �� � �� points� horizontal resolution ���� km� area ��� �

��� km��

Modi�cations concern subroutine !EULER!�

	 routine !DYN!� which is called from !EULER! is modi�ed to

include computation of w and �w��t�

	 thereafter routine !ellipt! is called� which computes ��

	 NH tendencies of u� v are added to the hydrostatic counterparts

to get full tendencies�

Present NH version assumes the Eulerian time integration �Ex


plicit Leapfrog Scheme
� Common Explicit Leapfrog requires a

small time step� �t � �x�Ce� where Ce � ��� m"s is the exter


nal buoyancy wave �Lamb wave
 speed� To increase �t� external

waves are eliminated using the rigid bottom approximation in

the pressure � space� �ps
�t � � � Thus� the modelling domain

� � p � ps � psjt�� is the same for all integration period�

The actual surface pressure is considered as an adjusted �eld

and is computed via the boundary value of the NH geopotential

�uctuation � at the lowest model surface ps�

ps � ps �

�
� �

�

RT

�
���

�

Such approximation for lower boundary is good so far� as the

modelling domain is small �up to ���� 	 ���� km in horizontal
�

�#



Yet the problem has temporary nature� as the time	step restric


tion �and along with it a need to �x the ground pressure
 are

in practice eliminated in the implicit scheme� which would be a

next modi�cation to the present NH version anyway�

Lateral boundary relaxation scheme�

The existing boundary relaxation scheme of the HS HIRLAM

does not work properly in the NH modi�cation� It is too in�ex


ible and causes buoyancy wave re�ection on lateral boundaries

and consequent standing	 wave formation near the boundary re


laxation zone�
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Fig� Potential temperature � �upper panels
 and vertical ve


locity w �lower panels
 in vertical plane j � �� in the initial

moment �left panels
 and after � h ���� steps of integration
�

��



Next �gure illustrates what changes undertakes the source func


tion A in the �	equation ��
 during a short integration �� hour of

real time
� if the common relaxation scheme of theHS HIRLAM

is used�
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Fig� Source function A along line k � ��� j � �� for istep � �

and istep � ���� �t � �� s�

There exist two principal schemes to avoid buoyancy wave re�ec


tion at lateral boundaries� The �rst applies radiative bound�

ary condition and in this way makes the boundaries transparent

to gravity waves �Orlanski ���#� Raymond and Kuo ����
� This

approach is� for instance� applied in the NH sigma
coordinate

models NH�D �Miranda ����� Miranda and James ����
 and

NHAD �R�o�om ����
� and in theNH mesoscale model of the MRI

�Ikawa and Saito ����
� The other makes use of the Davies
type

��



absorbing layer �Davies ���#
� introducing the Newton
Rayleigh

friction near boundaries� This relaxation scheme is implemented

in the Lokal�Modell of the DWD �Doms and Schaettler ����
�

The mechanism is similar to the one� used at upper boundary

�� � �
 by Klemp and Lilly �����
�

Instead of the rigid relaxation scheme of the HS HIRLAM�

which applies relaxation scheme in the boundary zone L �

�L � x � L

ain�x
� arel�x
 � ain�x
 � ��� w�x

 � aref �x
w�x


�a is arbitrary �eld to be relaxed� and w�x
 is the given

weight
function
� the Davies mechanism makes rather use of the

Newton	Rayleigh friction

�a

�t
� Fa �K�x
�a� aref


where K�x
 is a positive friction coe$cient�

K�x
 �

�
� � x � L��L
c�x� L��L
� � L��L � x � L

and Fa represents the ordinary tendency for a �without friction
�

In the case of the NH HIRLAM the Davies scheme is more

preferable as the HS HIRLAM makes already use of the relax


ation zone� and modellings carried out by Davies ����#
� and by

Saito� Doms� Schaettler and Steppler �����
� shows that relax


ation zone with a depth of � 	 # grid
points is already su$cient

for the NH buoyancy wave absorption�

��



IV� CONCLUSIONS

A preliminary version of the nonhydrostatic HIRLAM is close to

be completed� For completion the lateral BC should be modi


�ed� The model employs Eulerian integration scheme and enables

computation of additional tendencies due to nonhydrostatic ac


celerations� which are caused by the orography and by inertial

forcing� The model is quasi
planar � Earths sphericity is treated

as a small perturbation to the plain geometry� which restricts the

domain of integration to be less than ���� 	 ���� km�

Actual problems �as seen in October ����
�

	 Modi�cation of lateral boundary conditions and implementa


tion of the Davies relaxation scheme�

	 Implementation of the spherical geometry� Requires a new

solution scheme for the elliptic equation� which� similarly to the

existing Helmholtz
scheme of the HS HIRLAM� employs eigen


vector technique in the vertical dimension�

	 Resolution enlargement ��X � �� km� �X � ���� ���� km
�

	 Tests on larger grids�

	 Development of the semi
implicit NH scheme�

	 Implementation of NH algorithm with the Lagrangian time


integration scheme�

��



REFERENCES

Davies� H� C�� ���#� A lateral boundary formulation for multi


level prediction models� Q� J� R� Meteorol� Soc�� ���� ���


����

Doms� G�� Schaettler� U�� ����� The nonhydrostatic limited
area

model LM �Lokal
Modell
 of DWD� Part I� Scienti�c docu


mentation� DWD� ��� pp�

Durran� D� R�� ����� Mountain waves and downslope winds�

In W� Blumen �ed�
� Atmospheric Processes Over Complex

Terrain� American Meteorol� Soc�� �� 	 ���

Eliassen� A� ����� The quasi
static equations of motion with

pressure as independent variable� Geofys� Publikasjoner

�Oslo
� ���

Klemp� J� B� and Wilhelmson� R� B� ����� The simulation of

three
dimensional convective storm dynamics� J� Atmos� Sci��

��	 ����	���#

Ikawa� M� Saito� K�� ����� Description of a nonhydrostatic model

developed at the Forecast Research Department of the MRI�

Technical Reports of the MRI� ��� ��� pp�

Klemp� J� B�� and D� K� Lilly� ����� Numerical simulation of

hydrostatic mountain waves� JAS� ��	�� 	 ����

Miller� M� J�� ����� On the use of pressure as vertical co
ordinate

in modeling convection� Q� J� R� Meteorol� Soc������ ��� 	

�#��

��



Miller� M� J�� R� P� Pearce� ����� A three
dimensional primi


tive equation model of cumulonimbus convection� Q� J� R�

Meteorol� Soc�� ���� ��� 	 ����

Miranda� P� M� A� ����� Gravity waves and Wave Drag in Flow

Past Three	Dimensional Isolated Mountains� PhD Thesis�

University of Reading� ��� pp�

Miranda� P� M� A�� James� I� N� ����� Non
linear three


dimensional e�ects on gravity
wave drag� splitting �ow and

breaking waves� Quart� J� Roy� Meteor� Soc�� ���	 ����	

����

Orlanski� I�� ���#� A simple boundary condition for unbounded

hyperbolic �ows� J� Comput� Phys�� ��� ��� 	 �#��

Phillips� N� A� ����� A coordinate system having some special

advantage for numerical forecasting� J� Meteorol�� ��	 ���	

���

Raymond� W�H� and H� L� Kuo� ����� A radiation boundary con


dition for multi
dimensional �ows� Q� J� R� Meteorol� Soc��

���� ��� 	 ����

R�o�om� R�� ����� The general form of dynamical equations of the

atmosphere in the isobaric coordinate space� Proc� Estonian

Academy Sci�� Phys� Math�� ��� �#� 	 ����

R�o�om� R�� ����� General form of the dynamical equations for

the ideal atmosphere in the isobaric coordinate system� Izv�

AN SSSR� Fiz� Atmos� i Okeana� ��� �� 	 �#�

��



R�o�om� R�� ����� Nonhydrostatic atmospheric dynamics in

pressure
related coordinates� Technical Report� Estonian Sci


ence Foundation Grant No� ���� Tartu Observatory� ��� pp�

R�o�om� R�� ����� Acoustic �ltering in nonhydrostatic pressure

coordinate dynamics� A variational approach� JAS� ��	 #��

	 ##��

Saito� K�� Dohms� G�� Schaettler� U�� Steppeler� J�� ����� �
D

mountain waves by the Lokal
Modell of DWD and the MRI

Mesoscale Nonhydrostatic Model� In� SRNWP�Centre for

Nonhydrostatic Modelling� Newsletter No� �� DWD GB FE�

O�enbach� February ����� � 	 ���

Salmon� R�� L� M� Smith� ����� Hamiltonian derivation of the

nonhydrostatic pressure	coordinate model� Q� J� R� Meteorol�

Soc�� ���� ���� 	 �����

White� A�A� ������ An extended version of nonhydrostatic� pres


sure coordinate model� Q� J� R� Meteorol� Soc�� ���� ���� 	

�����

Williams� G� P� ��#�� Numerical integration of the three


dimensional Navier
Stokes equations for incompressible �ow�

J� Fluid Mech�� ��� ���	���

Winningho�� F� J� ��#�� On the adjustment toward the geostrophic

balance in a simple primitive equation model with application

to the problems of initialization and objective analysis� Ph�D�

Thesis� Dept� Met� Univ� of California� los Angeles�

��


